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We show that the continuous cholesteric fingers which form in homeotropic samples at the co-
existence temperature with the unwound phase drift and form spirals when they are subjected to
a temperature gradient. This phenomenon is attributed to the appearance of a Lehmann thermo-
mechanical torque. Measurements of the finger drift velocity on both sides of the compensation
temperature of a cholesteric mixture show that the Lehmann coefficient does not change sign (and
so does not vanish) at this temperature contrary to the equilibrium twist. There is thus no direct
relationship between the thermomechanical Lehmann coefficient and the equilibrium twist. The
non-vanishing of the Lehmann coefficient at the compensation temperature is due to the absence of
inversion symmetry in a compensated cholesteric in spite of its nematic-like structure. This comes
from the chirality of the molecules. The ratio of the Lehmann coefficient over the rotational viscosity

is also measured as a function of temperature.

PACS numbers: 61.30.-v, 05.70.Ln, 65.40.De

I. INTRODUCTION

In a nematic liquid crystal, the rod-like molecules tend to align along a single direction characterized by a unit
vector 7 called the director (with 77 < —7). If one adds chiral molecules to a nematic phase, one obtains a cholesteric
phase in which the director rotates around a space direction called the helical axis.

In practice, there is no obvious relationship between the molecular chirality and the value — nor even the sign — of
the equilibrium twist of the phase [1]. Proof of this is the existence of materials (pure compounds [2] or mixtures [3]) in
which the macroscopic twist can vanish and change sign at a particular temperature called compensation temperature
T..

Chirality has also direct consequences in hydrodynamics. The most spectacular example is the Lehmann rotation of
cholesteric drops placed in a temperature gradient [4] which we recently reobserved [5]. This dynamical phenomenon
was explained by Leslie in 1968 from symmetry arguments [6]. More precisely, the absence of inversion symmetry in

cholesterics allows the existence of a thermomechanical torque on the director of expression [7, 8]
[ Lenm = vit x (it x G) (1)

where G = VT is the imposed temperature gradient.
In 1982, Eber and Janossy found that the Lehmann coeflicient v was non zero at the compensation temperature

T. of a cholesteric phase [9]. This result was surprising as the phase has a nematic-like structure at T, an argument
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used by Pleiner and Brand to propose that the Lehmann coefficient be proportional to the equilibrium twist ¢ of the
phase [10] near T, in contradiction with the Eber and Janossy experiment. In view of this controversial situation,
we redid a similar experiment which we extended to another geometry and found that v was non zero at T, [11, 12],
again in contradiction with theoretical predictions.

In this article, we present a new and more decisive experiment allowing us to unambiguously determine the sign
of v below and above T, in order to check once and for all whether v is proportional to ¢ near T, or is independent
of g. We emphasize that we are dealing with a dynamical experiment as it brings into play a continuous rotation of
the director driven by the thermomechanical Lehmann effect. This contrasts with previous experiments of Eber and
Janossy type which were static. The plan of the article is the following. In Section 2, we describe the experiment.
In Section 3, we recall the main topological properties of cholesteric fingers as well as the theoretical expression of
their drift velocity when they are subjected to a temperature gradient inducing a Lehmann torque. In Section 4, we
show that the fingers form spirals when they drift perpendicularly to their axes. Measurements of their drift velocity
are given in Section 5 from which we deduce a value of the Lehmann coefficient at the compensation temperature.

Finally, we draw conclusions in Section 6.

II. THE EXPERIMENT

Our experiment consisted of observing the drift of cholesteric fingers which form in homeotropic samples placed
in a temperature gradient perpendicular to the glass plates. It was performed with a mixture of 4-n-octyloxy-
4’-cyanobiphenyl (80CB from Synthon Chemicals GmbH & Co) and of cholesteryl chloride (CC from Aldrich) in
proportion 1:1 in weight. This mixture has a cholesteric phase which melts at 66°C with a compensation temperature
of 57.5°C. Tts equilibrium twist is positive above T (right-handed helix) and negative below (left-handed helix) [11, 12].
In practice, the confining glass plates are treated with a DMOAP layer which is polymerized at 110°C for 1 hour.
Their spacing is fixed by two Nickel wires of calibrated diameter. After filling, the sample is sealed on the sides
with an epoxy glue and is sandwiched between two transparent ovens regulated in temperature with the aid of two
circulating water baths. Two glycerol layers enhance the thermal contact between the sample and the ovens. In the

following we shall denote by AT = T; — T} the temperature difference between the top and bottom ovens.

III. CHOLESTERIC FINGERS: TOPOLOGY AND DRIFT VELOCITY

Cholesteric fingers are typical textures observed in homeotropic samples. They can be of several types with some-
times point or linear defects inside, but in the following we shall only consider fingers of the first type (CF1) in which
the director field is everywhere topologically continuous [8, 13]). We recall that isolated CF1s form and coexist with
the nematic-like homeotropic phase when the cholesteric phase starts to unwind under the influence of the strong
homeotropic anchoring (first-order transition). This happens when the cholesteric pitch is of the order of the sample
thickness. As a consequence, there are, for each sample of thickness d of our mixture, two temperatures below and
above T, at which this condition is fulfilled. In 1997, Gil and Thiberge [14] predicted that a CF1 must drift per-
pendicularly to its axis when it is subjected to a temperature gradient. In the following, we shall assume that the
finger is along the z axis, while the z axis is taken perpendicular to the glass plates and oriented upwards (it is thus
parallel to the temperature gradient). The director field inside a finger of a right-handed cholesteric (¢ > 0) is shown
in Fig. 1. Its aspect depends on the orientation of the finger with respect to the y axis. Indeed, because of the absence

of mirror symmetry in cholesterics, a finger is “polarized” as it has two different tips, a pointed one marked with the



+ sign, and a rounded one marked with the - sign. A direct consequence is that the finger shown in Fig. 1a must drift
in the opposite direction as the finger shown in fig. 1b. This can also be seen from the explicit expression of the drift
velocity V' [14]:

y— A2l 2)
Y1
where v is the Lehmann coefficient defined in Eq. 1 and A a dimensionless factor which only depends on the finger

topology:

- 1 +OO dy fO (ny 6y )dZ (3)
df+°°d o T

Indeed, rotating the finger by 7 around the z axis is equivalent to make the transformation x — —x, y — —vy,
Ng — —Ng, and n, — —n, in the previous expression. Doing this, A changes into —A, and the velocity changes sign
as expected.

Let us now discuss what happens to a cholesteric finger when the equilibrium twist changes sign. This situation is
represented in Fig. 2. On the left is drawn a segment of a left-handed cholesteric finger and on the right a segment of a
right-handed cholesteric finger. Because these two fingers are symmetric with each other with respect to the zz plane,
one passes from one to the other by the transformation y — —y and n, — —n,. As A does not changes sign in this
transformation, we conclude that the sign of V' is only given by the sign of the Lehmann coefficient v. In conclusion,
two segments of right- and left-handed cholesteric fingers “polarized” in the same direction must drift in the same
direction on both sides of the compensation temperature if ¥ does not change sign at this temperature, whereas they
will drift in opposite directions if v changes sign. In the following we shall use this criterion to determine the sign of

v as a function of temperature.

IV. SPIRALS

We now return to experiments. In practice, isolated cholesteric fingers form spirals at long time when they drift
perpendicularly to their axis. Such an evolution was already observed in the case of cholesteric fingers submitted
to AC or DC electric field. It is inevitable as shown previously in Ref. [15] and very similar to the propagation of
wave fronts in weakly excitable two-dimensional media [16]. Experimentally different types of spirals can form: single
spirals with the rounded tip inwards and the pointed tip outwards or multiple-armed spirals with the rounded tips
outwards and the pointed tips inwards connected to a spherulite [17] or a looped CF1 often pinned on a dust particle.

In Fig. 3 is shown a rotating triple spiral connected to a spherulite. In this example, the temperature gradient is
positive (AT > 0) and the sample temperature is larger than T, so that the mixture has a positive twist (¢ > 0)
[11, 12]. From the sense of rotation of the spiral, we deduce that v > 0 above T.. Fig.4 shows that two spirals
observed in the same sample above T, for two temperature gradients of opposite signs rotate in opposite directions,
in agreement with Eq. 2.

Much more interesting is the case of two single spirals observed in the same sample at the same temperature gradient
above and below T, (Fig.5). We see here that in spite of the fact that the equilibrium twist has changed sign, the
two spirals rotate in the same direction. The same observation holds for all types of spirals. Thereby, when G > 0,
the seven-armed spiral shown in Fig. 6 rotates below T, in the same direction (i.e. anticlockwise) as the triple spiral
shown in Fig. 4a above T, . These observations are fundamental because they show that the Lehmann coefficient does

not change sign at T..



V. LEHMANN COEFFICIENT

To estimate the Lehmann coefficient, we systematically measured the normal velocity of the spiral branches as a
function of AT (proportional to G). Measurements for a 10 um-thick sample are reported in Fig.7. They clearly
show that the velocity is proportional to the temperature gradient in agreement with Eq.2. In addition, the slope
of this curve divided by the sample thickness gives the ratio Cv/y; where C' is a numerical factor we shall evaluate
later. For this reason, we performed similar measurements in samples of different thicknesses (10, 25, and 40 ym). In
each experiment, the temperature (and so the equilibrium twist) was different as the fingers must be in equilibrium
with the homeotropic nematic phase (unwound cholesteric). This allowed us to measure Cv/; as a function of the
temperature (or, equivalently, of the equilibrium twist, as we know ¢(7T') from previous works [11, 12]). Our data are
reported in Fig. 8. Extrapolating this curve gives Cv/y; ~ 2.24+0.5 x 10~* s71K™! at the compensation temperature.
In practice, C' is the ratio of factor A given by Eq.3 over a calibration length [ that gives the temperature gradient
as a function of the temperature difference (G = AT/l). Constant A was computed numerically by Gil and Thiberge
[14] who found 0.14. As for [, it was estimated by using the same method as in Ref. [5] while taking into account the
two glycerol layers: [ ~ 1.1 £ 0.2mm. From these values we calculate v/y; ~ 1.7 + 0.7 x 10~%s~'K~'m which gives
v 1.340.9 x 1077 kgK 's2 knowing that v, = 0.075 & 0.02 Pa.s [18]. Nevertheless, this value must be regarded
with caution as we do not know the exact value of A for our material (indeed, the ratios of the elastic constants used
by Gil and Thiberge in their numerics are different from those found in our mixture, which should change the value
of A, but not its order of magnitude). In addition, the measured velocities are perhaps slightly underestimated as the
fingers are curved inside spirals which could slow down their propagation. This could explain why the value given

before is a bit smaller than that we measured previously by a static method: v ~ 2.8+ 0.6 x 1077 kgK 52 [11, 12].

VI. CONCLUSION

In conclusion, we have shown that cholesteric fingers of the first type drift and form steadily rotating spirals
under the action of a temperature gradient. This phenomenon is due to the Lehmann thermomechanical coupling.
Our measurements of the ratio v/y; in a 8OCB-CC mixture on both sides of its compensation temperature T,
unambiguously show that there no direct relationship between the thermomechanical Lehmann coefficient v and the
equilibrium twist ¢q. In particular, the usual statement according to which v must be proportional to ¢ is incorrect in
general. The non-vanishing of v at T, proves that the medium has no inversion symmetry at this special temperature,
even if it has a nematic-like structure. This result, surprising at first sight, is upon reflection quite normal because
the molecules are chiral. It is also for the same reason that chiral isotropic liquids have rotatory power. Finally, we
emphasize that this experiment allowed us to determine the sign of Lehmann coefficient which was unknown so far
(see note [23] in Ref. [12]).

We thank Pawel Pieranski for useful comments.
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FIG. 1: Director field inside a cholesteric finger of the first species represented in the vertical yz plane for two different
orientations of the finger. It can be shown that the pointed tip stores more elastic energy than the rounded one (whence the
symbols + and — to mark them) [19]. Fingers in (a) and (b) drift in opposite directions when they are subjected to the same
temperature gradient. We checked numerically that for the director field represented in (a) (resp. in (b)), the rounded tip is in

the direction of the positive (resp. negative) x axis and that A is positive (resp. negative).

V<O V>0 V>0

v<O0 v>0 v>0

G>0
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FIG. 2: Segments of left-handed (a) and right-handed (b) cholesteric fingers oriented in the same direction. The segments drift

in the same direction if v has the same sign Vg, whereas they drift in opposite directions if v changes sign when ¢ changes sign.



FIG. 3: Triple spiral rotating anticlockwise at T' = 60.8°C> T, (d = 10 um, AT = 36.8°C). According to Fig.2b, v > 0 above
Te when g > 0.



FIG. 5: Two single spirals rotating in the same direction observed in a 25 pm-thick sample submitted to a positive temperature

gradient above and below T.. a)T = 58.9°C> T, AT = 47.2°C; b)T = 56.4°C< T, AT = 47.2°C.

FIG. 6: Seven-armed spiral observed in 10 pm-thick sample submitted to a positive temperature gradient below T, (T' = 54°C,
AT = 21.5°C).



FIG. 7: Normal drift velocity as a function of the temperature difference between the two ovens (d = 10 um, T' = 60.8°C> T¢).
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FIG. 8: Ratio (proportional to the Lehmann coefficient) of the drift velocity over the temperature difference times the sample
thickness as a function of the equilibrium twist or the temperature. A: d = 10 um; O: d = 25 pm; O: d = 40 pm. The solid

line is a guide for the eyes.



