
HAL Id: ensl-00335792
https://ens-lyon.hal.science/ensl-00335792v2

Preprint submitted on 26 Mar 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computing floating-point square roots via bivariate
polynomial evaluation

Claude-Pierre Jeannerod, Hervé Knochel, Christophe Monat, Guillaume Revy

To cite this version:
Claude-Pierre Jeannerod, Hervé Knochel, Christophe Monat, Guillaume Revy. Computing floating-
point square roots via bivariate polynomial evaluation. 2010. �ensl-00335792v2�

https://ens-lyon.hal.science/ensl-00335792v2
https://hal.archives-ouvertes.fr

MINOR REVISION PREPARED FOR IEEE TC - MARCH 2010 1

Computing floating-point square roots
via bivariate polynomial evaluation

Claude-Pierre Jeannerod, Hervé Knochel, Christophe Monat, Guillaume Revy

Abstract—In this paper we show how to reduce the computation of correctly-rounded square roots of binary floating-point data to the
fixed-point evaluation of some particular integer polynomials in two variables. By designing parallel and accurate evaluation schemes
for such bivariate polynomials, we show further that this approach allows for high instruction-level parallelism (ILP) exposure, and
thus potentially low latency implementations. Then, as an illustration, we detail a C implementation of our method in the case of
IEEE 754-2008 binary32 floating-point data (formerly called single precision in the 1985 version of the IEEE 754 standard). This
software implementation, which assumes 32-bit unsigned integer arithmetic only, is almost complete in the sense that it supports special
operands, subnormal numbers, and all rounding-direction attributes, but not exception handling (that is, status flags are not set). Finally
we have carried out experiments with this implementation on the ST231, an integer processor from the STMicroelectronics’ ST200
family, using the ST200 family VLIW compiler. The results obtained demonstrate the practical interest of our approach in that context:
for all rounding-direction attributes, the generated assembly code is optimally scheduled and has indeed low latency (23 cycles).

Index Terms—Binary floating-point arithmetic, square root, correct rounding, IEEE 754, polynomial evaluation, instruction-level
parallelism, rounding error analysis, C software implementation, VLIW integer processor.

F

1 INTRODUCTION

THIS paper deals with the design and software im-
plementation of an efficient sqrt operator for com-

puting square roots of binary32 floating-point data. As
mandated by the IEEE 754 standard (whose initial 1985
version [1] has been revised in 2008 [2]), our implementa-
tion supports gradual underflow and the four rounding-
direction attributes required for binary format imple-
mentations. However, the status flags used for handling
exceptions are not set.

As for other basic arithmetic operators, the IEEE 754
standard specifies that sqrt operates on and returns
floating-point data. Floating-point data are either spe-
cial data (signed infinities, signed zeros, not-a-numbers
(NaN)) or nonzero finite floating-point numbers. In radix
two, nonzero finite floating-point numbers have the form
x = ±m · 2e, with e an integer such that

emin ≤ e ≤ emax, (1)

and m a positive rational number having binary expan-
sion

m = (0.0 · · · 0︸ ︷︷ ︸
λ zeros

1mλ+1 · · ·mp−1)2. (2)

• C.-P. Jeannerod is with INRIA (project-team Arénaire, Lyon, France).
E-mail: claude-pierre.jeannerod@ens-lyon.fr

• H. Knochel and C. Monat are with STMicroelectronics’ Compilation
Expertise Center (Grenoble, France).
E-mail: {herve.knochel, christophe.monat}@st.com

• G. Revy is a member of ParLab within EECS Department at the University
of California at Berkeley. This work was done while he was with Université
de Lyon - ÉNS Lyon (project-team Arénaire, Lyon, France).
E-mail: grevy@eecs.berkeley.edu

Manuscript last updated March 26, 2010.

Since m is nonzero, the number λ of its leading zeros
varies in {0, 1, . . . , p−1}. If |x| < 2emin then x is subnormal
else it is normal. On the one hand, subnormal numbers
are such that e = emin and λ > 0. On the other hand,
normal numbers will be considered only through their
normalized representation, that is, the unique represen-
tation of the form ±m · 2e for which λ = 0.

The parameters emin, emax, p used so far represent the
extremal exponents and the precision of a given binary
format. In this paper, we assume they satisfy

emin = 1− emax and 2 ≤ p ≤ emax.

This assumption is verified for all the binary formats
defined in the IEEE 754-2008 standard [2]. This standard
further prescribes that the operator sqrt : x 7→ r
specifically behaves as follows:
• If x equals either −0, +0, or +∞ then r equals x.
• If x is nonzero negative or NaN then r is NaN.

Those two cases cover what we shall call special operands.
In all other cases x is a positive nonzero finite floating-
point number, that is,

x = m · 2e, (3)

with e as in (1) and m as in (2); the result specified by
the IEEE 754-2008 standard is then the so-called correctly-
rounded value

r = ◦(
√
x), (4)

where ◦ is any of the four rounding-direction attributes:
to nearest even (RN), up (RU), down (RD), and to zero
(RZ). In fact, since

√
x ≥ 0, rounding to zero is the same

as rounding down. Therefore considering only the first
three rounding-direction attributes is enough:

◦ ∈ {RN,RD,RU}.

MINOR REVISION PREPARED FOR IEEE TC - MARCH 2010 2

As we will see in Section 2, deducing r from x essen-
tially amounts to taking the square root, up to scaling,
of the significand m. For doing this, many algorithms
are available (see for example the survey [3] and the
reference books [4], [5], [6]).

The method we introduce in this paper is based exclu-
sively on fixed-point evaluation of a suitable bivariate
polynomial with integer coefficients. Since polynomial
evaluation is intrinsically parallel, this approach allows
for very high ILP exposure. Thus, in some contexts
such as VLIW integer processors, a significant reduction
of latency can be expected. For the ST231, a STMicro-
electronics VLIW processor which does not have native
floating-point capabilities, we show in this paper that
this is indeed the case: the assembly codes generated
for optimized implementations of our approach turn out
to be optimally scheduled and have latencies reduced
by over 30% compared to previously fastest available
methods, implemented in [7]; also, the latency over-
head for subnormal support is only 2 cycles, yielding
a latency of 23 cycles for all ◦. This latency for square
root compares favourably with the latencies of addition
and multiplication which, in the same context, range
respectively from 23 to 27 and 18 to 21 cycles, depending
on ◦ (see http://flip.gforge.inria.fr/ and [8, p. 4]).

The paper is organized as follows. Section 2.1 details
three mathematical properties of square roots of binary
floating-point numbers, and Section 2.2 shows how to
use them to deduce the usual high level algorithmic
description of the sqrt operator.

In Section 3.1 we then show how to introduce suitable
bivariate polynomials that approximate our square root
function. In particular, we give some approximation and
evaluation error bounds that are sufficient to ensure
correct rounding, along with an example of such a poly-
nomial and its error bounds in the case of the binary32
format. Section 3.2 then details, for each rounding-
direction attribute, how to deduce a correctly-rounded
value from the approximate polynomial value obtained
so far. A summary of our new approach is given in
Section 3.3.

A standard C99 implementation of this approach is
given in Section 4, for the binary32 format and assum-
ing that 32-bit unsigned integer arithmetic is available:
Section 4.1 shows how to handle special operands;
Section 4.2 deals with the computation of the result
exponent and a parity bit related to the input exponent
(which is needed several times in the rest of the algo-
rithm); Sections 4.3 and 4.4 show how to compute the
evaluation point and the value of the polynomial at this
evaluation point; there, we also explain how the accuracy
of the evaluation scheme has been verified; Finally, Sec-
tion 4.5 details how to implement correct rounding. This
results in three separate square root implementations,
one for each rounding-direction attribute.

For these implementations, all that is needed is a C
compiler that implements 32-bit arithmetic. However,
our design has been guided by a specific target, the

ST231 VLIW integer processor from STMicroelectronics’
ST200 family. Section 5 is devoted to some experiments
carried out with this target and the ST200 family VLIW
compiler. After a review of the main features of the ST231
in Section 5.1, the performance results we have obtained
in this context are presented and analysed in Section 5.2.

2 PROPERTIES OF FLOATING-POINT SQUARE
ROOTS AND GENERAL ALGORITHM
The general scheme for moving from (3) to (4) essentially
follows from three properties of the square root function
in binary floating-point arithmetic.

2.1 Floating-point square root properties
Property 2.1: For x in (3), the real number

√
x lies in

the range of positive normal floating-point numbers, that
is, √

x ∈
[
2emin , (2− 21−p) · 2emax

]
.

This first property (see [9] for a proof) implies
that ◦(

√
x) is a positive normal floating-point number.

Correctly-rounded square roots thus never denormalize
nor under/overflow, a fact which will simplify the im-
plementation considerably.

In order to find the normalized representation of
◦(
√
x), let

e′ = e− λ and m′ = m · 2λ. (5)

It follows that the positive (sub)normal number x de-
fined in (3) satisfies x = m′ · 2e′ and that m′ ∈ [1, 2).
Taking the square root then yields

√
x = ` · 2d,

where the real ` and the integer d are given by

` = σ
√
m′ with σ =

{
1, if e′ is even,√

2, if e′ is odd,
(6)

and, using b c to denote the usual floor function,

d = be′/2c. (7)

It follows from the definition of σ and m′ that ` is a
real number in [1, 2). Therefore, rounding

√
x amounts

to round `, and we have shown the following property:
Property 2.2: Let x, `, d be as above. Then

◦(
√
x) = ◦(`) · 2d.

In general the fact that ` ∈ [1, 2) only implies the
weaker enclosure ◦(`) ∈ [1, 2]. This yields two separate
cases: if ◦(`) < 2 then Property 2.2 already gives the
normalized representation of the result r; if ◦(`) = 2
then we must further correct d after rounding, in order
to return r = 1 · 2d+1 instead of the unnormalized
representation 2 · 2d given by Property 2.2. The next
property, proven in [9], characterizes precisely when
such a correction is needed or not. In particular, it is
never needed in rounding-to-nearest mode.

Property 2.3: One has ◦(`) = 2 if and only if ◦ = RU
and e is odd and m = 2− 21−p.

MINOR REVISION PREPARED FOR IEEE TC - MARCH 2010 3

2.2 High level description of square root algorithms
Together with the IEEE 754-2008 specification recalled
in Introduction, the properties of Section 2.1 lead to a
general algorithm for computing binary floating-point
square roots, shown in Figure 1 and Figure 2 for the
different rounding-direction attributes. In particular, ◦(`)
and d are two functions of m and e which can be
computed independently from each other.

x = m · 2e

Handle special inputCompute dCompute ◦(`)

x ∈ {±0,±∞, NaN, x < 0}or

r = ◦(`) · 2d r ∈ {±0, +∞, NaN}or

Fig. 1. Square root algorithm for ◦ ∈ {RN,RD}.

x = m · 2e

Handle special inputCompute ◦(`) Compute d

Compute correction c

c = (e is odd) && (m = 2 − 21−p)

or x ∈ {±0,±∞, NaN, x < 0}

r ∈ {±0, +∞, NaN}orr =
◦(`)
2c · 2d+c

Fig. 2. Square root algorithm for ◦ = RU.

(We will see in Section 4.2 that the correction step in
Figure 2 can in fact be avoided when using the standard
encoding of binary floating-point data.)

Given m and e, computing d is algorithmically easy
since by (5) and (7) we have

d = b(e− λ)/2c . (8)

However, computing ◦(`) from m and e is far less
immediate and typically dominates the cost. In the next
section, we present a new way of producing ◦(`), which
we have chosen because we believe it allows to express
the most ILP.

3 COMPUTING ◦(`) BY CORRECTING TRUN-
CATED APPROXIMATIONS

It is useful to start by characterizing the meaning of ◦(`)
for each rounding-direction attribute ◦. Since the real
number ` belongs to [1, 2), we have the following, where
n is a normal number:
• RN(`) is the unique n such that

−2−p < `− n < 2−p, (9)

• RD(`) is the unique n such that

0 ≤ `− n < 21−p, (10)

• RU(`) is the unique n such that

−21−p < `− n ≤ 0. (11)

Both inequalities in (9) are strict, since the square root
of a floating-point number cannot be exactly halfway
between two consecutive floating-point numbers (see [4,
Theorem 9.4], [5, p. 242], or [6, p. 463]). Note also that (9)
and (10) both imply n ∈ [1, 2), while (11) implies the
weaker enclosure n ∈ [1, 2].

Given p, ◦, m′, and σ, there are many ways of produc-
ing the bits of such an n. A way that will allow to express
much ILP is by correcting a truncated approximation of
`. This approach (detailed for example in [6, p. 459] for
division) has three main steps:
• compute a “real number” v approximating ` from

above with absolute error less than 2−p, that is,

−2−p < `− v ≤ 0; (12)

• deduce u by truncating v after p fraction bits:

0 ≤ v − u < 2−p; (13)

• obtain n by adding, if necessary, a small correction
to u and then by truncating after p− 1 fraction bits.

Of course the binary expansion of v in (12) will be
finite: by “real number” we simply mean a number with
precision higher than the target precision p. Typically,
v will be representable with at most k bits, with k the
register width (for example, p = 24 and k = 32 for our
implementation in Section 4). On the other hand, using
` ≤
√

2 ·
√

2− 21−p one may check that if v satisfies (12)
then necessarily

1 ≤ v < 2. (14)

Therefore, the binary expansion of v has the form

v = (1.v1 . . . vp−1vp . . . vk−1)2. (15)

Our approach for computing v as in (12) and (15) by
means of bivariate polynomial evaluation is detailed in
Section 3.1 below.

Once v is known, truncation after p fraction bits gives

u = (1.v1 . . . vp−1vp)2. (16)

The fraction of u is wider than that of n by one bit.
We will see in Section 3.2 how to correct u into n by
using both this extra bit and the fact that, because of (12)
and (13),

|`− u| < 2−p. (17)

3.1 Computing v by bivariate polynomial evaluation
The problem is, given p, m′, and σ, to compute an
approximation v to ` such that (12) holds. Such a value
v will in fact be obtained as a solution to∣∣(`+ 2−p−1)− v

∣∣ < 2−p−1. (18)

Although slightly more strict than (12), this form will
be the natural result of some derivations based on the
triangle inequality.

MINOR REVISION PREPARED FOR IEEE TC - MARCH 2010 4

Computing v such that (18) holds usually relies on
iterative refinement (Newton-Raphson or Goldschmidt
method [6, §7.3]), or univariate polynomial evaluation [7]
(see also [10] for a different context, namely when
an FMA instruction is available), or a combination of
both [11], [12]. The approach we shall detail now is
based exclusively on polynomial evaluation. However,
instead of using two polynomials as in [7], we will use
a single one, which is bivariate; this makes the approach
simpler, more flexible, and eventually faster provided
some parallelism is available.

The main steps for producing v via bivariate polyno-
mial evaluation are shown on the diagram below:

`+ 2−p−1 −−−−→ F (s, t)

?

y yfunction approximation

v ←−−−−−−−−−−−−−
polynomial evaluation

P (s, t)

First, using (6) and defining

τ = m′ − 1, (19)

the real number ` + 2−p−1 can be seen as the value at
(s, t) = (σ, τ) of the bivariate function

F (s, t) = 2−p−1 + s
√

1 + t. (20)

Then, let

S = {1,
√

2} and T = {h · 21−p}h=0,1,...,2p−1−1

be the variation domains of σ and τ , respectively, and
let

1− = 1− 21−p.

Since T ⊂ [0, 1−], a second step is the approximation
of F (s, t) on {1,

√
2} × [0, 1−] by a bivariate polynomial

P (s, t). The function F being linear with respect to its
first variable, a natural choice for P is

P (s, t) = 2−p−1 + s · a(t), (21)

with a(t) a univariate polynomial that approximates√
1 + t on [0, 1−]. The third and last step is the evaluation

of P at (σ, τ) by a finite-precision, straight-line program
P , the resulting value P(σ, τ) being assigned to v.

Intuitively, if a(t) is “close enough” to
√

1 + t over the
whole interval [0, 1−] and if P evaluates P “accurately
enough” on the whole domain S × T then the resulting
value v should be close enough to `+2−p−1 in the sense
of (18). This claim is made precise by the next lemma.

Lemma 1: Given p, σ, τ , a, P , P as above, let α(a) be
the approximation error defined by

α(a) = max
t∈[0,1−]

∣∣√1 + t− a(t)
∣∣ ,

and let ρ(P) be the rounding error defined by

ρ(P) = max
(s,t)∈S×T

|P (s, t)− P(s, t)| .

Let further v = P(σ, τ). If
√

2 · α(a) + ρ(P) < 2−p−1 (22)

then v satisfies (18).
Proof: Using the definitions of F and P , we have∣∣(`+ 2−p−1)− v

∣∣ = |F (σ, τ)− P(σ, τ)|
≤ |F (σ, τ)− P (σ, τ)|

+ |P (σ, τ)− P(σ, τ)|
≤ σ

∣∣√1 + τ − a(τ)
∣∣+ ρ(P).

Since 1 ≤ σ ≤
√

2 and τ ∈ [0, 1−], it follows that∣∣(`+ 2−p−1)− v
∣∣ ≤ √

2 · α(a) + ρ(P),

which concludes the proof.
It remains to find a polynomial approximant a to-

gether with an evaluation program P so that α(a) and
ρ(P) satisfy (22). In practice, since α(a) and ρ(P) may
be real numbers, a certificate will consist in computing
two dyadic numbers dα and dρ such that

α(a) ≤ dα, ρ(P) ≤ dρ,
√

2 · dα + dρ < 2−p−1.

The construction of a and P is highly context-dependent:
it is guided by both the value of p and some features of
the target processor (register precision k, instruction set,
latencies, degree of parallelism,...). The two paragraphs
below illustrate how to choose a and P in the case where
k = 32 and p = 24.

3.1.1 Constructing a polynomial approximant
Since P in (21) will be evaluated at run-time, a small
degree for a is usually preferred. One may guess the
smallest possible value of deg(a) as follows. The round-
ing error ρ(P) in (22) being non-negative, a must satisfy

α(a) < 2−p−3/2. (23)

Now let R[t]d be the set of univariate real polynomials of
degree at most d and recall, for example from [13, §3.2],
that the minimax degree-d approximation of

√
1 + t on

[0, 1−] is the unique a∗ ∈ R[t]d such that

α∗d := α(a∗) ≤ α(a), for all a ∈ R[t]d. (24)

Thus, by combining (23) and (24), one must have

α∗deg(a) < 2−p−3/2.

A lower bound on deg(a) can then be guessed by esti-
mating α∗d numerically for increasing values of d until
2−p−3/2 is reached.

For example, for p = 24, the degree of a must satisfy
α∗deg(a) < 2−25.5. Comparing to the estimations1 of α∗d
displayed in Table 1 indicates that a should be of degree
at least 8.

Once we have an idea of the smallest possible degree
for a, it remains to find a machine representation of a. For
this representation, a typical choice is the monomial basis
1, t, t2, . . . together with some coefficients a0, a1, a2, . . .
that are exactly representable using at most k bits.

1. Such estimations can be computed for example using Remez’
algorithm, which is available in Sollya (http://sollya.gforge.inria.fr/);
see also [13, §3.5], [14], [15].

MINOR REVISION PREPARED FOR IEEE TC - MARCH 2010 5

TABLE 1
Numerical estimations of α∗d for 5 ≤ d ≤ 10.

d 5 6 7 8 9 10

− log2(α∗d) 19.58 22.47 25.31 28.12 30.89 33.65

Continuing the previous example where k = 32, it
turns out that a(t) =

∑8
i=0 ait

i can be chosen such that

a0 = 1 and ai = (−1)i+1
Ai · 2−31, 1 ≤ i ≤ 8, (25)

with the following values for the Ai’s (including A0 =
a0 · 231): A0 = 231, A1 = 230, A2 = 228, A3 = 134124516,
A4 = 82769556, A5 = 53306947, A6 = 29806269,
A7 = 11452029, and A8 = 221. (See Listing 3 for their
hexadecimal values). These integers Ai were found by
truncating the coefficients obtained after several calls to
Sollya’s Remez algorithm and by favoring powers of two.
Each of them can be stored using only 32 bits and four
of them are powers of two. Notice also that

A8 ≤ · · · ≤ A2 ≤ A1 ≤ A0. (26)

A certified supremum norm computation (implemented
for example in Sollya; see also [16], [17]) applied to this
particular polynomial gives a bound less than 2−25.5 as
required by (23). (The computed bound has the form
2−25.972....)

3.1.2 Writing an evaluation program
In our context, the evaluation program P is typically
a piece of C code that implements a finite-precision
computation of P (s, t). It should be accurate enough in
the sense of (22) and, since we favor latency (rather than
throughput, for example), as fast as possible.

Such an implementation will not require using
floating-point arithmetic, and fixed-point arithmetic will
suffice to evaluate P (s, t) accurately enough. In addition,
we have the lemma below, which shows that P (s, t) lies
in a fairly small range.

Lemma 2: If (s, t) ∈ S × T then P (s, t) ∈ (1, 2).
Proof: Let ε = 2−p−3/2. It follows from the definition

of α(a) and the bound in (23) that
√

1 + t− ε < a(t) <
√

1 + t+ ε.

Using 0 ≤ t ≤ 1− 21−p and
√

2− 21−p ≤
√

2− 2ε, we get

1− ε < a(t) <
√

2− ε. (27)

Since 1 ≤ s ≤
√

2 and ε < 2−p−1, we deduce that
P (s, t) = 2−p−1 + s · a(t) belongs to (1, 2).

With α(a) ≤ 2−25.972... as in the previous paragraph, a
sufficient condition on ρ(P) for (22) to be satisfied is

ρ(P) < 2−25 −
√

2 · 2−25.972... = 2−26.840....

Rounding the evaluation point. When designing an
evaluation program P that achieves this accuracy, a
preliminary step is to make the input (σ, τ) machine-
representable. On the one hand, the binary expansion of

τ is 0.mλ+1 · · ·mp−1 and thus, since λ is non-negative, τ
is already representable using k bits provided p− 1 ≤ k.
On the other hand, writing RNk for rounding-to-nearest
in precision k, we shall replace σ defined in (6) by

σ̂ =

{
1, if e′ is even,
RNk(

√
2), if e′ is odd.

(28)

The lemma below gives an upper bound on the loss of
accuracy that occurs when rounding (σ, τ) to (σ̂, τ).

Lemma 3: Given p, k, s, t, a, P , P as above, let Ŝ =
{1,RNk(

√
2)} and define

ρ̂(P) = max
(s,t)∈Ŝ×T

|P (s, t)− P(s, t)|.

Then
ρ(P) < 21/2−k + ρ̂(P).

Proof: By definition, the bound ρ(P) is attained for
some (s0, t0) ∈ S × T . Writing ŝ0 = RNk(s0), one has
P(ŝ0, t0) = P(s0, t0) and, by the triangle inequality,

ρ(P) ≤ |s0 − ŝ0| · |a(t0)|+ ρ̂(P).

The conclusion then follows from |s0− ŝ0| ≤ 2−k and the
fact that (27) implies |a(t0)| <

√
2.

Applying Lemma 3 with k = 32 shows that we are left
with finding an evaluation program P such that

ρ̂(P) ≤ 2−26.840... − 2−31.5 = 2−26.898.... (29)

Designing an evaluation program. By evaluation pro-
gram, we mean a division-free straight-line program,
that is, roughly, a set of instructions computing P (s, t)
from s, t, p and the ai’s by using only additions, sub-
tractions, and multiplications, without branching. In our
context we shall assume first unbounded parallelism and
some latencies for addition/subtraction and multipli-
cation. Then we parenthesize the expression P (s, t) in
order to expose as much ILP as we can and, thus, to
decrease the overall latency of polynomial evaluation.
An example of such a parenthesization, generated auto-
matically in the same spirit as [18], is

P (s, t) =
[((

2−p−1 + s · (a0 + a1t)
)

+ a2 · (s · t2)
)

+a3t · (s · t2)
]

+
[(
t2 · (s · t2)

)
·
(
(a4 + a5t) + t2 ·

(
(a6 + a7t) + a8t

2
))]

.

Note that t2 and s · t2 are common subexpressions. With
unlimited parallelism and latencies of 1 for addition, of 3
for (pipelined) multiplication, and of 1 for multiplication
by a power of two (that is, a shift), such a parenthesiza-
tion gives a latency of 13 (compared to 34 for Horner’s
scheme). We have found no parenthesization of smaller
latency.

Accuracy issues. In our example, the rounding error
of the program P that implements in fixed-point arith-
metic the above parenthesization must satisfy (29). This
requirement will be checked in Section 4.4.

MINOR REVISION PREPARED FOR IEEE TC - MARCH 2010 6

For now, let us notice that this parenthesization can in
fact be implemented using 32-bit unsigned integers only,
which avoids to loose one bit of precision because of the
need to store the sign of the coefficients ai. Indeed, an
appropriate choice of arithmetic operators can be found,
that ensures that all intermediate variables are positive:

P (s, t) =
[((

2−p−1 + s · (a0 + a1t)
)
− |a2| · (s · t2)

)
+a3t · (s · t2)

]
−
[(
t2 · (s · t2)

)
·(

(|a4| − a5t) + t2 ·
(
(|a6| − a7t) + |a8|t2

))]
. (30)

3.2 Correction to ensure correct rounding

For each rounding-direction attribute ◦ we will now
obtain n = ◦(`) by correcting u in (16) and (17). How
to correct u depends on whether u is above or below `.
Thus the rounding algorithms below rely on either u ≥ `
or u > `, which can both be implemented exactly (see
Subsection 4.5).

3.2.1 Rounding to nearest

An algorithm producing n as in (9) is:

if u ≥ ` then
n := truncate u after p− 1 fraction bits

else
n := truncate u+ 2−p after p− 1 fraction bits

If vp = 0 the above algorithm always returns the value
u; this is the desired result, for in this case u is already a
floating-point number and thus (17) implies (9). If vp = 1
then u is at least 1 + 2−p and is the midpoint between
the two consecutive floating-point numbers u− 2−p and
u + 2−p: the former is returned when u > `, the latter
when u < `, and (17) implies (9) in both cases; the case
u = ` never happens because ` cannot be a midpoint.

3.2.2 Rounding down

An algorithm producing n as in (10) is:

if u > ` then
n := truncate u− 2−p after p− 1 fraction bits

else
n := truncate u after p− 1 fraction bits

If vp = 1 then this algorithm always returns the floating-
point number u−2−p which, because of (17), satisfies (10)
as required. If vp = 0 then u is already a floating-point
number: if u > ` then u ≥ 1 + 21−p and the algorithm
returns u− 21−p, which is the floating-point predecessor
of u, by truncating the midpoint u − 2−p; if u ≤ `, the
returned value is u; in both cases, using (17) yields (10).

3.2.3 Rounding up
An algorithm producing n as in (11) is:

if u ≥ ` then
n := truncate u+ 2−p after p− 1 fraction bits

else
n := truncate u+ 21−p after p− 1 fraction bits

If vp = 1 this algorithm always produces the floating-
point number u+2−p which, because of (17), satisfies (11)
as required. If vp = 0 then u is already a floating-point
number: if u ≥ `, the algorithm returns u; if u < `, it
returns u+21−p, which is the floating-point successor of
u ≤ 2− 21−p; in both cases, using (17) yields (11).

3.3 Summary: main steps of the computation of ◦(`)
The box “Compute ◦(`)” in Figures 1 and 2 can be
replaced by the ones in Figure 3 below. This figure re-
capitulates the main steps of the approach we have pro-
posed in Sections 3.1 and 3.2 for deducing the correctly-
rounded value ◦(`) from m and e.

x = m · 2e

Compute m′ and the parity of e′

Compute s and t

Compute v ≈ P (s, t)

Truncate v into u

◦(`)

Round correctly by correcting u

Fig. 3. Computation of ◦(`) for ◦ ∈ {RN,RD,RU}.

4 IMPLEMENTATION DETAILS

The above square root method, which is summarized
in Figures 1–3, can be implemented by operating exclu-
sively on (unsigned) integers. We will now detail such
an implementation, in C and for the binary32 format
of [2]. For this format the storage bit-width, precision,
and maximum exponent are, respectively,

k = 32, p = 24, emax = 127.

When writing the code we have essentially assumed
unbounded parallelism and that 32-bit integer arithmetic
is available. Additional assumptions on the way input
and output are encoded and on which operators are
available, are as follows.

Input and output encoding. The operand x and
result r of sqrt are implemented as integers X,R ∈

MINOR REVISION PREPARED FOR IEEE TC - MARCH 2010 7

{0, 1, . . . , 232 − 1} whose bit strings correspond to the
standard encoding of binary floating-point data (see [2,
§3.4]). Our implementation of sqrt is thus a C function
as in line 1 of Listing 2, which returns the value of R.

Table 2 indicates some useful relationship between
x and X that are a consequence of this encoding. (Of
course the same would hold for r and R.) Also, the bit
string of X must be interpreted as follows: its first bit
X31 gives the sign of x; the next 8 bits encode the biased
exponent E of x as E =

∑7
i=0Xi+232i; the last 23 bits

define the trailing significand field. In particular, if x is
(sub)normal then
• the biased exponent E is related to the exponent e

in (1) as follows:

E = e+ 127− [λ > 0], (31)

where [λ > 0] = 1 if x is subnormal, 0 otherwise;
• the trailing significand field carries the bits of m

in (2) as follows:

X22 . . . X0 = 0 . . . 01︸ ︷︷ ︸
λ bits

mλ+1 . . .m23. (32)

Available operators. Besides the usual operators like
+, -, <<, >>, &, |, ˆ, we assume a fast way to compute
the following functions for A,B ∈ {0, 1 . . . , 232 − 1}:
• max(A,B);
• the number nlz(A) of leading (that is, leftmost) zeros

of the bit string of A;
• bAB/232c, whose bit string contains the 32 most

significant bits of the product AB.
In our C codes, the operators corresponding to these
functions will be respectively written max, nlz, and mul
for readability. More precisely, with the ST231 target in
mind, we shall assume that the latencies of max and nlz
are of 1 cycle, while the latency of mul is of 3 cycles;
furthermore, we shall assume that at most 2 instructions
of type mul can be launched simultaneously at every
cycle. (How to implement max, nlz, and mul in C is
detailed in Appendix A.)

From Sections 4.2 to 4.5, the operand x will be a positive
(sub)normal number. In this case, X31 = 0 and since
the result r is a positive normal number, R31 = 0
as well. Therefore, it suffices to determine the 8 bits
R30, . . . , R23, which give the (biased) result exponent
D =

∑7
i=0Ri+232i, and the 23 bits R22, . . . , R0, which

define the trailing significand field of the result.

4.1 Handling special operands

For square root the floating-point operand x is consi-
dered special when it is ±0, +∞, less than zero, or
NaN. Table 2 thus implies that x is special if and only if
X ∈ {0} ∪ [231 − 223, 232), that is,

(X − 1) mod 232 ≥ 231 − 223 − 1. (33)

All special operands can thus be detected using (33).

TABLE 3
Square root results for special operands.

Operand x +0 +∞ −0 less than zero NaN
Result r +0 +∞ −0 qNaN qNaN

The results required by the IEEE 754-2008 standard for
the square root of such operands are listed in Table 3.

Note that there are essentially only two cases to con-
sider: r is either x or qNaN. The first case occurs when
x ∈ {+0,+∞,−0}, which, when x is known to be special,
is a condition equivalent to

X ≤ 231 − 223 or X = 231. (34)

If condition (34) is not satisfied then a quiet NaN is
constructed by setting the bits X30, . . . , X22 to 1 while
leaving X31 and X21, . . . , X0 unchanged; this can be
done by taking the bitwise OR of X and of the constant

231 − 222 = (7FC00000)16,

whose bit string consists of 1 zero followed by 9 ones
followed by 22 zeros. Note that the quiet NaN thus
produced keeps as much of the information of X as
possible, as recommended in [2, §6.2]; in particular, the
payload is preserved when quieting an sNaN, and if x
is a qNaN then x is returned.

Using the fact that the addition of two 32-bit unsigned
integers is done modulo 232 and taking the hexadecimal
values of the constants in (33) and (34), we finally get the
C code shown in Listing 1 for handling special operands.
In this code, notice that the four operations +, <=, ==,
and | on X are independent of each other.

Listing 1
Code for handling special operands.

if ((X - 1) >= 0x7F7FFFFF) {
if ((X <= 0x7F800000) || (X == 0x80000000))

return X;
else

return X | 0x7FC00000; // qNaN
}
else
{
... // Code for non-special operands,

// detailed in Sections 4.2 to 4.5
// as well as in Listings 2 and 3.

}

Remark that (33) and (34) extend immediately to other
standard formats like binaryk with k = 16, 64, 128,
Thus, if integer arithmetic modulo 2k is available and if
the standard encoding is used for binaryk data, special
values can be handled in the same way as shown here.

4.2 Computing the biased value of d and parity of e′

By Property 2.1 the result r cannot be subnormal. There-
fore, by applying (31) we deduce that the biased value

MINOR REVISION PREPARED FOR IEEE TC - MARCH 2010 8

TABLE 2
Relationship between floating-point datum x and its encoding into integer X =

∑31
i=0Xi2i.

Value or range of integer X Floating-point datum x Bit string X31 . . . X0

0 +0 00000000000000000000000000000000

(0, 223) positive subnormal number 000000000X22 . . . X0 with some Xi = 1

[223, 231 − 223) positive normal number 0X30X29X28X27X26X25X24X23︸ ︷︷ ︸
not all ones, not all zeros

X22 . . . X0

231 − 223 +∞ 01111111100000000000000000000000

(231 − 223, 231 − 222) sNaN 0111111110X21 . . . X0 with some Xi = 1

[231 − 222, 231) qNaN 0111111111X21 . . . X0

231 −0 10000000000000000000000000000000

(231, 231 + 223) negative subnormal number 100000000X22 . . . X0 with some Xi = 1

[231 + 223, 232 − 223) negative normal number 1X30X29X28X27X26X25X24X23︸ ︷︷ ︸
not all ones, not all zeros

X22 . . . X0

232 − 223 −∞ 11111111100000000000000000000000

(232 − 223, 232 − 222) sNaN 1111111110X21 . . . X0 with some Xi = 1

[232 − 222, 232) qNaN 1111111111X21 . . . X0

D of the exponent d of r is always given by

D = d+ 127.

In order to compute D from X , we use first the expres-
sion of d in (8) and the relation (31) to obtain

D = b(E − λ+ [λ > 0] + 127)/2c. (35)

Then, using (32) and the second and third rows of
Table 2, we deduce that the number of leading zeros
of X is λ + 8 when λ > 0, and at most 8 when λ = 0.
Hence

λ = M − 8, M = max(nlz(X), 8). (36)

An immediate consequence of this is that [λ > 0] = [M >
8]. However, more instruction-level parallelism can be
obtained by observing in Table 2 that

[λ > 0] = [X < 223] for x positive (sub)normal. (37)

The formula (35) for the biased exponent D thus becomes

D = b(E −M + [X < 223] + 135)/2c. (38)

A possible C code implementing (38) is as follows:
Z = nlz(X); E = X >> 23; B = X < 0x800000;
M = max(Z,8); C = B + 135;
D = (E - M + C) >> 1;

Remark that in rounding-up mode Property 2.3 requires
that the integer D obtained so far be further incremented
by 1 when

m = 2− 2−23 and e is odd. (39)

(This correction has also been illustrated in Figure 2.)
Since (39) implies that x is a normal number, D must
be replaced by D + 1 if and only if X ≥ 223 and the
last 24 bits of X are 1 zero followed by 23 ones. An
implementation of this update is thus:
d1 = 0x00FFFFFF; d2 = 0x007FFFFF;
D = D + ((X >= 0x800000) & ((X & d1) == d2));

In fact, this treatment specific to rounding up can
be avoided by exploiting the standard encoding as
follows. Recall that n = ◦(`) is in [1, 2] and has at
most 23 fraction bits, and that we want the bit string
0R30 . . . R23R22 . . . R0 of the result r. Instead of concate-
nating the bit string R30 . . . R23 of D and the bit string
R22 . . . R0 of the fraction field of r, one can add to
(D − 1) · 223 the integer n · 223:

• If n = (1.n1 . . . n23)2 then this addition corresponds
to (D − 1) · 223 + 223 + (0.n1 . . . n23)2 · 223 and since
no carry propagation occurs, it simply concatenates
the bit string of D and the bit string n1 . . . n23.

• If n = (10.0 . . . 0)2 then this addition corresponds to
(D−1) ·223 +2 ·223 = (D+1) ·223. Hence R encodes
the normal number r = (1.0 . . . 0)2 · 2d+1.

Hence, we implemented the computation of D−1 using
the formula below, which directly follows from (38):

D − 1 = b(E −M + [X < 223] + 133)/2c. (40)

This corresponds to the computation of variable Dm1
at line 7 of Listing 2. The only difference with the
implementation of D given right after (38) occurs at line
6, where we perform B + 133 instead of B + 135.

Let us now turn to the parity of e′ in (5), which
will be needed in Sections 4.3 and 4.5. Using (31), (36),
and (37) we deduce that e′ is even if and only if the
last bit of E − M + [X < 223] is equal to 1. Since
the latter expression already appears in (38) or (40), an
implementation follows immediately:

even = (E - M + B) & 0x1;

An alternative code, which uses only logical operators
and unsigned integers, consists in taking the XOR of the
last bit of E + [X < 223] and of the last bit of M :

even = ((E & 0x1) | B) ˆ (M & 0x1);

MINOR REVISION PREPARED FOR IEEE TC - MARCH 2010 9

Listing 2
Square root implementation for the binary32 format, assuming a non-special operand and rounding to nearest.

1 uint32_t binary32sqrt(uint32_t X)
2 {
3 uint32_t B, C, Dm1, E, even, M, S, T, Z, P, Q, U, V;
4
5 Z = nlz(X); E = X >> 23; B = X < 0x800000;
6 M = max(Z,8); C = B + 133;
7 even = ((E & 0x1) | B) ˆ (M & 0x1); T = (X << 1) << M; Dm1 = (E - M + C) >> 1;
8 S = 0xB504F334 & (0xBFFFFFFF + even);
9

10 V = biv_poly_eval(S, T); // Bivariate polynomial evaluation: S [1.31], T [0.32], V [2.30]
11
12 U = V & 0xFFFFFFC0; // Truncation after 24 fraction bits: U [2.24]
13
14 P = mul(U, U); Q = ((T >> 1) | 0x80000000) >> (even + 2);
15 if (P >= Q)
16 return (Dm1 << 23) + (U >> 7);
17 else
18 return (Dm1 << 23) + ((U + 0x00000040) >> 7);
19 }

4.3 Computing the evaluation point (σ̂, τ)

In precision k = 32, rounding
√

2 to nearest gives the
Q1.31 number 1 + 889516852 · 2−31. Thus σ̂ in (28) is
given by

σ̂ = S · 2−31, (41)

with S the integer in [0, 232) such that S = 231 if e′ is
even, and S = 231 + 889516852 = (B504F334)16 if e′ is
odd. This integer S will be used in our code to encode
σ̂, and its bit string has the form

S31S30S29 . . . S0 =

{
100 . . . 0, if e′ is even,
10 ∗ . . . ∗, if e′ is odd.

Since S31S30 = 10 in both cases, selecting the right bit
string can be done by taking the bitwise AND of the
constant (B504F334)16 = (10 ∗ . . . ∗)2 and of

231 + 230 − 1 + [e′ is even] =

{
110 . . . 0, if e′ is even,
101 . . . 1, if e′ is odd.

Therefore, since 231 + 230 − 1 = (BFFFFFFF)16 and
given the value of the integer even (see Subsection 4.2),
computing S can be done as shown at line 8 in Listing 2.

The number τ in (19) satisfies τ = (0.mλ+1 . . .m23)2.
Therefore, it can be viewed as a Q0.32 number

τ = T · 2−32, (42)

where T =
∑31
i=0 Ti2

i is the integer in [0, 232) such that

T31 . . . T0 = mλ+1 . . .m23 0 · · · 0︸ ︷︷ ︸
λ+9

. (43)

By (32) and (36), we see that T can be computed by shift-
ing X left M + 1 positions. Since M is not immediately
available, more ILP can be exposed by implementing
this shift as in line 7 of Listing 2. Also, for the shift
by M = max(nlz(X), 8) to be well defined here, the C
standard [19] requires that 0 ≤M < 32. One may check
that this is indeed the case: since by assumption x is

nonzero, the number of leading zeros of X is less than
32 and thus 8 ≤M < 32.

4.4 Computing the approximate polynomial value v
Listing 3 below shows an implementation of the evalua-
tion scheme (30) using 32-bit unsigned integers and the
identities in (25). Multiplications by coefficients a power
of two (like A1, A2, A8) are implemented as simple shifts.

Assuming a latency of 1 for additions, subtractions,
and shifts, a latency of 3 for (pipelined) multiplications,
and that at most 2 multiplications can be started simulta-
neously, this code can be scheduled in at most 13 cycles,
as shown in Table 4. There the dashes ’—’ indicate that
an instruction requires an additional slot because it uses
an extended immediate; see Section 5.1.

The numerical quality of the code in Listing 3 has been
verified using the Gappa software (see http://gappa.
gforge.inria.fr/ and [20], [21]; see also [22, §4] for some
guidelines on how to translate a C code into Gappa
syntax). With this software, we first checked that all
variables r0, . . . , r21 are indeed integers in the range
[0, 232). Then we used Gappa to compute a certified
upper bound on the final rounding error; the bound
produced is less than 2−27.93 and thus less than the
sufficient bound in (29). The Gappa script we wrote to
perform this certification step is contained in the file
binary32sqrt.gappa available at http://prunel.ccsd.
cnrs.fr/ensl-00335792.

4.5 Implementing the rounding tests
There the only non-trivial part is to evaluate the ex-
pressions u ≥ ` (used when rounding to nearest and
rounding up; see §3.2.1 and §3.2.3), and u > ` (used
when rounding down; see § 3.2.2). It turns out that such
comparisons can be implemented exactly by introducing
three integers P , Q, Q′ which we shall define below by
considering u2 and `2 instead of u and `.

MINOR REVISION PREPARED FOR IEEE TC - MARCH 2010 10

Listing 3
Bivariate polynomial evaluation code.

// A0 = 0x80000000; A1 = 0x40000000;
// A2 = 0x10000000; A3 = 0x07fe93e4;
// A4 = 0x04eef694; A5 = 0x032d6643;
// A6 = 0x01c6cebd; A7 = 0x00aebe7d;
// A8 = 0x00200000;

static inline
uint32_t biv_poly_eval(uint32_t S, uint32_t T)
{

uint32_t r0 = T >> 2;
uint32_t r1 = 0x80000000 + r0;
uint32_t r2 = mul(S, r1);
uint32_t r3 = 0x00000020 + r2;
uint32_t r4 = mul(T, T);
uint32_t r5 = mul(S, r4);
uint32_t r6 = r5 >> 4;
uint32_t r7 = r3 - r6;
uint32_t r8 = mul(T, 0x07fe93e4);
uint32_t r9 = mul(r5, r8);
uint32_t r10 = r7 + r9;
uint32_t r11 = mul(r4, r5);
uint32_t r12 = mul(T, 0x032d6643);
uint32_t r13 = 0x04eef694 - r12;
uint32_t r14 = mul(T, 0x00aebe7d);
uint32_t r15 = 0x01c6cebd - r14;
uint32_t r16 = r4 >> 11;
uint32_t r17 = r15 + r16;
uint32_t r18 = mul(r4, r17);
uint32_t r19 = r13 + r18;
uint32_t r20 = mul(r11, r19);
uint32_t r21 = r10 - r20;
return r21;

}

TABLE 4
Feasible scheduling on ST231.

Issue 1 Issue 2 Issue 3 Issue 4

Cycle 0 r4 r0 r14 —
Cycle 1 r1 — r8 —
Cycle 2 r12 —
Cycle 3 r5 r15 — r16

Cycle 4 r2 r17

Cycle 5 r13 — r18

Cycle 6 r9 r6 r11

Cycle 7 r3

Cycle 8 r7 r19

Cycle 9 r20 r10

Cycle 10
Cycle 11
Cycle 12 r21

Truncating v = V · 2−30 after 24 fraction bits yields

u = U · 2−30, (44)

with U the integer in [0, 232) whose bit string is

[0 1 v1 · · · v24 0 0 0 0 0 0].

Let P be the integer in [0, 232) such that

P = mul(U,U).

It follows from (44) and the definition of mul that

u2 − 2−28 < P · 2−28 ≤ u2. (45)

With σ either 1 or
√

2, we see that `2 = σ2m′ is either

m′ = (1.mλ+1mλ+2 . . .m23)2
or

2m′ = (1mλ+1.mλ+2 . . .m23)2,

and can be represented exactly with 24 − λ bits. Since
24− λ ≤ 32, several encodings into a 32-bit unsigned
integer are possible. Because of (45) and the need to
compare `2 with u2, a natural choice is to encode `2 into
the integer Q ∈ [0, 232) such that

`2 = Q · 2−28. (46)

An implementation of the computation of Q using the
integer T defined in (42-43) and the parity of e′ can be
found at line 14 of Listing 2.

4.5.1 Rounding to nearest and rounding up
Once the values of P and Q are available, the condition
u ≥ ` used when ◦ ∈ {RN,RU} can be evaluated thanks
to the following characterization:

Property 4.1: The inequality u ≥ ` holds if and only if
the condition P >= Q is true.

Proof: Since u and ` are non-negative, u ≥ ` is
equivalent to u2 ≥ `2. If u2 ≥ `2 then, by (46) and
the left inequality in (45), we deduce that P + 1 > Q,
which is equivalent to P ≥ Q for P and Q integers.
Conversely, if P ≥ Q then multiplying both sides by
2−28 gives P · 2−28 ≥ `2 and, using the right inequality
in (45), u2 ≥ `2. To sum up, u ≥ ` if and only if P ≥ Q,
that is, if and only if the C condition P >= Q is true.

Together with the algorithm of Section 3.2.1, this prop-
erty accounts for the implementation of rounding to
nearest at lines 14 to 18 in Listing 2.

Since rounding up depends on the condition u ≥ `
as well (see Section 3.2.3), this rounding mode can be
implemented easily: simply replace lines 15 to 18 in
Listing 2 with the following code fragment:

15if(P >= Q)
16return (Dm1 << 23) + ((U + 0x00000040) >> 7);
17else
18return (Dm1 << 23) + ((U + 0x00000080) >> 7);

4.5.2 Rounding down
According to the algorithm in Section 3.2.2 rounding
down does not rely on the condition u ≥ ` but on the
condition u > ` instead.

In order to implement the condition u > `, let Q′ ∈
{0, 1} be such that Q′ = 1 if and only if equality P ·2−28 =
u2 occurs in (45), that is, if and only if P = U2 ·2−32. The
latter equality means that U has at least 16 trailing zeros.
Since the bit string of U is [0 1 v1 · · · v24 0 0 0 0 0 0], this is
equivalent to deciding whether v15 = v16 = · · · = v24 = 0
or not. Hence the code below for computing Q′:

MINOR REVISION PREPARED FOR IEEE TC - MARCH 2010 11

Qprime = (V & 0x0000FFC0) == 0x0;

Property 4.2: The inequality u > ` holds if and only if
the condition P >= Q + Qprime is true.

Proof: Since u and ` are non-negative, u > ` is
equivalent to u2 > `2. We consider the two cases Q′ = 1
and Q′ = 0 separately. Assume first that Q′ = 1. Then,
using the equality in (45) together with (46), we see that
u > ` is equivalent to P > Q, that is, since P and Q
are integers, to P ≥ Q + 1 = Q + Q′. Assume now that
Q′ = 0. In this case P ·2−28 < u2 and thus P ≥ Q implies
u2 > Q ·2−28 = `2; conversely, if u2 > Q ·2−28 then, using
the left inequality in (45), we find P + 1 > Q and thus
P ≥ Q. Therefore, u > ` if and only if P ≥ Q+Q′. Now,
recalling that ` ∈ [1, 2), we deduce from (46) that Q < 230.
Hence Q + Q′ always fits in a 32-bit unsigned integer.
Consequently, the mathematical condition P ≥ Q+Q′ is
equivalent to the C condition P >= Q + Qprime.

Together with the algorithm of Section 3.2.2, the above
property gives the following implementation of round-
ing down:

15 Qprime = (V & 0x0000FFC0) == 0x0;
16 if(P >= Q + Qprime)
17 return (Dm1 << 23) + ((U - 0x00000040) >> 7);
18 else
19 return (Dm1 << 23) + (U >> 7);

5 EXPERIMENTS WITH THE ST231 CORE

Combining the codes of the previous section leads im-
mediately to a standard C implementation of sqrt for
the binary32 format, with subnormal support and correct
rounding for each rounding-direction attribute RN, RU,
RD.

For validation purposes, each of these three versions
has been compiled with Gcc under Linux (using the
software given in Appendix A for emulating max, nlz,
mul). This allowed for an exhaustive comparison, within
a few minutes, against the square root functions of GNU
C (glibc)2 and GNU MPFR.3

We also compiled these three versions with the Open
64-based ST200 family VLIW compiler from STMicro-
electronics, in -O3 and for the ST231 core. After a review
of the main features of the ST231 in Section 5.1, the
performance results we have obtained in this context are
presented and analysed in Section 5.2.

5.1 Some features of the ST231

The ST200 family of VLIW microprocessors originates
from the joint design of the Lx by HP Labs and STMicro-
electronics [23]. The ST231 is the most recently designed
core of this family, and is widely used in STMicroelec-
tronics SOCs for multimedia acceleration.

2. http://www.gnu.org/software/libc/
3. http://www.mpfr.org/mpfr-current/

In this processor, that executes up to four integer
instructions per cycle, all arithmetic instructions operate
on the 64 32-bit register file and on the 8 one-bit branch
register file.

Resource constraints must be observed to form proper
instruction bundles containing 1 to 4 instructions: only
one control instruction, one memory instruction, and up
to two 32 × 32 → 32 multiplications of type mul are
enabled. Other instructions can be freely used, but are
limited to integer only arithmetic, without division.

Another specificity of this architecture is that any im-
mediate form of an instruction is by default encoded to
use small immediates (9-bit signed), but can be extended
to use extended immediates (32-bit), at the cost of one
instruction per immediate extension. For instance, up to
two multiplications mul each using a 32-bit immediate
can be encoded in one bundle. This makes the usage
of long immediate constants such as polynomial coeffi-
cients very efficient from a memory system standpoint.
On the contrary, the absence of a sophisticated data cache
model (such as L2 cache) implies a quite important cost
of accessing a data table (up to 130 cycles in the case of
a data cache miss).

To enable the reduction of conditional branches, the
architecture provides partial predication support in the
form of conditional selection instructions. In the assem-
bly line below, $q, $r, $s are 32-bit integer registers, $b
is a one-bit branch register that can be defined through
comparison or logical instructions:

slct $s = $b, $q, $r

This fragment of assembly code writes $q in $s if $b
is true, $r otherwise. An efficient if-conversion algorithm
based on the ψ-SSA representation is used in the Open64
compiler to generate partially-predicated code based on
the slct instruction [24].

The retargeting of the Open64 compiler technology
to the ST200 family is able to generate efficient, dense,
branch-free code for all the codes described in Section 4,
requiring only the usage of one specific intrinsic to select
the nlz instruction (number of leading zeros).

5.2 Performance results for square root on ST231

The performances obtained when compiling for ST231
with the ST200 compiler are summarized in Table 5.
Versions of our codes that do not support subnormals
have been implemented too, whose performances are
within square brackets.

TABLE 5
Performances of our approach on ST231.

Subnormal numbers [not] supported

◦ Latency L Number N of instructions IPC = N/L
RN 23 [21] 62 [56] 2.70 [2.67]
RU 23 [21] 63 [57] 2.74 [2.71]
RD 23 [21] 65 [59] 2.83 [2.81]

MINOR REVISION PREPARED FOR IEEE TC - MARCH 2010 12

Here are some observations:
• Thanks to if-conversion, the generated assembly

codes are fully if-converted, straight-line programs.
Thus, all latencies (numbers of cycles) and instruc-
tion numbers are independent of the input values.

• Depending on ◦, the value N varies as expected:
compared to RN, Section 4.5.1 suggests one more
addition for RU, while Section 4.5.2 suggests 3 more
instructions for RD (get Qprime and add it to Q).

• On the contrary, the value of L turns out to be
independent of ◦. In fact, with subnormal support,
the value 23 is exactly the latency that can be
expected from the codes of Section 4 when assum-
ing unbounded parallelism. Indeed, the critical path
consists of the following four sub-tasks:
? compute the value T in 3 cycles;
? compute the value V by bivariate polynomial

evaluation in 13 cycles;
? round correctly (truncation, squaring, compari-

son, and selection) in 1 + 3 + 1 + 1 = 6 cycles;
? select the final result in 1 cycle.

In other words, our implementations with subnor-
mal support are scheduled optimally by the ST200
compiler. The same occurs for our versions without
subnormals: those were obtained by replacing
Z = nlz(X);
M = max(Z,8);
T = (X << 1) << M;

with T = X << 9;

The cost of T drops from 3 cycles to 1 cycle, and
one may check that the critical path is defined by
the same sub-tasks as before. Hence a new theoret-
ical latency of 21 cycles, which again is achieved
in practice. Finally, note that the overhead due to
subnormal support is only of 2 cycles.

• In all cases, the number of instructions per cycle
(IPC) is larger than 2.6. A more precise description
of bundle occupancy is given in Figure 4, assuming
◦ = RN and subnormal support. Among the 23
bundles used, 4 contain four instructions and 12
contain three instructions. The instructions used for
handling special operands are in light grey, while
those corresponding to non-special operands are in
black; instructions in dark grey are shared or used
for selection. Note that, from the point of view of
latency, handling special operands comes for free up
to the last cycle, used for selecting the final result.

Table 6 shows the influence of the evaluation scheme
used for P (s, t) = 2−25 + s · a(t) on the performances
of the complete square root code. Instead of evaluating
P (s, t) as in (30) and Listing 3, we evaluate a(t) by three
methods and then multiply by s and add 2−25. “Best
univariate” here is one giving the lowest latency (12
cycles) we have found assuming unbounded parallelism.
Comparing with the first line of Table 5, we remark that:
• Despite high-ILP exposure, our bivariate evaluation

scheme increases the total number of instructions

Cycle Issue 1 Issue 2 Issue 3 Issue 4
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

Fig. 4. Typical bundle occupancy on ST231.

only by 4 (less than 7%) compared to Horner’s rule.
• Our scheme yields a complete code that is about

twice faster than when using Horner’s rule.
• We use 4 cycles less than when evaluating a(t) as

fast as possible and then performing in sequence the
multiplication by s and the addition by 2−25 (“Best
univariate”). This shows the advantage of evaluat-
ing the bivariate polynomial P (s, t) directly, allow-
ing for s to be distributed within a(t) =

∑
i ait

i.

TABLE 6
Performances with other evaluation schemes on ST231.

◦ = RN and with [without] subnormals

Evaluation scheme L N IPC = N/L
Horner’s rule 44 [42] 58 [52] 1.32 [1.24]

Estrin’s method 29 [27] 60 [54] 2.07 [2.00]
Best univariate 27 [24] 62 [56] 2.30 [2.33]

Table 7 gives the latencies obtained in [7] (for round-
ing to nearest and without subnormals) by implement-
ing various other methods on ST231. We denote by R
and nR the classical restoring and non-restoring algo-
rithms; N2, G2, G1 refer to some variants of Newton-
Raphson/Goldschmidt methods, based on low-degree
polynomial evaluation (for the initial approximation)
followed by 1 or 2 iterations; P5 and P6 are methods
based exclusively on piecewise, univariate polynomial
approximants (three of degree 5 or two of degree 6).

Our version in 21 cycles is about 7 times faster than the
restoring method and twice faster than Goldschmidt’s
method G2. It is also 1.43 times faster than P6, which
was the previously fastest known implementation of

MINOR REVISION PREPARED FOR IEEE TC - MARCH 2010 13

TABLE 7
Latencies obtained with other square root methods on
ST231, assuming ◦ = RN and no subnormal support.

Method R nR N2 G2 G1 P5 P6
Latency L 148 133 45 42 36 33 30

correctly-rounded square root on ST231.

6 CONCLUSION

After detailing some properties of the square root func-
tion in binary floating-point arithmetic, we proposed,
for its computation with correct rounding, a high-ILP
approach based on bivariate polynomial evaluation. To
demonstrate the effectiveness of this approach, we fur-
ther provided and analysed complete C implementa-
tions, one for each rounding-direction attribute. Some ex-
perimental results finally showed that these codes yield
optimal schedules and low latencies on a VLIW integer
processor like the ST231. Also, the latency overhead for
subnormal support is only 2 cycles.

Our approach can be extended in several ways. First,
one may check that a faithfully-rounded square root
follows from replacing lines 12 to 18 of Listing 2 with

return (Dm1 << 23) + (V >> 7);

The latency then is 19 cycles with subnormals and 17
cycles without subnormals, leading to a speed-up by a
factor of more than 1.2 in both cases.

Second, our approach is not restricted to square root-
ing and can be adapted to other operators: it has already
been employed4 on ST231 for accelerating division [25],
reciprocal square root [26], and more generally x1/n for
|n| a “small” positive integer [8]. In fact, our approach is
restricted to neither algebraic functions nor the bivariate
case: it could in principle be used as soon as argument
reduction yields an identity of the form ` = F (s, t, . . .),
for some multivariate function F . But it remains to
determine which functions other than the ones above
could benefit significantly from our approach.

Third, although we have focused in this paper on im-
plementations for the binary32 format (single precision)
and 32-bit architectures, similar codes could be derived
for the binary64 format (double precision) and 64-bit ar-
chitectures. The only major modification would be a new
polynomial approximant together with a new bivariate
evaluation scheme. However, for application reasons,
we are currently mostly interested in supporting double
precision on ST231. How to best use the underlying 32-
bit integer arithmetic available on this chip in order to
emulate efficiently a binary64 square root seems to be
nontrivial. It thus remains to investigate whether the
approach we have introduced here can be adapted to
that context.

4. The first draft of this article is [9] and dates back to October 2008.

APPENDIX A
SOFTWARE IMPLEMENTATION OF THE max,
nlz, AND mul OPERATORS

Maximum of two unsigned integers

static inline uint32_t max(uint32_t A,
uint32_t B)

{ return A > B ? A : B; }

Number of leading zeros of a nonzero unsigned integer

static inline uint32_t nlz(uint32_t X)
{ // Input X is assumed to be nonzero.
uint32_t Z = 0;
if (X <= 0x0000FFFF) {Z = Z +16; X = X <<16;}
if (X <= 0x00FFFFFF) {Z = Z + 8; X = X << 8;}
if (X <= 0x0FFFFFFF) {Z = Z + 4; X = X << 4;}
if (X <= 0x3FFFFFFF) {Z = Z + 2; X = X << 2;}
if (X <= 0x7FFFFFFF) {Z = Z + 1;}
return Z;

}

Higher half of a 32-bit integer product

static inline uint32_t mul(uint32_t A,
uint32_t B)

{
uint64_t t0 = A;
uint64_t t1 = B;
uint64_t t2 = (t0 * t1) >> 32;
return t2;

}

ACKNOWLEDGMENTS

This work was supported by “Pôle de compétitivité
mondial” Minalogic and by the ANR project EVA-Flo.
Thanks also to Nicolas Jourdan for several interesting
discussions and for suggesting the use of Equation (33).

REFERENCES

[1] American National Standards Institute and Institute of Electrical
and Electronic Engineers, “IEEE standard for binary floating-point
arithmetic,” ANSI/IEEE Standard, Std 754-1985, New York, 1985.

[2] “IEEE standard for floating-point arithmetic,” IEEE Std. 754-2008,
pp.1-58, Aug. 29 2008.

[3] P. Montuschi and P. M. Mezzalama, “Survey of square rooting
algorithms,” Computers and Digital Techniques, IEE Proceedings-,
vol. 137, no. 1, pp. 31–40, 1990.

[4] P. Markstein, IA-64 and Elementary Functions: Speed and Precision,
ser. Hewlett-Packard Professional Books. Prentice Hall, 2000.

[5] M. Cornea, J. Harrison, and P. T. P. Tang, Scientific Computing on
Itanium R©-based Systems. Intel Press, Hillsboro, OR, 2002.

[6] M. D. Ercegovac and T. Lang, Digital Arithmetic. Morgan
Kaufmann, 2004.

[7] C.-P. Jeannerod, H. Knochel, C. Monat, and G. Revy, “Faster
floating-point square root for integer processors,” in IEEE Sympo-
sium on Industrial Embedded Systems (SIES’07), 2007.

[8] G. Revy, “Implementation of binary floating-point arithmetic
on embedded integer processors - polynomial evaluation-based
algorithms and certified code generation,” Ph.D. dissertation, Uni-
versité de Lyon - École Normale Supérieure de Lyon, December
2009.

[9] C.-P. Jeannerod, H. Knochel, C. Monat, and G. Revy, “Computing
floating-point square roots via bivariate polynomial evaluation,”
LIP, Tech. Rep. RR2008-38, Oct. 2008. [Online]. Available:
http://prunel.ccsd.cnrs.fr/ensl-00335792

MINOR REVISION PREPARED FOR IEEE TC - MARCH 2010 14

[10] R. C. Agarwal, F. G. Gustavson, and M. S. Schmookler, “Series ap-
proximation methods for divide and square root in the Power3TM

processor,” in Proceedings of the 14th IEEE Symposium on Computer
Arithmetic, I. Koren and P. Kornerup, Eds., Adelaide, Australia,
1999, pp. 116–123.

[11] J.-A. Piñeiro and J. D. Bruguera, “High-speed double-precision
computation of reciprocal, division, square root and inverse
square root,” IEEE Trans. Computers, vol. 51, no. 12, pp. 1377–1388,
2002.

[12] S.-K. Raina, “FLIP: a floating-point library for integer
processors,” Ph.D. dissertation, ÉNS Lyon, France, 2006. [On-
line]. Available: http://www.ens-lyon.fr/LIP/Pub/Rapports/
PhD/PhD2006/PhD2006-02.pdf

[13] J.-M. Muller, Elementary functions: algorithms and implementation,
2nd ed. Birkhäuser, 2006.

[14] C. Q. Lauter, “Arrondi correct de fonctions mathématiques -
fonctions univariées et bivariées, certification et automatisation,”
Ph.D. dissertation, ÉNS Lyon, France, 2008.

[15] S. Chevillard, “Évaluation efficace de fonctions numériques -
outils et exemples,” Ph.D. dissertation, ÉNS Lyon, France, 2009.

[16] S. Chevillard and C. Lauter, “A certified infinite norm for the
implementation of elementary functions,” in Proceedings of the
7th IEEE International Conference on Quality Software (QSIC’07),
A. Mathur, W. E. Wong, and M. F. Lau, Eds. Portland, OR, USA:
IEEE Computer Society, 2007, pp. 153–160.

[17] S. Chevillard, M. Joldes, and C. Lauter, “Certified and fast
computation of supremum norms of approximation errors,” in
Proceedings of the 19th IEEE Symposium on Computer Arithmetic
(ARITH-19), Portland, OR, Jun. 2009.

[18] J. Harrison, T. Kubaska, S. Story, and P. Tang, “The computation
of transcendental functions on the IA-64 architecture,” Intel Tech-
nology Journal, vol. 1999-Q4, pp. 1–7, 1999.

[19] International Organization for Standardization, Programming Lan-
guages – C. Geneva, Switzerland: ISO/IEC Standard 9899:1999,
Dec. 1999.

[20] G. Melquiond, “De l’arithmétique d’intervalles à la certification
de programmes,” Ph.D. dissertation, École Normale Supérieure
de Lyon, Lyon, France, 2006. [Online]. Available: http://www.
msr-inria.inria.fr/∼gmelquio/doc/06-these.pdf

[21] M. Daumas and G. Melquiond, “Certification of bounds on ex-
pressions involving rounded operators,” Transactions on Mathe-
matical Software, vol. 37, no. 1, 2009.

[22] F. de Dinechin, C. Lauter, and G. Melquiond, “Assisted
verification of elementary functions using Gappa,” in Proceedings
of the 2006 ACM Symposium on Applied Computing, Dijon, France,
2006, pp. 1318–1322. [Online]. Available: http://www.msr-inria.
inria.fr/∼gmelquio/doc/06-mcms-article.pdf

[23] J. A. Fisher, P. Faraboschi, and C. Young, Embedded Computing:
A VLIW Approach to Architecture, Compilers and Tools. Morgan
Kaufmann, 2005.

[24] C. Bruel, “If-conversion SSA framework for partially predicated
VLIW architectures,” in Digest of the 4th Workshop on Optimizations
for DSP and Embedded Systems (Manhattan, New York, NY), March
2006.

[25] C.-P. Jeannerod, H. Knochel, C. Monat, G. Revy, and G. Villard,
“A new binary floating-point division algorithm and its software
implementation on the ST231 processor,” in Proceedings of the 19th
IEEE Symposium on Computer Arithmetic (ARITH-19), Portland, OR,
Jun. 2009.

[26] C.-P. Jeannerod and G. Revy, “Optimizing correctly-rounded re-
ciprocal square roots for embedded VLIW cores,” in Proceedings
of the 43rd Asilomar Conference on Signals, Systems and Computers,
Pacific Grove, CA, Nov. 2009.

Claude-Pierre Jeannerod received the PhD de-
gree in applied mathematics from Institut Na-
tional Polytechnique de Grenoble in 2000. Af-
ter being a postdoctoral fellow in the Symbolic
Computation Group at the University of Water-
loo, he is now a researcher at INRIA Greno-
ble - Rhône-Alpes and a member of the LIP
laboratory (LIP is a joint laboratory of CNRS,
École Normale Supérieure de Lyon, INRIA and
Université Claude Bernard Lyon 1). His research
interests include computer algebra, linear alge-

bra, and floating-point arithmetic. He is a member of the ACM and the
IEEE.

Hervé Knochel received the MS degree in
signal processing from the École Nationale
Supérieure des Ingénieurs Électriciens de
Grenoble (ENSIEG/INPG) in 1994, and the PhD
degree in numerical analysis from the Université
Joseph Fourier de Grenoble (UJF Grenoble 1) in
1998. He joined STMicroelectronics, Grenoble,
in 2000, and is now a Senior Compiler Software
Engineer in the Compilation Expertise Center.
His main interests are compiler arithmetic opti-
mization, with a special focus on floating-point

arithmetic.

Christophe Monat graduated from École Na-
tionale Supérieure de Techniques Avancées
(ENSTA ParisTech) in 1989. He worked for
EADS developing flight control software, and
for Thales Communications designing crypto-
graphic and signal processing intensive elec-
tronic warfare systems. He has been with STMi-
croelectronics, Grenoble, since 1996. He is cur-
rently a Principal Engineer in the Compilation
Expertise Center. He specializes in highly op-
timizing compilers and floating-point arithmetic.

He is a member of the ACM and the IEEE.

Guillaume Revy received the MS degree in
Computer Science from the École Normale
Supérieure de Lyon in 2006 and the PhD de-
gree in Computer Science from the Université
de Lyon - École Normale Supérieure de Lyon
in 2009. He is now postdoctoral fellow in the
ParLab (Parallel Computing Laboratory) at the
University of California at Berkeley. His research
interests include floating-point arithmetic, auto-
matic generation and certification of floating-
point programs, and automatic debugging of ap-

plications using floating-point arithmetic.

