
HAL Id: ensl-00331519
https://ens-lyon.hal.science/ensl-00331519v2

Submitted on 13 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the computation of correctly-rounded sums
Peter Kornerup, Vincent Lefèvre, Nicolas Louvet, Jean-Michel Muller

To cite this version:
Peter Kornerup, Vincent Lefèvre, Nicolas Louvet, Jean-Michel Muller. On the computation
of correctly-rounded sums. IEEE Transactions on Computers, 2012, 61 (3), p. 289-298.
�10.1109/TC.2011.27�. �ensl-00331519v2�

https://ens-lyon.hal.science/ensl-00331519v2
https://hal.archives-ouvertes.fr

1

On the Computation of Correctly-Rounded Sums
P. Kornerup

SDU, Odense, Denmark
V. Lefèvre N. Louvet J.-M. Muller

LIP, CNRS/ENS Lyon/INRIA/UCBL/Université de Lyon, Lyon, France

Abstract—This paper presents a study of some basic
blocks needed in the design of floating-point summa-
tion algorithms. In particular, in radix-2 floating-point
arithmetic, we show that among the set of the algo-
rithms with no comparisons performing only floating-
point additions/subtractions, the 2Sum algorithm in-
troduced by Knuth is minimal, both in terms of number
of operations and depth of the dependency graph.
We investigate the possible use of another algorithm,
Dekker’s Fast2Sum algorithm, in radix-10 arithmetic.
We give methods for computing, in radix 10, the
floating-point number nearest the average value of
two floating-point numbers. We also prove that un-
der reasonable conditions, an algorithm performing
only round-to-nearest additions/subtractions cannot
compute the round-to-nearest sum of at least three
floating-point numbers. Starting from an algorithm
due to Boldo and Melquiond, we also present new
results about the computation of the correctly-rounded
sum of three floating-point numbers. For a few of our
algorithms, we assume new operations defined by the
recent IEEE 754-2008 Standard are available.

Keywords: Floating-point arithmetic, summation al-
gorithms, correct rounding, 2Sum and Fast2Sum algo-
rithms.

I. Introduction

The computation of sums appears in many domains of
numerical analysis. Examples are numerical integration,
evaluation of dot products, matrix products, means, vari-
ances and many other functions. When computing the sum
of n floating-point numbers a1, a2, . . . , an, the best one
can hope is to get ◦(a1 + a2 + · · · an), where ◦ is the
desired rounding function (specified by a rounding mode,
or by a rounding direction attribute, in the terminology of
the IEEE 754 Standard for floating-point arithmetic [2],
[11]). On current architectures this can always be done
in software using multiple-precision arithmetic. This could
also be done using a long accumulator, as advocated by
Kulisch [4], but such accumulators are not available on
current processors.

It is well known that the rounding error generated
by a round-to-nearest addition is itself a floating-point
number. Many summation algorithms published in the
literature (see for instance [1], [18], [19], [17], [5], [22])
are based on this property and implicitly or explicitly
use basic blocks such as Dekker’s Fast2Sum and Knuth’s
2Sum algorithms (Algorithms 1 and 2 below) to compute
the rounding error generated by a floating-point addition.
Since efficiency is one of the main concerns in the design
of floating-point programs, we focus on algorithms using

only floating-point additions and subtractions in the tar-
get format and without conditional branches, because on
current pipelined architectures, a wrong branch prediction
may cause the instruction pipeline to drain, with a re-
sulting drastic performance loss. The computation of the
correctly-rounded sum of three floating-point numbers is
also a basic task needed in different contexts: in [5], Boldo
and Melquiond presented a new algorithm for this task,
with an application in the context of the computation of
elementary functions. Hence, it is of great interest to study
the properties of these basic blocks.

In this paper, we assume an IEEE 754 [2], [11] arith-
metic. We show that among the set of the algorithms with
no comparisons performing only floating-point operations,
the 2Sum algorithm introduced by Knuth is minimal,
both in terms of number of operations and depth of the
dependency graph.

The recent revision of the IEEE Standard for floating-
point arithmetic considers arithmetics of radices 2 and 10.
Some straightforward properties of radix-2 arithmetic have
been known for a long time and are taken for granted. And
yet, some properties do not hold in radix 10. A simple
example is that, in radix 10, computing the average value
of two floating-point numbers a and b first by computing
a + b rounded to the nearest, and then by computing
half the obtained result rounded to the nearest again
will not necessarily give the average value rounded to the
nearest. We will investigate that problem and suggest some
strategies for accurately computing the average value of
two numbers in decimal arithmetic.

Under reasonable assumptions, we also show that it is
impossible to always obtain the correctly round-to-nearest
sum of n ≥ 3 floating-point numbers with an algorithm
performing only round-to-nearest additions/subtractions.
The algorithm proposed by Boldo and Melquiond for com-
puting the round-to-nearest sum of three floating-point
numbers relies on a non-standard rounding mode, round-
ing to odd (see Definition 1). We show that if the radix is
even, rounding to odd can be emulated in software using
only floating-point additions/subtractions in the standard
rounding modes and a multiplication by the constant 0.5,
thus allowing the round-to-nearest sum of three floating-
point numbers to be determined without tests. We also
propose algorithms to compute the correctly-rounded sum
of three floating-point values for directed roundings.

In a preliminary version of this paper [12], we gave
results valid in radix-2 floating-point arithmetic. We now
extend these results to other radices (the most interesting
one being radix 10), consider the problem of computing an

2

average value in radix 10, give new summation algorithms,
and extend the results of Theorems 2 and 3 to any
precision.

A. Assumptions and notations
We assume a radix-β and precision-p floating-point

arithmetic as defined (for radices 2 and 10) in the IEEE
754-2008 standard [11]. Typical examples are the basic
formats defined by that standard: precisions 24, 53 or
113 in radix 2, and 7, 16 and 34 in radix 10. The user
can choose an active rounding mode, also called rounding
direction attribute: round toward −∞, round toward +∞,
round toward 0, round to nearest “even”, which is the
default rounding mode, and round to nearest “TiesTo-
Away”1. Given a real number x, we denote respectively by
RD(x), RU (x), RZ (x) and RN (x) the rounding functions
associated to these rounding direction attributes (assum-
ing round to nearest even for RN (x)).
Correct rounding is required for the four elementary

arithmetic operations and the square root by the above
cited IEEE standards: an arithmetic operation is said to be
correctly rounded if for any inputs its result is the infinitely
precise result rounded according to the active rounding
mode. Correct rounding makes arithmetic deterministic,
provided all computations are done in the same format,
which might be sometimes difficult to ensure [15]. Cor-
rect rounding allows us to design portable floating-point
algorithms and to prove their correctness, as the results
summarized in the next subsection.

Given a real number x 6= 0, ulpp(x) denotes the unit in
the last place of x, i.e., if βe ≤ |x| < βe+1 with e ∈ Z,
then ulpp(x) = βe+1−p. Where there is no ambiguity on
the value of p, we just write ulp(x).
We assume in the following that no double roundings

occur (that is, that all computations take place in the same
working precision). For instance, users of GNU/Linux on
32-bit x86 processors should be aware that by default,
all the computations on their platform are carried out in
the so-called double-extended precision (64 bits) format.2
However, such processors tend to be less and less common,
and the x86-64 architecture does not have such problems
in practice, due to the use of the SSE instructions by
default for single and double precision arithmetic. These
issues are discussed with details in Chapter 7 of [16],
and the recent IEEE 754-2008 Standard requires that it
should be possible, if desired, to perform all intermediate
computations in a given format.

1A tie-breaking rule must be chosen when the real number x to be
rounded falls exactly halfway between two consecutive floating-point
numbers. A frequently chosen tie-breaking rule is round to nearest
even: x is rounded to the only one of these two consecutive floating-
point numbers whose significand is even. This is the default mode
in the IEEE 754-2008 Standard. The standard also defines another
tie-breaking rule, required in radix 10, called round ties to away: x is
rounded to the one of the two consecutive numbers whose significand
has the largest magnitude

2Depending on the context, intermediate results may or may not be
converted to the target format, but both behaviors are here regarded
as incorrect.

B. Previous results
The Fast2Sum algorithm (Algorithm 1) was introduced

by Dekker [8] in 1971, but the three operations of this
algorithm already appeared in 1965 as a part of a summa-
tion algorithm, called “Compensated sum method,” due
to Kahan [1]. The following result is due to Dekker [8],
[16].
Theorem 1 (Fast2Sum algorithm): Assume a radix-β

floating-point arithmetic, with β ≤ 3, with subnormal3
numbers available, that provides correct rounding with
rounding to nearest. Let a and b be finite floating-point
numbers, both nonzero, such that the exponent of a is
larger than or equal to that of b. If a + b does not
overflow, then the following algorithm computes floating-
point numbers s and t such that s = RN (a + b) and
s+ t = a+ b exactly.
Algorithm 1 (Fast2Sum(a,b)):

s = RN (a+ b);
z = RN (s− a);
t = RN (b− z);

Note that underflow cannot hinder the result: this is a
rather straightforward consequence of a fact that if x and
y are radix-β floating-point numbers, and if the number
RN (x+ y) is subnormal, then RN (x+ y) = x+ y exactly
(see [9] for a proof in radix 2, which easily generalizes to
higher radices). Also, the only overflow that may occur is
when adding a and b.
Note that instead of having information on the expo-

nents, one may know that |a| ≥ |b|, but in such a case, the
condition of the theorem is fulfilled. Also, the condition
β ≤ 3 restricts the use of this algorithm in practice to
binary arithmetic. That condition is necessary: consider,
in radix 10, with precision p = 4, the case a = b = 9999. By
applying Fast2Sum, we would get s = 20000 and t = −1.
This gives s+ t = 19999, whereas a+ b = 19998.

However, if a wider internal format is available (one
more digit of precision is enough), and if the computation
of z is carried on using that wider format, then the
condition β ≤ 3 is no longer necessary. This might be
useful in decimal arithmetic, when the target format is not
the largest one that is available in hardware. We discuss
the possible use of Fast2Sum in radix 10 in Section III.

If no information on the relative orders of magnitude
of a and b is available, or if the radix is larger than 3,
there is an alternative algorithm due to Knuth [13] and
Møller [14], called 2Sum.
Algorithm 2 (2Sum(a,b)):

s = RN (a+ b);
b′ = RN (s− a);
a′ = RN (s− b′);
δb = RN (b− b′);
δa = RN (a− a′);
t = RN (δa + δb);

3In an arithmetic of precision p, a subnormal number has the form
M ·βemin−p+1, where emin is the smallest possible exponent andM is
an integer such that 0 < |M | ≤ βp−1−1, as opposed to a normalized
number of the form M · βe−p+1, where emin ≤ e ≤ emax and M is
an integer such that βp−1 ≤ |M | < βp.

3

2Sum requires 6 operations instead of 3 for the
Fast2Sum algorithm, but on current pipelined architec-
tures, a wrong branch prediction may cause the instruction
pipeline to drain. As a consequence, using 2Sum instead
of a comparison followed by Fast2Sum will usually result
in much faster programs [17]. The names “2Sum” and
“Fast2Sum” seem to have been coined by Shewchuk [21].
They are a particular case of what Rump [20] calls “error-
free transforms”. We call these algorithms error-free addi-
tions in the sequel.

The IEEE 754-2008 standard [11] describes some new
operations with two floating-point numbers as operands:
• minNum and maxNum, which deliver respectively the

minimum and the maximum;
• minNumMag, which delivers the one with the smaller

magnitude (the minimum in case of equal magni-
tudes);

• maxNumMag, which delivers the one with the larger
magnitude (the maximum in case of equal magni-
tudes).

The operations minNumMag and maxNumMag can be
used to sort two floating-point numbers by order of magni-
tude, without using comparisons or conditional branches.
In radices less than or equal to three (or when a wider
precision is available for computing z), this leads to the
following alternative to the 2Sum algorithm.
Algorithm 3 (Mag2Sum(a,b)):

s = RN (a+ b);
a′ = maxNumMag(a, b);
b′ = minNumMag(a, b);
z = RN (s− a′);
t = RN (b′ − z);

Algorithm Mag2Sum consists in sorting the inputs
by magnitude before applying Fast2Sum. It requires 5
floating-point operations, but the first three operations
can be executed in parallel. Mag2Sum can already be
implemented efficiently on the Itanium processor, thanks
to the instructions famin and famax available on this
architecture [7, p. 291]. Notice that, since it is based
on the Fast2Sum algorithm, Algorithm Mag2Sum does
not work in radices higher than 3. Also, when underflow
and overflow are concerned, it has the same properties as
Fast2Sum: underflow is harmless, and the only overflow
that may occur is when computing RN (a+ b).

II. Algorithms 2Sum and Mag2Sum are minimal
in radix 2

In the following, we call an RN-addition algorithm an
algorithm only based on additions and subtractions in the
round-to-nearest mode: at step i the algorithm computes
xi = RN (xj ± xk), where xj and xk are either one of
the input values or a previously computed value. An RN-
addition algorithm must not perform any comparison or
conditional branch, but may be enhanced with minNum,
maxNum, minNumMag or maxNumMag as in Theorem 3.

For instance, 2Sum is an RN-addition algorithm that
requires 6 floating-point operations. To estimate the per-
formance of an algorithm, only counting the operations
is a rough estimate. On modern architectures, pipelined
arithmetic operators and the availability of several FPUs
make it possible to perform some operations in parallel,
provided they are independent. Hence the depth of the
dependency graph of the instructions of the algorithm is
an important criterion. In the case of Algorithm 2Sum,
only two operations can be performed in parallel, δb =
RN (b − b′) and δa = RN (a − a′). Hence the depth of
Algorithm 2Sum is 5. In Algorithm Mag2Sum the first
three operations can be executed in parallel, hence this
algorithm has depth 3.

In this section we address the following question: are
there other RN-addition algorithms producing the same
results as 2Sum, i.e., computing both RN (a + b) and the
rounding error a + b − RN (a + b) for any floating-point
inputs a and b, that do not require more operations, or
that have a dependence graph of smaller depth?

We have shown the following result, proving that among
the RN-addition algorithms, 2Sum is minimal in terms of
number of operations as well as in terms of depth of the
dependency graph.
Theorem 2: Consider a binary arithmetic in precision

p ≥ 2. Among the RN-addition algorithms computing the
same results s and t as 2Sum on any inputs,

1) each one requires at least 6 operations;
2) each one with 6 operations reduces to 2Sum through

straightforward transformations (symmetries, etc.);
3) each one has depth at least 5.
As previously mentioned an RN-addition algorithm can

also be enhanced with minNum, maxNum, minNumMag
and maxNumMag operations [11], which is the case for
Algorithm Mag2Sum. The following result states the min-
imality of this algorithm.
Theorem 3: Consider a binary arithmetic in precision

p ≥ 2 and the set of all the RN-addition algorithms
enhanced with minNum, maxNum, minNumMag and
maxNumMag. Among all such algorithms computing the
same results s and t as 2Sum on any inputs,

1) each one requires at least 5 operations;
2) each one with 5 operations reduces to Mag2Sum;
3) each one has depth at least 3.
The proof of Theorems 2 and 3 is much too long to fit

here. In summary, the theorems were proved for precisions
from 2 to 12 by an exhaustive test on well-chosen inputs,
using the GNU MPFR library [10]. The particular form of
these inputs (an integer plus a much smaller term) allowed
us to generalize these results for any precision larger than
12. The reader can find the full proof in an expanded
version of this paper, at http://hal.inria.fr/inria-00475279
(the programs written for the tests are also available).

III. On the use of Fast2Sum in radix-10
arithmetic

As explained in Section I-B, the Fast2Sum algorithm
(Algorithm 1) is proven only when the radix is less than

4

or equal to 3. Indeed, there are counterexamples in radix
10 for this algorithm (we gave one in the introduction).
And yet, we are going to show that using Fast2Sum may
be of interest, since the very few cases for which it does
not return the right answer can easily be enumerated.

A. An analysis of Fast2Sum in radix 10
In this section, we consider a radix-10 floating-point

system of precision p. We also consider two floating-point
numbers a and b, and we will assume |a| ≥ |b|. Without
loss of generality, we assume a > 0 (just for the sake of
simplifying the proofs). Our way of analyzing Fast2Sum
will mainly consist in considering Dekker’s proof (for radix
2) and locating where it does not generalize to decimal
arithmetic.

Notice that when the result of a floating-point addition
or subtraction is a subnormal, that operation is performed
exactly. Due to this, in the following, we assume no
underflow in the operations of the algorithm (in case of
an underflow, our previous observation implies that the
algorithm is correct).
1) First operation: s ← RN (a + b): Assume that a =

Ma · 10ea−p+1, b = Mb · 10eb−p+1, and s = Ms · 10es−p+1,
where Ma, Mb, Ms, ea, eb, and es are integers, with

10p−1 ≤Ma, |Mb|, |Ms| ≤ 10p − 1.

Notice that the IEEE 754-2008 standard for floating-point
arithmetic does not define the significand and exponent
of a decimal number in a unique way. However, in this
paper, we will use, without any loss of generality, the
values Ma, Mb, Ms, ea, eb, and es that satisfy the above
given boundings: what is important is the set of values,
not the representations. Define δ = ea − eb.

Since we obviously have 0 ≤ a + b ≤ 2a < 10a, es is
necessarily less than or equal to ea + 1. We now consider
two cases.
• First case: es = ea + 1, in that case,

Ms =
⌈
Ma

10 + Mb

10δ+1

⌋
,

where duc is the integer nearest u (with any of the
two possible choices in case of a tie, so that our result
applies for the default roundTiesToEven rounding at-
tribute, as well as for the roundTiesToAway attribute
defined by IEEE 754-2008). Define µ = 10Ms −Ma

(notice that µ is an integer), from

Ma

10 + Mb

10δ+1 −
1
2 ≤Ms ≤

Ma

10 + Mb

10δ+1 + 1
2 ,

we easily deduce

Mb

10δ − 5 ≤ µ ≤ Mb

10δ + 5,

which implies

|µ| ≤
∣∣∣∣Mb

10δ

∣∣∣∣+ 5.

From this we conclude that either s − a is exactly
representable (with exponent ea and significand µ),
or we are in the case{

|Mb| ∈ {10p − 4, 10p − 3, 10p − 2, 10p − 1}
and δ = 0.

Notice that if s − a is exactly representable, then it
will be computed exactly by the second operation.

• Second case: es ≤ ea. We have

a+ b =
(
10δMa +Mb

)
· 10eb−p+1.

If es ≤ eb then s = a + b exactly, since s is obtained
by rounding a+b to the nearest multiple of 10es−p+1,
which divides 10eb−p+1. Hence, s − a = b, and s − a
is exactly representable.
If es > eb, define δ2 = es − eb. We have

s =
⌈
10δ−δ2Ma + 10−δ2Mb

⌋
· 10es−p+1,

so that(
10−δ2Mb −

1
2

)
· 10es−p+1 ≤ s− a

≤
(

10−δ2Mb + 1
2

)
· 10es−p+1,

which implies

|s− a| ≤
(

10−δ2 |Mb|+
1
2

)
· 10es−p+1.

Moreover, es ≤ ea ⇒ s− a is a multiple of 10es−p+1,
say s− a = K · 10es−p+1. We get

|K| ≤ 10−δ2 |Mb|+
1
2 ≤

10p − 1
10 + 1

2 ≤ 10p − 1,

therefore s− a is exactly representable.
We therefore deduce the following property on the value
s computed after the first step.
Property 1: The value s computed by the first operation

of Algorithm 1 satisfies:
• either s− a is exactly representable,
• or we simultaneously have |Mb| ∈ {10p − 4, 10p − 3, 10p − 2, 10p − 1},

eb = ea,
es = ea + 1.

2) Second and third operations: z ← RN (s−a) and t←
RN (b−z): The second operation is more easily handled. It
suffices to notice that when s− a is exactly representable,
then z = s− a exactly, so that

b− z = b− (s− a) = (a+ b)− s.

This means that when s − a is exactly representable,
b − z is the error of the floating-point operation s ←
RN (a+b). Since that error is exactly representable (see for
instance [6]), it is computed exactly, so that t = (a+b)−s.

Therefore, we deduce the following result.
Theorem 4: If a and b are radix-10 floating-point num-

bers of precision p, with |a| ≥ |b|, then the value s
computed by the first operation of Algorithm 1 satisfies:

5

• either t is the error of the floating-point addition a+b,
which means that s+ t = a+ b exactly,

• or we simultaneously have |Mb| ∈ {10p − 4, 10p − 3, 10p − 2, 10p − 1},
eb = ea,
es = ea + 1.

B. Some consequences
Let us analyze the few cases for which Algorithm 1 may

not work. Notice that since a and b have the same expo-
nent, |a| ≥ |b| implies |Ma| ≥ |Mb|. Also, |Ma| ≤ 10p − 1.
Hence, when |Mb| ∈ {10p−4, 10p−3, 10p−2, 10p−1}, the
possible values of |Ma| are limited to
• 4 cases for |Mb| = 10p − 4;
• 3 cases for |Mb| = 10p − 3;
• 2 cases for |Mb| = 10p − 2;
• 1 case for |Mb| = 10p − 1.

Also, in these cases, when a and b do not have the same
sign, Algorithm 1 obviously works (by Sterbenz Lemma,
s = a+ b exactly, so that z = b and t = 0). Therefore, we
can assume that a and b have the same sign. Without loss
of generality we assume they are positive. It now suffices to
check Algorithm 1 with the 10 possible cases. The results
are listed in Table I.

Ma
Mb =

10p − 4
Mb =

10p − 3
Mb =

10p − 2
Mb =

10p − 1
10p − 4 OK N/A N/A N/A
10p − 3 OK OK N/A N/A

10p − 2 OK
Wrong:
t = −3,

(a+ b)− s
= −5

Wrong:
t = −2,

(a+ b)− s
= −4

N/A

10p − 1
Wrong:
t = −4,

(a+ b)− s
= −5

Wrong:
t = −3,

(a+ b)− s
= −4

Wrong:
t = −2,

(a+ b)− s
= −3

Wrong:
t = −1,

(a+ b)− s
= −2

TABLE I
Algorithm 1 is checked in the cases

Mb ∈ {10p − 4, 10p − 3, 10p − 2, 10p − 1} and Mb ≤Ma ≤ 10p − 1.

From these results, we notice that there are only 6 cases
where Algorithm 1 does not work. This leads us to the
following result.
Theorem 5: If a and b are radix-10 floating-point num-

bers of precision p, with |a| ≥ |b|, then Algorithm 1
always works (i.e., we always have s + t = a + b, with
s = RN (a + b)), unless a and b have the same sign, the
same exponent, and their significands Ma and Mb satisfy:
• |Ma| = 10p − 1 and |Mb| ≥ 10p − 4;
• or |Ma| = 10p − 2 and |Mb| ≥ 10p − 3.
Notice that even in the few (6) cases where Algorithm 1

provides a wrong result, the value of t it returns remains
an interesting “correcting term” that can be useful in
summation algorithms, since s+ t is always closer to a+ b
than s.
Theorem 5 shows that Algorithm Fast2Sum can safely

be used in several cases. An example is addition of a

constant: for instance, computations of the form “a ± 1”,
quite frequent, can safely be performed whenever |a| ≥ 1.

Another very frequent case is when one of the operands
is known to be significantly larger than the other one (e.g.,
we add a small correcting term to some estimate).

IV. Halving and computing the average of two
numbers in radix 10

In radix 2 floating-point arithmetic, if s is a floating-
point number, then s/2 is computed exactly, provided
that no underflow occurs. This is not always the case in
radix 10.

Consider a radix-10 number s:

s = ±S · 10e−p+1,

where S is an integer, 10p−1 ≤ S ≤ 10p − 1, and consider
the following two cases:
• if S < 2 · 10p−1, then 5S is less than 10p, hence s/2 is

exactly representable as 5S·10e−p: it will be computed
exactly, with any rounding mode;

• if S ≥ 2 · 10p−1, then if S is even, s/2 is obviously
exactly representable as S/2 ·10e−p+1. If S is odd, let
k be the integer such that S = 2k + 1. From

s

2 =
(
k + 1

2

)
· 10e−p+1,

we deduce that s/2 is a rounding breakpoint for the
round-to-nearest mode. Therefore (assuming round to
nearest even), the computed value RN (s/2) will be
k ·10e−p+1 if k is even, and (k+1) ·10e−p+1 otherwise.
Let t be that computed result. Notice that v = 2t
is either 2k · 10e−p+1 or (2k + 2) · 10e−p+1: in any
case it is exactly representable, hence it is computed
exactly. The same holds for δ = s − v, which will be
±10e−p+1. This last result is straightforwardly exactly
divisible by 2. We therefore deduce that the sequence
of computations t = RN (0.5 × s), v = RN (2 × t);
δ = RN (s − v), and r = RN (0.5 × δ) will return a
value r equal to the error of the floating-point division
of s by two (notice that 0.5 is exactly representable
in decimal arithmetic).
Now, we easily notice that in all the other cases
(that is, when t is exactly s/2), the same sequence
of operations will return a zero.

This gives us a new error-free transform:
Algorithm 4 (Half-and-error, for radix-10 arithmetic):

t = RN (0.5× s);
v = RN (2× t);
δ = RN (s− v);
r = RN (0.5× δ);

The following theorem summarizes what we have dis-
cussed:
Theorem 6: In radix-10 arithmetic, provided that no

underflow occurs (and that |s| is not the largest finite
floating-point number), Algorithm 4 returns two values t
and r such that t = RN (s/2), and t + r = s/2 exactly.
Also, r is always either 0 or ± 1

2ulp(s/2).

6

Now, let us focus on the computation of the average
value of two floating-point numbers a and b, namely,

µ = a+ b

2 .

Again, in radix-2 arithmetic, the “naive” method that
consists in computing s = RN (a + b) and m = RN (s/2)
(or rather, equivalently, m = RN (0.5 × s)) will obviously
give m = RN (µ), unless the addition overflows or the
division by 2 underflows. This is not the case in radix 10.
Consider a toy decimal system of precision p = 3, and
the two input numbers a = 1.09 and b = 0.195. We get
s = RN (a + b) = 1.28, so that m = RN (s/2) = 0.640,
whereas the exact average value µ is 0.6425: we have an
error of 2.5 units in the last place (one can easily show
that this is the largest possible error, in the absence of
over/underflow).

If a larger precision is available for performing the
internal calculations, then we get a better result: if now s
is a+ b rounded to the nearest in precision p+d, then the
average value is computed with an error bounded by(

1
2 + 5

2 · 10−d
)

units in the last place.
If no larger precision is available, we may need to use

different algorithms. Consider for instance,
Algorithm 5: (Average value in any even radix, when a

and b are close)
d = RN (a− b);
h = RN (0.5× d);
m = RN (a− h);

Theorem 7: If a and b are two decimal floating-point
numbers of the same sign such that 0 ≤ b ≤ a ≤ 2b or
2b ≤ a ≤ b ≤ 0, then the value m returned by Algorithm 5
satisfies m = RN((a+ b)/2).

Proof: Without loss of generality we assume that 0 ≤
b ≤ a ≤ 2b. Also assume that a and b have been scaled to
integers without common factors of 10, where b has at most
p digits. By Sterbenz Lemma we have RN(a− b) = a− b.
The proof is now split in two cases:
a − b is even: (a − b)/2 is exactly representable. Hence
m = RN(a−RN((a− b)/2)) = RN((a+ b)/2).
a− b is odd: RN((a− b)/2) = (a− b)/2 + δ (δ = ±1/2)
is exactly computable and representable as a p-digit even
integer (since mid-points round to even). Now assume that
a is a p+ k digit integer, with k minimal. Then it follows
that k ≤ 1. Consider:

RN((a− b)/2) = (a− b)/2 + δ,

from which it follows that

a−RN((a− b)/2) = (a+ b)/2− δ (= (a+ b± 1)/2),

which is an integer representable on at most p + k digits
(since a and RN((a− b)/2) have the same sign and both
are integers representable on p+ k digits).

If k = 0, then obviously m = RN(a−RN((a− b)/2)) =
RN((a+ b)/2).

If k = 1, then a is even, hence a − RN((a − b)/2) is
even, thus not a mid point. Hence rounding to p digits
yields m = RN(a−RN((a− b)/2)) = RN((a+ b)/2).

V. On the impossibility of computing a
round-to-nearest sum

In this section, we are interested in the computation of
the sum of n floating-point numbers, correctly rounded to
nearest. We prove the following result.
Theorem 8: Let a1, a2, . . . , an be n ≥ 3 floating-point

numbers of the same format. Assuming an unbounded ex-
ponent range, and assuming that the radix of the floating-
point system is even, an RN-addition algorithm cannot
always return RN (a1 + a2 + · · · + an).

If there exists an RN-addition algorithm to compute the
round-to-nearest sum of n floating-point numbers, with
n ≥ 3, then this algorithm must also compute the round-
to-nearest sum of 3 floating-point values. As a consequence
we only consider the case n = 3 in the proof of this
theorem. We show how to construct for any RN-algorithm
a set of input data such that the result computed by the
algorithm differs from the round-to-nearest result.

Proof of Theorem 8: Assume a radix-β arithmetic,
where β is even. An RN-addition algorithm can be rep-
resented by a directed acyclic graph4 (DAG) whose nodes
are the arithmetic operations. Given such an algorithm, let
r be the depth of its associated graph. First we consider
the input values a1, a2, a3 defined as follows.
• For a given5 integer k, we choose a1 = βk+p and
a2 =

(
β
2

)
βk: a1 and a2 are two nonzero multiples of

βk whose sum is the exact middle of two consecutive
floating-point numbers;

• a3 = ε, with 0 ≤ βr−1|ε| ≤ βk−p−1 for r ≥ 1.
Note that when ε 6= 0,

RN (a1 + a2 + a3) =
{

RD(a1 + a2 + a3) if ε < 0
RU (a1 + a2 + a3) if ε > 0,

where we may also conclude that RN (a1+a2+a3) ≥ βk+p.
The various computations that can be performed “at

depth 1”, i.e., immediately from the input to the algorithm
are illustrated below. The value of ε is so small that after
rounding to nearest, every operation with ε in one of its
entries will return the same value as if ε were zero, unless
the other entry is 0 or ε.

±ai

+/− +/− +/−

ai aj ai ε ε ε

0 or nonzero
multiple of βk

∈ {−RN(2ε),−ε, 0, ε,RN(2ε)}

An immediate consequence is that after these com-
putations “at depth 1”, the possible available variables

4Such an algorithm cannot have “while” loops, since tests are
prohibited. It may have “for” loops that can be unrolled.

5Here k is arbitrary. When considering a limited exponent range,
we have to assume that k + p is less than the maximum exponent.

7

are nonzero multiples of βk that are the same as if ε
were 0, and values bounded by RN (2ε), thus by β|ε| in
absolute value. By induction one easily shows that the
available variables after a computation of depth m are
either nonzero multiples of βk that are the same as if ε
were 0, or values bounded by βm|ε| in absolute value.
Now, consider the very last addition/subtraction, at

depth r in the DAG of the RN-addition algorithm. Since
RN (a1 + a2 + a3) ≥ βk+p, one of the inputs of this last
operation is a nonzero multiple of βk that is the same as
if ε were 0, and the other input is either also a nonzero
multiple of βk or a value bounded by βr−1|ε| in absolute
value. In both cases the result does not depend on the sign
of ε, hence it is always possible to choose the sign of ε so
that the round-to-nearest result differs from the computed
one.

In the proof of Theorem 8, it was necessary to assume
an unbounded exponent range to make sure that with a
computational graph of depth r, we can always build an ε
so small that βr−1ε vanishes when added to any nonzero
multiple of βk. This constraint can be transformed into
a constraint on r related to the extremal exponents emin
and emax of the floating-point system. For instance, in
radix 2, assuming ε = ±2emin and a1 = 2k+p = 2emax , the
inequality 2r−1|ε| ≤ 2k−p−1 gives the following theorem.
Theorem 9: Let a1, a2, . . . , an be n ≥ 3 floating-point

numbers of the same binary format. Assuming the ex-
tremal exponents of the floating-point format are emin and
emax, an RN-addition algorithm of depth r cannot always
return RN (a1 + a2 + · · · + an) as soon as

r ≤ emax − emin − 2p.

For instance, with the IEEE 754-1985 double precision
format (emin = −1022, emax = 1023, p = 53), an RN-
addition algorithm able to always evaluate the round-to-
nearest sum of at least 3 floating-point numbers (if such
an algorithm exists!) must have depth at least 1939.

VI. Correctly-rounded sums of three
floating-point numbers

We have proved in the previous section that there exist
no RN-addition algorithms of acceptable size to compute
the round-to-nearest sum of n ≥ 3 floating-point values.
In [5], Boldo and Melquiond presented an algorithm to
compute RN (a + b + c) using a “round-to-odd” addition.
Rounding to odd is defined as follows:
Definition 1 (Rounding to odd):
• if x is a floating-point number, then RO(x) = x;
• otherwise, RO(x) is the value among RD(x) and

RU (x) whose least significant digit is odd.
The algorithm of Boldo and Melquiond for computing of

RN (a+ b+ c) is depicted on Fig. 1. Boldo and Melquiond
proved their algorithm (provided no overflow occurs) in
radix 2, yet it can be checked that it also works in radix
10.

Rounding to odd is not a rounding mode available
on current architectures, hence a software emulation was

proposed in [5] for radix 2: this software emulation requires
accesses to the binary representation of the floating-point
numbers and conditional branches, both of which are
costly on pipelined architectures.

t`

Error-free addition

Error-free addition

Odd-rounded addition
v = RO(t` + u`)

Round-to-nearest addition

z = RN(a + b + c)

a b c

uh u`

th

Fig. 1. The Boldo-Melquiond algorithm.

In the next section, we propose a new algorithm for
simulating the round-to-odd addition of two floating-
point values. This algorithm uses only available IEEE-754
rounding modes and a multiplication by the constant 0.5
(and only in a case where this multiplication is exact), and
can be used to avoid access to the binary representation of
the floating-point numbers and conditional branches in the
computation of RN (a+ b+ c) with the Boldo-Melquiond
algorithm. We also study a modified version of the Boldo-
Melquiond algorithm to compute DR(a+b+c), where DR
denotes any of the IEEE-754 directed rounding modes.

A. A new method for rounding to odd

If we allow multiplication by the constant 0.5 and choos-
ing the rounding mode for each operation, the following
algorithm can be used to implement the round-to-odd
addition, assuming that the radix β of the floating-point
system is even.

For some of the arithmetic operations performed in this
algorithm, the result is exactly representable, so it will
be exactly computed with any rounding mode: hence,
for these operations, we have not indicated a particular
rounding mode.
Algorithm 6 (OddRoundSum(a,b), arbitrary even radix):

d = RD(a+ b);
u = RU (a+ b);
ulp = u− d; {exact}
hulp = 0.5× ulp; {exact}
e = RN (d+ hulp);
o′ = u− e; {exact}
o = o′ + d; {exact}

8

For instance, with β = 10, p = 4, a = 2.355, and b =
0.8935, we successively get d = 3.248, u = 3.249, ulp =
0.001, hulp = 0.0005, e = 3.248, o′ = 0.001, and o = 3.249.
Theorem 10: Let a and b be two floating-point numbers,

and assume that a + b does not overflow and that “RN”
means round to nearest even. Then Algorithm 6 computes
o = RO(a+ b).

Proof: Since the radix is even, 0.5 = 1/2 is exactly
representable. If a+b is exactly representable, then all the
operations are exact and d = u = a + b, hulp = ulp = 0,
e = d, o′ = 0, and o = d = a+ b.
Otherwise d and u are consecutive machine numbers and

ulp is a power of the (even) radix, which cannot be the
minimum nonzero machine number in magnitude (because
an exact representation of a+b takes at least p+1 digits).
Thus ulp/2 is exactly representable, so that d + hulp is
the exact middle of d and u. Therefore, by the round-to-
nearest-even rule, e is the value, among d and u, whose last
significand digit is even. Then o is the other one, which is
the desired result.

The only case when this algorithm does not return the
correctly rounded-to-odd value is the (extremely rare) case
when RU (a+ b) is infinite whereas RD(a+ b) is not.
When the radix is 2, it is possible to save an operation,

by replacing the three instructions ulp = u − d, hulp =
0.5×ulp, and e = RN (d+hulp) of Algorithm 6 by the two
instructions e′ = RN (d+ u) and e = e′ × 0.5. Note that if
e′ × 0.5 is in the subnormal range, this means that a + b
is also in the subnormal range, implying that d = u, and
e′ × 0.5 is performed exactly.

Algorithm 6 or its binary variant can be used in the
algorithm depicted on Fig. 1 to implement the round-to-
odd addition. Then we obtain an algorithm using only
basic floating-point operations and the IEEE-754 rounding
modes to compute RN (a + b + c) for all floating-point
numbers a, b and c.
In Algorithm 6 and its binary variant, note that d and

u may be calculated in parallel and that the calculation
of hulp and e (in the general case, i.e., Algorithm 6) or e
and o′ (in the binary case) may be combined if a fused
multiply-add (FMA) instruction is available. On most
floating-point units, the rounding mode is dynamic and
changing it requires flushing the pipeline, which is expen-
sive. However, on some processors such as Intel’s Itanium,
the rounding mode of each floating-point operation can be
chosen individually [7, Chap. 3]. In this case, the choice
of rounding mode has no impact on the running time
of a sequence of floating-point operations. Moreover the
Itanium provides an FMA instruction, hence the proposed
algorithm can be expected to be a very efficient alternative
to compute round-to-odd additions on this processor.

B. Computation of DR(a+ b+ c)
We now focus on the problem of computing DR(a+b+c),

where DR denotes one of the directed rounding modes
(RZ , RD or RU). The algorithm we consider for DR = RD
or RU (the case DR = RZ will be dealt with later) is

a variant of the Boldo-Melquiond algorithm. The only
difference is that the last two operations use a directed
rounding mode. The algorithm can be summarized as
follows.
Algorithm 7 (DR3(a,b,c)):

(uh, u`) = 2Sum(b, c);
(th, t`) = 2Sum(a, uh);

v = DR(t` + u`);
z = DR(th + v);

Algorithm 7 computes DR(a + b + c) for rounding
downward or upward. However, it may give an incorrect
answer for rounding toward zero.

To prove Algorithm 7, we need to distinguish between
different precisions. To that purpose, we introduce some
notation. Let Fβ,p denote the set of all radix-β, precision-
p floating-point numbers, with an unbounded exponent
range (where, obviously, β ≥ 2 and p ≥ 1). Given x ∈ R,
we shall denote x rounded downward, rounded upward,
rounded toward zero and rounded to nearest in Fβ,p by
RDp(x), RU p(x), RZp(x) and RN p(x) respectively. Note
that even though these functions depend on the parameter
β, we omit β from their indices to make the notation
simpler, since β is regarded as fixed; we will even omit
the index p when only precision p is considered, just like
in the other sections of the paper.
Theorem 11: If the radix β and the precision p satisfy
• either 5 · β1−p ≤ 1,
• or β = 2k, where k ≥ 1 is an integer, and 3 ·β1−p ≤ 1.

Then, given a, b, c ∈ Fβ,p, and s = a + b + c the exact
sum, and provided no overflow occurs, algorithm DR3
(Algorithm 7) computes z = DR(s).

Notice that the conditions of Theorem 11 become p ≥ 3
in radix 2, and p ≥ 2 in radix 10.
The assumption that no overflow occurs cannot be

suppressed: for instance, if b + c overflows whereas the
sum a + b + c is smaller than the overflow threshold, the
algorithm does not work. Underflow is easily dealt with:
it does not hinder the result.

For proving Theorem 11, we use the next two lemmata.
Lemma 12: Let β ≥ 2 and two precisions p and q such

that q ≥ p. Let DR be one of the directed rounding
modes (RZ , RD or RU), so that DRp and DRq denote
the corresponding rounding functions in Fβ,p and Fβ,q
respectively. Then for all x ∈ R, DRp(x) = DRp(DRq(x)).

The proof of Lemma 12 mainly relies on Fβ,p ⊂ Fβ,q
and on the fact that both roundings are done in the same
direction.
Lemma 13: Let β ≥ 2, p ≥ 1, and x, y ∈ Fβ,p such that

x+ y /∈ Fβ,p. We denote z = RN (x+ y).
• If β = 2k, where k ≥ 1 is an integer, then |y| ≤ 2|z|.
• For any radix β, |y| ≤ 2(1 + β1−p)|z|.
Proof: First, since x + y /∈ Fβ,p, neither x nor y can

be 0. If x and y have the same sign, then |y| ≤ |z| ≤ 2|z|.
In the following, let us assume that x and y have different
signs. Under this condition, Sterbenz’s lemma yields: If
1
2 |y| ≤ |x| ≤ 2|y|, then x+ y ∈ Fβ,p. Since by assumption
x+ y /∈ Fβ,p,

9

• either 1
2 |y| > |x|, hence |x+ y| = |y| − |x| > 1

2 |y|,
• or |x| > 2|y|, hence |x+ y| = |x| − |y| > |y|.

In both cases, |x + y| ≥ 1
2 |y|, hence |z| = RN (|x + y|) ≥

RN (1
2 |y|). If β is a power of two, then RN (1

2 |y|) = 1
2 |y|,

hence |z| ≥ 1
2 |y|. If no assumption is made on the radix β,

then we write RN (1
2 |y|) = (1 + ε) 1

2 |y|, with |ε| ≤
1
2β

1−p,
which implies RN (1

2 |y|) ≥
1
2 (1 − 1

2β
1−p)|y|. A quick

calculation shows that
1

1− 1
2β

1−p ≤ (1 + β1−p),

as a consequence, |y| ≤ 2(1 + β1−p)|z|.
Proof of Theorem 11: In this proof, let us denote

t` + u` by γ, and th + v by s′.
The following two special cases are easily handled:
• If a + uh ∈ Fβ,p, then t` = 0, which means that s =
th + u`; moreover, z = DR(th + v) = DR(th + u`),
hence z = DR(s).

• If γ = 0, then s = th, v = 0, and z = DR(s).
Let us now assume that a+ uh /∈ Fβ,p and γ 6= 0. Since

(th, t`) = 2Sum(a, uh), then |t`| ≤ 1
2β

1−p|th|, and from
|γ| ≤ |u`|+ |t`| we deduce that |γ| ≤ |u`|+ 1

2β
1−p|th|. On

the other hand, since (uh, u`) = 2Sum(b, c), then |u`| ≤
1
2β

1−p|uh|. As a consequence,

|γ| ≤ 1
2β

1−p|uh|+
1
2β

1−p|th|.

As (th, t`) = 2Sum(a, uh) and th = RN (a + uh), and
since a + uh does not belong to Fβ,p by hypothesis,
Lemma 13 can be used to bound |uh| with respect to |th|.
We distinguish two cases.
• If β is a power of two, then |uh| ≤ 2|th|. As a

consequence |γ| ≤ 3
2β

1−p|th|, and since 3β1−p ≤ 1,
|γ| ≤ |th|. From |s| = |th+ t`+u`| ≥ |th|− |γ|, we also
deduce |s| ≥ (2

3β
p−1 − 1)|γ|. Since 3β1−p ≤ 1 implies

2
3β

p−1 − 1 ≥ 1, also |γ| ≤ |s|.
• Otherwise, one has |uh| ≤ 2(1+β1−p)|th|, which gives
|γ| ≤ (3

2 + β1−p)β1−p|th| ≤ 5
2β

1−p|th|, and since
5β1−p ≤ 1, |γ| ≤ |th| follows. As |s| ≥ |th| − |γ|,
then |s| ≥

(2
5β

p−1 − 1
)
|γ|. Since 5β1−p ≤ 1 implies

2
5β

p−1 − 1 ≥ 1, it follows that |γ| ≤ |s|.
Therefore, in both cases we have

|γ| ≤ |th| and |γ| ≤ |s|. (1)

We now focus on the last two operations in Algorithm 7.
Defining ρDR(x) by ρRD(x) = bxc and ρRU (x) = dxe, one
has

s′ = th + DRp(t` + u`) = th + ρDR

(
γ

ulpp(γ)

)
ulpp(γ).

From the first inequality in (1) it follows that ulpp(γ) ≤
ulpp(th), which implies that th is an integral multiple of
ulpp(γ). Since s = th + γ, we write

s′ =
(

th
ulpp(γ) + ρDR

(
γ

ulpp(γ)

))
ulpp(γ)

= ρDR

(
s

ulpp(γ)

)
ulpp(γ).

Since γ 6= 0 and s 6= 0, there exists an integer q such
that ulpp(γ) = ulpq(s).6 Furthermore, it follows from the
second inequality in (1) that ulpp(γ) ≤ ulpp(s), hence
ulpq(s) ≤ ulpp(s), which implies q ≥ p. Hence

s′ = ρDR

(
s

ulpq(s)

)
ulpq(s) = DRq(s).

Since z = DRp(s′), one has z = DRp(DRq(s)). Then from
Lemma 12, we obtain z = DRp(s).
The proof cannot be extended to RZ , due to the fact

that the two roundings can be done in opposite directions.
For instance, if s > 0 (not exactly representable) and
t` + u` < 0, then one has RD(s) ≤ RD(s′) as wanted,
but t` + u` rounds upward and s′ can be RU (s), so that
z = RU (s) instead of RZ (s) = RD(s), as shown on the
following counter-example. In radix 2 and precision 7, with
a = −3616, b = 19200 and c = −97, we have s = 15487,
RZ (s) = 15360 and RU (s) = 15488. Running Algorithm 7
on this instance gives z = 15488, so that RU (s) has been
computed instead of RZ (s).

Nevertheless RZ (s) can be obtained by computing both
RD(s) and RU (s), then selecting the one closer to zero
using the minNumMag instruction [11]. This algorithm for
computing RZ (a+ b+ c) without branches can already be
implemented on the Itanium architecture thanks to the
famin instruction [7].

VII. Conclusions
We have proved that in binary arithmetic Knuth’s 2Sum

algorithm is minimal, both in terms of the number of
operations and the depth of the dependency graph. We
have investigated the possibility of using the Fast2Sum al-
gorithm in radix-10 floating-point arithmetic. We have also
shown that, just by performing round-to-nearest floating-
point additions and subtractions without any testing, it
is impossible to compute the round-to-nearest sum of
n ≥ 3 floating-point numbers in even-radix arithmetic.
If changing the rounding mode is allowed, in even-radix
arithmetic, we can implement, without testing, the non-
standard rounding to odd defined by Boldo and Melquiond,
which makes it indeed possible to compute the sum
of three floating-point numbers rounded to nearest. We
finally proposed an adaptation of the Boldo-Melquiond
algorithm for calculating a + b + c rounded according to
the standard directed rounding modes.

VIII. Acknowledgement
We thank Damien Stehlé, who actively participated in

our first discussions on these topics.

References
[1] W. Kahan. Pracniques: further remarks on reducing truncation

errors. Commun. ACM, 8(1):40, 1965.

6Notice that q may be negative. We use the same definition of ulpq
as previously: if βe ≤ |x| < βe+1 with e ∈ Z, then ulpq(x) = βe+1−q .

10

[2] American National Standards Institute and Institute of Elec-
trical and Electronic Engineers. IEEE Standard for Binary
Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985.
New York, 1985.

[3] American National Standards Institute and Institute of Elec-
trical and Electronic Engineers. IEEE Standard for Radix
Independent Floating-Point Arithmetic, ANSI/IEEE Standard
854-1987. New York, 1987.

[4] E. Adams and U. Kulisch, editors. Scientific Computing with
Automatic Result Verification. Academic Press, San Diego,
1993.

[5] S. Boldo and G. Melquiond. Emulation of a FMA and correctly-
rounded sums: proved algorithms using rounding to odd. IEEE
Transactions on Computers, 57(4), Apr. 2008.

[6] S. Boldo and M. Daumas. Representable correcting terms for
possibly underflowing floating point operations. In J.-C. Bajard
and M. Schulte, editors, Proceedings of the 16th Symposium
on Computer Arithmetic, pages 79–86. IEEE Computer Society
Press, Los Alamitos, CA, 2003.

[7] M. Cornea, J. Harrison, and P. T. P. Tang. Scientific computing
on Itanium based systems. Intel Press, 2002.

[8] T. J. Dekker. A floating-point technique for extending the
available precision. Numerische Mathematik, 18(3):224–242,
1971.

[9] J. R. Hauser. Handling floating-point exceptions in numeric
programs. ACM Trans. Program. Lang. Syst., 18(2):139–174,
1996.

[10] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmer-
mann. MPFR: A multiple-precision binary floating-point library
with correct rounding. ACM Transactions on Mathematical
Software, 33(2), 2007. Available at http://www.mpfr.org/.

[11] IEEE Computer Society. IEEE Standard for Floating-Point
Arithmetic. IEEE Standard 754-2008, Aug. 2008. Available at
http://ieeexplore.ieee.org/servlet/opac?punumber=4610933.

[12] P. Kornerup, V. Lefèvre, N. Louvet, and J.-M. Muller. On the
Computation of Correctly-Rounded Sums Proceedings of the
19th IEEE Symposium on Computer Arithmetic Portland, OR,
June 2009.

[13] D. Knuth. The Art of Computer Programming, 3rd edition,
volume 2. Addison-Wesley, Reading, MA, 1998.

[14] O. Møller. Quasi double-precision in floating-point addition.
BIT, 5:37–50, 1965.

[15] D. Monniaux. The pitfalls of verifying floating-point com-
putations. ACM TOPLAS, 30(3):1–41, 2008. Available at
http://hal.archives-ouvertes.fr/hal-00128124.

[16] J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod,
V. Lefèvre, G. Melquiond, N. Revol, D. Stehlé, and S. Torres.
Handbook of Floating-Point Arithmetic. Birkhäuser, 2009.

[17] T. Ogita, S. M. Rump, and S. Oishi. Accurate sum and dot
product. SIAM Journal on Scientific Computing, 26(6):1955–
1988, 2005.

[18] M. Pichat. Correction d’une somme en arithmétique à virgule
flottante (in French). Numerische Mathematik, 19:400–406,
1972.

[19] D. Priest. On Properties of Floating-Point Arithmetics: Nu-
merical Stability and the Cost of Accurate Computations. PhD
thesis, University of California at Berkeley, 1992.

[20] S. M. Rump, T. Ogita and S. Oishi. Accurate Floating-Point
Summation Part I: Faithful Rounding. SIAM Journal on
Scientific Computing, 31(1):189–224, 2008.

[21] J. R. Shewchuk. Adaptive Precision Floating-Point Arithmetic
and Fast Robust Geometric Predicates. Discrete & Computa-
tional Geometry, 18:305–363, 1997.

[22] Y.-K. Zhu, J.-H. Yong, and G.-Q. Zheng. A New Distillation
Algorithm for Floating-Point Summation. SIAM Journal on
Scientific Computing, 26(6):2066–2078, 2005.

Peter Kornerup received the Mag. Sci-
ent. degree in mathematics from Aarhus Uni-
versity, Denmark, in 1967. After a period
with the University Computing Center, from
1969 involved in establishing the computer
science curriculum at Aarhus University, he
helped found the Computer Science Depart-
ment there in 1971 and served as its chairman
until in 1988, when he became Professor of
Computer Science at Odense University, now
University of Southern Denmark. Prof. Ko-

rnerup has served on program committees for numerous IEEE, ACM
and other meetings, in particular he has been on the Program Com-
mittees for the 4th through the 19th IEEE Symposium on Computer
Arithmetic, and served as Program Co-Chair for these symposia in
1983, 1991, 1999 and 2007. He has been guest editor for a number of
journal special issues, and served as an associate editor of the IEEE
Transactions on Computers from 1991 to 1995. He is a member of
the IEEE Computer Society.

Vincent Lefèvre received the MSc and PhD
degrees in computer science from the École
Normale Supérieure de Lyon, France, in 1996
and 2000, respectively. He has been an INRIA
researcher at the LORIA, France, from 2000 to
2006, and at the LIP, ENS-Lyon, France, since
2006. His research interests include computer
arithmetic. He participated in the revision of
the IEEE 754 standard.

Nicolas Louvet received the MSc degree
from the Université de Picardie Jules Verne
(Amiens, France), in 2004, and the PhD degree
in computer science from the Université de
Perpignan Via Domitia (Perpignan, France)
in 2007. After being an INRIA postdoctoral
fellow in the Arénaire reasearch team, he is
now assistant professor in the department of
computer science of the Université Claude
Bernard Lyon 1 (Lyon, France), and a member
of the LIP laboratory (LIP is a joint laboratory

of CNRS, École Normale Supérieure de Lyon, INRIA and Université
Claude Bernard Lyon 1). His research interests are in computer
arithmetic.

Jean-Michel Muller was born in Greno-
ble, France, in 1961. He received his Ph.D.
degree in 1985 from the Institut National
Polytechnique de Grenoble. He is Directeur
de Recherches (senior researcher) at CNRS,
France, and he is the former head of the LIP
laboratory (LIP is a joint laboratory of CNRS,
Ecole Normale Supérieure de Lyon, INRIA
and Université Claude Bernard Lyon 1). His
research interests are in Computer Arithmetic.
Dr. Muller was co-program chair of the 13th

IEEE Symposium on Computer Arithmetic (Asilomar, USA, June
1997), general chair of SCAN’97 (Lyon, France, sept. 1997), gen-
eral chair of the 14th IEEE Symposium on Computer Arithmetic
(Adelaide, Australia, April 1999). He is the author of several books,
including "Elementary Functions, Algorithms and Implementation"
(2nd edition, Birkhäuser Boston, 2006), and he coordinated the
writing of the "Handbook of Floating-Point Arithmetic (Birkhäuser
Boston, 2010). He served as associate editor of the IEEE Transactions
on Computers from 1996 to 2000. He is a senior member of the IEEE.

