K. Aoki, J. Lukkarinen, and H. Spohn, Energy Transport in Weakly Anharmonic Chains, Journal of Statistical Physics, vol.47, issue.2, pp.1105-1129, 2006.
DOI : 10.1007/s10955-006-9171-2

G. Basile, C. Bernardin, and S. Olla, Momentum Conserving Model with Anomalous Thermal Conductivity in Low Dimensional Systems, Physical Review Letters, vol.96, issue.20, p.204303, 2006.
DOI : 10.1103/PhysRevLett.96.204303

G. Basile, C. Bernardin, and S. Olla, Thermal conductivity for a momentum conserving model, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00017718

G. Basile, L. Delfini, S. Lepri, R. Livi, S. Olla et al., Anomalous transport and relaxation in classsical one-dimensional models, to appear in, European Journal of Physics Special Topics, 2007.

G. Benabou, Homogenization of Ornstein-Uhlenbeck Process in Random Environment, Communications in Mathematical Physics, vol.233, issue.3, pp.699-714, 2006.
DOI : 10.1007/s00220-006-0046-9

C. Bernardin, Hydrodynamics for a system of harmonic oscillators perturbed by a conservative noise, Stochastic Processes and their Applications, pp.487-513, 2007.
DOI : 10.1016/j.spa.2006.08.006

C. Bernardin and S. Olla, Fourier???s Law for a Microscopic Model of Heat Conduction, Journal of Statistical Physics, vol.8, issue.n.1, pp.271-289, 2005.
DOI : 10.1007/s10955-005-7578-9

F. Bonetto, J. L. Lebowitz, and J. Lukkarinen, Fourier's Law for a Harmonic Crystal with Self-Consistent Stochastic Reservoirs, Journal of Statistical Physics, vol.116, issue.1-4, pp.783-813, 2004.
DOI : 10.1023/B:JOSS.0000037232.14365.10

J. Bricmont and A. Kupinianen, Towards a Derivation of Fourier???s Law for Coupled Anharmonic Oscillators, Communications in Mathematical Physics, vol.124, issue.3, pp.555-626, 2007.
DOI : 10.1007/s00220-007-0284-5

A. Casher and J. L. Lebowitz, Heat Flow in Regular and Disordered Harmonic Chains, Journal of Mathematical Physics, vol.12, issue.8, p.1701, 1971.
DOI : 10.1063/1.1665794

S. Ethier and T. G. Kurtz, Markov processes. Characterization and convergence, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, 1986.

T. Funaki and H. Spohn, Motion by Mean Curvature from the Ginzburg-Landau $\nabla\phi$ Interface Model, Communications in Mathematical Physics, vol.185, issue.1, pp.1-36, 1997.
DOI : 10.1007/s002200050080

S. Lepri, R. Livi, and A. Politi, Thermal conduction in classical low-dimensional lattices, Physics Reports, vol.377, issue.1, pp.1-80, 2003.
DOI : 10.1016/S0370-1573(02)00558-6

C. Landim and H. T. Yau, Fluctuation-dissipation equation of asymmetric simple exclusion process, Probab. Theory Related Fields, pp.321-356, 1997.

A. J. O-'connor and J. L. Lebowitz, Heat Conduction and Sound Transmission in Isotopically Disordered Harmonic Crystals, J. of Math. Phys, vol.15, p.629, 1974.

A. Dhar, Heat Conduction in the Disordered Harmonic Chain Revisited, Physical Review Letters, vol.86, issue.26, p.5882, 2001.
DOI : 10.1103/PhysRevLett.86.5882

A. Dhar and J. L. Lebowitz, Effect of Phonon-Phonon Interactions on Localization, Physical Review Letters, vol.100, issue.13
DOI : 10.1103/PhysRevLett.100.134301

J. Lukkarinen and H. Spohn, Anomalous energy transport in the FPU-beta chain, 2007.

Z. Rieder, J. L. Lebowitz, and E. Lieb, Properties of a Harmonic Crystal in a Stationary Nonequilibrium State, Journal of Mathematical Physics, vol.8, issue.5, pp.1073-1078, 1967.
DOI : 10.1063/1.1705319

R. J. Rubin and W. L. Greer, Abnormal Lattice Thermal Conductivity of a One???Dimensional, Harmonic, Isotopically Disordered Crystal, Journal of Mathematical Physics, vol.12, issue.8, pp.1686-1701, 1971.
DOI : 10.1063/1.1665793