Stationary non-equilibrium properties for a heat conduction model

Abstract : We consider a stochastic heat conduction model for solids composed by N interacting atoms. The system is in contact with two heat baths at different temperature $T_\ell$ and $T_r$. The bulk dynamics conserve two quantities: the energy and the deformation between atoms. If $T_\ell \neq T_r$, a heat flux takes place in the system. For large $N$, the system adopts a linear temperature profile between $T_\ell$ and $T_r$. We establish the hydrodynamic limit for the two conserved quantities. We introduce the fluctuations field of the energy and of the deformation in the non-equilibrium steady state. As $N$ goes to infinity, we show that this field converges to a Gaussian field and we compute the limiting covariance matrix. The main contribution of the paper is the study of large deviations for the temperature profile in the non-equilibrium stationary state. A variational formula for the rate function is derived following the recent macroscopic fluctuation theory of Bertini et al.
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger
Contributeur : Cedric Bernardin <>
Soumis le : mardi 5 août 2008 - 14:57:54
Dernière modification le : jeudi 11 janvier 2018 - 06:12:31
Document(s) archivé(s) le : jeudi 3 juin 2010 - 17:52:08


Fichiers produits par l'(les) auteur(s)


  • HAL Id : ensl-00309063, version 1
  • ARXIV : 0808.0662



Cedric Bernardin. Stationary non-equilibrium properties for a heat conduction model. 2008. 〈ensl-00309063〉



Consultations de la notice


Téléchargements de fichiers