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ABSTRACT

We show how three-dimensional superconformal theories for any number
A < 8 of supersymmetries can be obtained by taking a conformal limit of
the corresponding three-dimensional gauged supergravity models. The super-
conformal theories are characterized by an embedding tensor that satisfies a
linear and quadratic constraint. We analyze these constraints and give the
general solutions for all cases. We find new .4~ = 4,5 superconformal theories
based on the exceptional Lie superalgebras F'(4), G(3) and D(2|1;«). Using
the supergravity connection we discuss which massive deformations to expect.
As an example we work out the details for the case of .4 = 6 supersymmetry.
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1 Introduction

Three-dimensional superconformal theories have been studied intensively recently in view
of their relevance to describing the dynamics of multiple M2-branes [1]. The starting
point of this development was the construction of the .4#° = 8 supersymmetric models
by Bagger and Lambert [2-4] and Gustavsson [5,6]. These models are invariant under
the symmetries of the OSp(8|4) superconformal algebra [7]. However, under certain
assumptions, there is only a single .4 = 8 model with SO(4) gauging [8,9].

A way to obtain more general gauge groups is to consider models with less supercon-
formal symmetry, like A4 = 1,2 [10-13], A" = 3 [14,15] or A" = 4 [16-18]. A particularly
interesting class of models are the .4/~ = 6 models with SU(/V) x SU(N) gauge groups [19].
Recently, three papers have appeared that deal with the general construction of 4" = 6
superconformal theories. First of all, in [20] .4 = 6 superconformal models were con-
structed starting from .4~ = 4 supersymmetry with special matter multiplets and making
use of a relation with Lie superalgebras [16]. Secondly, in [21] a general framework for
constructing .4~ = 6 superconformal gauge theories using the three-algebra approach
was presented. Finally, a group-theoretical classification of the gauge groups and matter
content of .4~ = 6 superconformal gauge theories was given in [22].

In this note we wish to approach the construction of three-dimensional superconformal
gauge theories for all values of .4~ by making use of a relation with gauged supergrav-
ity [23,24]. Three-dimensional gauged supergravities have been constructed using the
so-called embedding tensor technique. This method was originally developed in the con-
struction of maximal .4~ = 16 supergravities [25,26]. Here the most general .4 = 16
gaugings were classified, which are encoded in the “embedding tensor”. The role of this
tensor is to specify which subgroup of the global symmetry group is gauged and which
vectors are needed to perform this gauging. Later, the same technique was applied to
construct the matter-coupled half-maximal .4#” = 8 theory [27,28] as well as the .4 < 8
theories [28].

In [24] it was shown how the .#* = 8 model of [2-6] can be obtained by taking an
appropriate limit to global supersymmetry of the .4~ = 8 supergravity model of [27,28].
We will refer to this limit as the conformal limit. We consider here the conformal limit
of all the other gauged supergravity models. In general, the embedding tensor charac-
terizing the superconformal theory satisfies a set of linear and quadratic constraints. We
show how these constraints can be determined from gauged supergravity by taking the
conformal limit and find agreement with all known structures. Furthermore, we present
a systematic way to solve these constraints, which reproduces the classification of super-
conformal theories for different values of .4 given in the recent literature [16,18,20,22].
Furthermore, inspired by a connection between superconformal gauge theories and Lie
superalgebras observed in [16], we construct new .4 = 4,5 superconformal theories that
are based on the exceptional Lie superalgebras F'(4), G(3) and D(2|1;«) with « a free
parameter. They lead to superconformal theories with SO(7) x Sp(1), Gy x Sp(1) and
SO(4) x Sp(1) gaugings, respectively?.

One advantage of the supergravity approach is that the same idea can be used to
obtain non-conformal theories as well by taking other limits. A particularly interesting

2We thank J. Park for a stimulating discussion regarding the case of F(4).



class of models is obtained by taking the limit of a gauged supergravity where the gauge
group lies entirely within the R-symmetry group. As was shown in [24] for the 4" =8
case, such gaugings do not survive the limit to global conformal supersymmetry but nev-
ertheless give rise to their massive deformation. Such massive deformations are important
to test the idea of multiple M-branes and have been considered for .4~ = 8 [29,30] and
A =6 [20,31].

This work is organized as follows. In section 2 we discuss the conformal limit and
show how the properties of the embedding tensor characterizing superconformal theories
in three dimensions can be derived from gauged supergravity. In particular, we derive
the linear and quadratic constraints these tensors must satisfy for different values of
A . In section 3 we perform a systematic analysis of these constraints and derive the
possible gauge groups and matter content. Next, we work out the details of our method
for the specific example of .4 = 6 supersymmetry in section 4. Finally, in section 5 we
present our conclusions. In particular, we comment on the possible massive deformations.
Appendix A explains our notation and conventions.

2 Superconformal gaugings in three dimensions

2.1 Gauged supergravity

We begin with a review of the possible gauged supergravity theories in three dimensions
with different numbers .4 of supersymmetries. We are interested in theories with .4~ < 8
as these have matter multiplets (in addition to the supergravity multiplet) and allow for
a limit to a globally supersymmetric field theory.

Three-dimensional supergravity theories differ from their higher-dimensional relatives
in that all bosonic degrees of freedom can be described by scalar fields. These can be seen
as coordinates of a manifold, on which supersymmetry imposes a number of geometric
conditions [32]. For .4 > 4 these are strong enough to completely fix the (ungauged)
theory: the scalar manifolds are given by certain symmetric spaces of the form

|

M = 7’ (2.1)
where G is a simple Lie group of isometries, and H is its maximal compact subgroup.
For lower values of .47, the scalar manifolds can be more general manifolds such as
quaternionic, Kahler and Riemannian manifolds. However, for our purposes it will be
sufficient to consider certain symmetric spaces for .4 < 4 as well. The different cases
are summarised in table 1. Note that the .4~ = 4 scalar manifold consists of a product of
two quaternionic spaces. This possibility occurs due to the existence of two inequivalent
A = 4 matter multiplets, hyper and twisted hyper multiplets. For other values of A"
there is a unique matter multiplet.

Turning to gauged supergravity, it is important to note that a special D = 3 feature
is that the gauge vectors have no independent kinetic term but only occur via a Chern-
Simons term. In this way they do not introduce new degrees of freedom but are dual
to the scalar fields. More precisely, one can introduce as many vector fields as there are
isometries on the scalar target space.
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N G i dim|[G/H]
8 SO(8, N) SO(8) x SO(N) 8N

6 SU(4, N) S(U(4) x U(N)) 8N

5 Sp(2, N) Sp(2) x Sp(NV) 8N

4 | Sp(1,N) x Sp(1, N") | Sp(1) x Sp(N) x Sp(1) x Sp(N') | 4N + 4N
3 Sp(1,N) Sp(1) x Sp(NV) AN

2 SU(L, N) S(U(1) x U(N)) 2N

1 SO(L, N) SO(N) N

Table 1: The isometry and isotropy groups G and H of the symmetric scalar manifolds of
three-dimensional .4 "-extended supergravity and their dimensions. For N < 4 we
have just included a particular series of symmetric spaces, as it turns out that these
contain the most general global limit to flat target space..

The possible gaugings of D = 3 supergravity theories have been classified using the
embedding tensor approach [25,26,28]. The embedding tensor ©,3 = O, takes values
in the symmetric product of the adjoint representation of the global symmetry group G:

0 € (Adj(G) ® Adj(G))symm ; (2.2)

and relates gauge vectors to generators of G. The associated transformations are then
gauged due to the introduction of the embedding tensor in covariant derivatives which

take the general form
D, =0,— A, O,5t", (2.3)

for some representation matrices t° of G. Note that X, = @aﬂtﬁ denote the generators
whose symmetries are being gauged. Also, the embedding tensor appears as a metric in
the Chern-Simons term

Los = =374y Oug (0,4,7 — 30,517 AAS) (2.4)

with vector fields transforming in the adjoint of G and the structure constants [P, of
the global symmetry group G. In supergravity there is a number of restrictions on which
transformations can be gauged. These can be succinctly summarised in terms of a linear
and a quadratic constraint on the embedding tensor.

The quadratic constraint follows from the requirement that the embedding tensor
itself is invariant under the transformations that are gauged due to the introduction of
©. This condition takes the same form for all values of .A4:

OusO.is [ = 0. (2.5)

In case the embedding tensor projects onto a semisimple subgroup of G and is expressed in
terms of invariant tensors of that subgroup, the quadratic constraint (2.5) is automatically
satisfied.



The linear constraint on the embedding tensor follows from supersymmetry. In other
words, it is perfectly consistent to introduce gaugings that do not satisfy the linear
constraint, but these will not preserve supersymmetry. As it follows from the requirement
of supersymmetry, this condition takes a different form for different values of .4":

e _V = 8 supergravity:

The embedding tensor takes values in the symmetric product of the adjoint of G =
SO(8, N). Representing the adjoint index « by a pair of antisymmetric fundamental
indices, i.e. a = [AB], the embedding tensor is of the form ©ap)cp) and in terms of
SO(8, N) Young tableaux® decomposes according to

(H@H)Symmzl@m@g@ﬁ. (2.6)

Supersymmetry requires absence of the last representation corresponding to the window
tableau.

e ./ = 6 supergravity:

The embedding tensor takes values in the symmetric product of the adjoint of G =
SU(4, N). Representing the adjoint index « by a lower fundamental index A and an
upper anti-fundamental index B, i.e. o = (4, %), the embedding tensor is of the form
048, P and in terms of SU(4, N) Young tableaux decomposes according to*:

(00 ® O0)symm = 1 @ DO @HH @ oD, (2.7)

As supersymmetry requires the latter representation to vanish, the embedding tensor is
anti-symmetric in its lower two indices: 47 P = 047 .

e ./ = 5 supergravity:

The embedding tensor takes values in the symmetric product of the adjoint of G =
Sp(2, N). Representing the adjoint index o by a pair of symmetric fundamental indices,
i.e. a = (AB), the embedding tensor is of the form ©(ap) p) and in terms of Sp(2, N)
Young tableaux decomposes according to

(O ® M)symm = 1@ HO FHo o1O. (2.8)

The latter representation again has to be absent for supersymmetric gaugings, leading
to the following constraint on the embedding tensor: ©4p,cp) = 0.

o ¥ = 4 supergravity:

In this case the embedding tensor consists of three parts. One part, © 45 cp, takes values
in the symmetric product of the adjoint of Sp(1, N) and satisfies the analogous conditions
as for .4 = 5. Similarly, the other part © 415/ crps takes values in the symmetric product

3Here, we use Young tableaux of SO(8,N) in which symmetrization refers to traceless symmetrization,
such that the representations are irreducible.

4We use here a notation where a (barred) Young tableau denotes (upper) lower indices of a tensor
and traces are subtracted.



of the adjoint of Sp(1, N’) and is subject to the same conditions. The last part, © ap ¢ pr
takes values in the product of the adjoints of both factors of the global symmetry group G
and is not subjected to any linear constraint.However, it does have to satisfy a quadratic
condition:

O03O0 75 + OugOys f*7 o =0, (2.9)

and similar for (a < o).

e _V < 3 supergravity:

In these cases supersymmetry does not impose any linear condition: all consistent gaug-
ings (satisfying the quadratic constraint) are compatible with supersymmetry. In addi-
tion, for A4 = 1,2, there are deformations that do not correspond to any gauging but to
the introduction of a superpotential instead [28].

There are in general two strategies to solve the set of linear and quadratic constraints
on the embedding tensor. Either one starts from an embedding tensor which projects
onto a given subgroup by means of an invariant tensor such that the quadratic constraint
is automatically satisfied. In this case, the linear constraint becomes a non-trivial identity
which decides if the gauging is a viable one. Alternatively, one may start from the general
solution of the linear constraint which can directly be expressed in terms of the proper
subrepresentations. Then, the quadratic constraint becomes a non-trivial identity which
selects the proper gaugings. In both cases the embedding tensor represents the Cartan-
Killing metric of the gauge group. However, while in solving the quadratic constraint
first, we can specify the Cartan-Killing metric in any basis we like, e.g. the diagonal one.
If we solve the linear constraint first instead, the subsequent solution of the quadratic
constraint, if it exists at all, yields the Cartan-Killing metric in a particular basis over
which we no longer have control, e.g. it may emerge in a non-diagonal basis.

2.2 The conformal limit

We now turn to the conformal limit, whose aim is to extract superconformal theories
from the gauged supergravities discussed above. This limit was performed explicitly for
A =8 in [24] and will be generalised here to lower values of 4.

It will be instructive to first discuss the limit to global supersymmetry in the ungauged
case. Upon sending Newton’s constant to zero, the supergravity and matter multiplets
decouple, and the former will be set to zero. The resulting theory for the matter multiplets
has .4 global supersymmetries. The isometry groups of supergravity, see table 1, can
be seen to split up into three parts. Its compact part, which is the product of the R-
symmetry group Hg = SO(4") and its orthogonal complement G, are unaffected by the
global limit. In contrast, the non-compact generators reduce to nilpotent generators that
transform under the compact parts:

G — (G x Hg) x RN (2.10)

for integer N and where ¢ = 1, 2,4 or 8 depending on the size of the matter multiplet of
N -extended supersymmetry. The resulting groups are summarised in table 2.



N G Hr dim RV
8 SO(N) SO(8) 8N

6 U(N) SU(4) 8N

5 Sp(NV) Sp(2) 8N

4 || Sp(N) x Sp(N') | Sp(1) x Sp(1) || 4N + 4N
3 Sp(N) Sp(1) AN

2 SU(N) U(1) 2N

1 SO(N) 1 N

Table 2: The global symmety and R-symmetry groups G and Hy of three-dimensional .4 -
extended field theory and the dimension of the flat scalar manifolds.

Our notation is as follows: the fundamental representation of G splits up according
to A = (I,a), where I is the fundamental representation of the R-symmetry group Hg
and a of the global symmetry group GG. The scalar fields correspond to the non-compact
generators and are denoted by X’? As these correspond to nilpotent generators, the
associated scalar manifolds are flat in all cases we consider and the group G acts as their
global symmetry. For .4 = 4 one gets two copies of flat manifolds, composed of the two
different types of matter multiplets.

In addition to ungauged theories with global supersymmetry, one can also obtain
their gauged counterparts from supergravity. As shown in [24], one can derive 4/ = 8
conformal as well as non-conformal gaugings and even massive deformations from the
corresponding supergravity by taking the proper global limit. In the case of conformal
gaugings, it can be seen that this requires the embedding tensor © to be a singlet of
the R-symmetry group, i.e. to only take values in the symmetric product of the adjoint
of the global symmetry groups G. Only the components ©g, .4 lead to a conformal
gauging, while other components can lead to non-conformal gaugings and/or massive
deformations. Indeed, in the analysis of [24] it was found that the other components of
the embedding tensor had to be rescaled with the Newton’s constant in order to avoid
singular terms. This rescaling changes the mass dimension of these components, such
that they had exactly the mass dimension of non-conformal gaugings and/or massive
deformations. The components 0O . that we will retain do not require such a rescaling
and indeed correspond to conformal gaugings.

It remains to be seen which components ©, .q can be obtained from gauged supergrav-
ity. In [24] it was found for .4 = 8 that only the four-form representation in (2.6) gives
rise to conformal gaugings. The other representations in (2.6) give rise to non-zero values
for other components of the embedding tensor, involving the R-symmetry directions, and
hence they spoil the conformal invariance. Therefore for .4 = 8 globally supersymmetric
field theories we obtain conformal gaugings parametrised by an embedding tensor in the
four-form representation of the global symmetry group G, which is SO(N) for the case
of global supersymmetry. This is in precise agreement with the findings in the direct



construction [2—4,23].

A short analysis reveals that the situation is slightly different for the theories with less
than .4~ = 8 supersymmetry, in that one can use all representations of the supergravity
embedding tensor to obtain conformal gaugings®. These are therefore classified by exactly
the same representations that solve the linear constraint in the supergravity case, except
that the linear constraint now refers to G instead of G. In more detail, we find the
following conditions for the different cases:

e ./ =8 field theory:
The embedding tensor takes values in the following representation of G = SO(N):

E, (2.11)

and as a consequence is totally anti-symmetric

@ab,cd = @[ab,cd] . (212)
With the SO(N) structure constants
foetey = =26l 8%y (2.13)
the quadratic constraint (2.5) takes the explicit form

6ab,eg@cd,gf + 6ab,cggef,gd - ®ab,fg@cd,ge - @ab,dg@ef,gc = 0. (214)

o .V = 6 field theory:

The embedding tensor takes values in the following representations of G = U(N):

1enoeHH, (2.15)
and therefore is anti-symmetric in its two pairs of indices:
0. =0’ 4" (2.16)
With the U(N) structure constants
fh AT = i (008,76, — 6,9,76.%) (2.17)
the quadratic constraint (2.5) takes the explicit form

@cgae ! @gdaa b - @gdae ! @cgaa b + ®ag>e / ngacd - @gb7e f ®ag>cd = O . (218)

o ¥ =15 field theory:

®The reason is that for lower .4, the corresponding components in the embedding tensor can be
excited independently without inducing components in other blocks of the embedding tensor, see the
appendix of [28] for the detailed decompositions. For .4#" = 8 in contrast, a non-vanishing component
1] within SO(N) induces components in the non-compact part of the embedding tensor which spoil
the global limit.



The embedding tensor takes values in the following representations of G = Sp(/V):

leHaH, (2.19)
and hence satisfies the linear constraint
O (abeay = 0. (2.20)
With the Sp(/N) structure constants
fabed = 25l QgD (2.21)
the quadratic constraint (2.5) takes the explicit form

Qgh <@ab,eg@hf,cd + @ab,fg(ahe,cd + @ab,cg(ahd,ef + @ab,dg@hc,ef) = 0. (222)

o .V = 4 field theory:

As in the .4 = 4 supergravity case, the embedding tensor consists of three parts, O cd,
Oup v and O ¢ that take values in the products of the adjoints of Sp(N) and Sp(N').
The former two consist of the same representations (2.19) as in the .4#° = 5 case, while
the latter is unconstrained. The quadratic constraints can also be written in a form
analogous to (2.22) using the Sp(NN) and Sp(N’) structure constants.

o ./ <3 field theory:

As in the 4 < 3 supergravities, the embedding tensor can take arbitrary values in the
symmetric product of the adjoints of G. All consistent gaugings (satisfying the quadratic
constraint) are compatible with supersymmetry.

In this way we have obtained a classification of the possible superconformal gaugings for
different values of .4 in a uniform way, starting from the classification of the possible
gaugings of supergravity. Of course, one still needs to solve the constraints for the
embedding tensor. As we have discussed above, there are in general two approaches to
solve these constaints, starting by either choosing for © the projector onto a subgroup,
or by solving the linear constraint on the embedding tensor first. In both cases, one
set of constraints is trivially satisfied while the other one becomes a rather non-trivial
identity. Both approaches have been pursued in the literature and depending on the
point of view, the remaining constraint (which is the linear one in the superpotential
formalism of [16,20] and the quadratic one in the 3-algebra formalism of [3,5,21]) has
been referred to as fundamental identity, respectively.

It is interesting to compare our results to those obtained recently by the mechanism
of supersymmetry enhancement. In this approach one starts from the superconformal
theories with .4 < 3 for which there is no restriction on the gauge group and the rep-
resentation of the matter multiplets. In our context, this corresponds to the absence of
a linear constraint on the embedding tensor. It was found that supersymmetry could
be enhanced to .4~ = 4 by certain restrictions on the gauge group and its representa-
tions [16]. These correspond to the linear constraint O(abeay = 0. Subsequently, it was
noted that twisted hypermultiplets could be added and in fact are necessary for further

8



supersymmetry enhancement [18,30]. The untwisted and twisted sector have to be taken
identical to gain one further supersymmetry. In our notation, this corresponds to the
identification of the three parts of the .4/ = 4 embedding tensor leading to one A4 =5
embedding tensor O .4 subject to the same linear constraint (2.20). Yet further en-
hancement to .4 = 6 and .4 = 8 is possible by restricting to embedding tensors that
satisfy the corresponding linear constraints (2.16) and (2.12), respectively.

The same superconformal gaugings can therefore be obtained in a methodical way
from two independent and rather different approaches. In supergravity, the phenomenon
of supersymmetry enhancement does not exist: one can not adjust the couplings of
e.g. 4 = 3 supergravity to obtain an .4#” = 4 theory. This can for example be seen from
the different supergravity multiplets: the number of gravitini is different for these the-
ories. Nevertheless, the classification of supergravity gaugings reduces in the conformal
limit to the same classification of superconformal gaugings that has been obtained from a
global supersymmetry viewpoint. It is interesting to see that the analogous results have
been obtained independently on the local and the global supersymmetry side. Using the
conformal limit these two approaches can be related.

3 Solving the constraints

In this section we will show how to solve systematically the linear and quadratic con-
straints. We will first explain the general strategy and next discuss the cases for different
values of 4" separately. Recently [20], a classification of the different superconformal
theories has been given starting from .4~ = 4 supersymmetry with special matter multi-
plets and making use of a relation with Lie superalgebras [16]. An alternative derivation
for 4 = 6, of a more group-theoretical nature, can be found in [22]. Here we will use an
approach directly based on the embedding tensor. Based on the relation with Lie super-
algebras we will also uncover new .4 = 4, 5 superconformal gaugings that correspond to
exceptional cases.

Our starting point is an embedding tensor that has only directions in the global
symmetry group G. The purpose of the embedding tensor is to project the Lie algebra
generators of the global symmetry group onto the generators of the subgroup which is
gauged. As explained in the previous section, this tensor must satisfy certain linear and
quadratic constraints. Our strategy is to start from an embedding tensor which projects
onto a given subgroup such that the quadratic constraint is automatically satisfied. In
this case, the linear constraint becomes a non-trivial identity which decides if the gauging
is a viable one.

For the classical Lie groups we will use the standard invariant tensors d,, = 0pe
(orthogonal groups), d,° (unitary groups) and Q. = —, (symplectic groups). Here
0 denotes the Kronecker delta and €2 the anti-symmetric symplectic tensor with inverse
tensor Q% ie. Q.0 = §,°. Besides these tensors we will also use special invariant
tensors in the case of SO(7) and G5 which will lead to the new 4" = 4, 5 superconformal
theories. Our first task is to construct, using the invariant tensors, the operators that
project the Lie algebra generators of the global symmetry group onto the generators of
the subgroup which is gauged. Furthermore we will also need the operators that project
onto the singlet representation. These operators will be the building blocks from which



we will construct the embedding tensor. In the case of the classical orthogonal, unitary
and symplectic groups these building blocks are given by:

SO(N) singlet: Oab Ocd 5 SO(N) adjoint: el Opja
SU(N) singlet: 64" 0.4 SU(N) adjoint: (5.”8,% — %&lb 5.0,
Sp(N) singlet: Qap Qea Sp(N) adjoint: Qg Ry, (3.1)

For SO(4) there is an additional operator that projects onto the adjoint representation
given by
SO(4) adjoint: €gpeq - (3.2)

This operator will be needed in the construction of the .#” = 8 and one of the exceptional
N = 4,5 superconformal theories.

Typically we will need to split the index a according to a pair of indices (i,14):
a — (i,1) with i=1,....m:;i=1,...,n, (3.3)

corresponding to a bi-fundamental representation. These cases will be referred to as
matrix models. Clearly, n = 1 is a special case for which the matrix reduces to a vector,
and the indices a and ¢ coincide. In principle one could consider the index a to represent
a sum of an arbitrary set of representations of the gauge group other than those described
above, but in accordance with the Lie superalgebra approach of Gaiotto and Witten [16]
we do not find such solutions.

Having satisfied the quadratic constraint by employing the above building blocks, we
now discuss the solution of the linear constraint for the different cases with decreasing
number of supersymmetries separately. From the structure of globally supersymmetric
theories (in contrast to supergravity), it is clear that theories with .4#” supercharges can
be seen as particular examples of theories with lower .4". For this reason we will not
repeat the higher .4 examples when discussing the lower .4~ theories.

e ./ = 8 superconformal gaugings:

In this case the embedding tensor contains only one irreducible component under SO(N),
that is the 4-index anti-symmetric tensor ©up .y = Oap.cq. Therefore, one cannot use the
Kronecker delta d,, within ©.

One possibility is to make use of the special operator given in (3.2) and write

®ab,cd = g €abed » (34)

for arbitrary coupling constant g. This restricts to N = 4 and SO(4) gauging.

Another possibility is to consider a symplectic gauging and to construct an invariant
embedding tensor of the form Ogpeq ~ Qap§2cq). However, according to eq. (3.1) this is not
an Sp(N) projection operator. Therefore, the quadratic constraint will not be satisfied
and one cannot consider this possibility. We conclude that for .4#” = 8 one can only gauge
SO(4) or multiple copies thereof.

e ./ = 6 superconformal gaugings:

10



In this case we are dealing with an embedding tensor ©,° . that satisfies the linear
constraint (2.16). Since the embedding tensor has both upper and lower indices we can
use the invariant Kronecker delta 6, to build expressions for ©. This does not restrict to
particular values of N. That is the basic reason why for .4 = 6 one can obtain gaugings
for arbitrary N [24].

The easiest way to find a solution that satisfies the linear constraint is to take

iéab 5Cd) - (N — 1)
N N

for arbitrary coupling constant g. Note that the singlet operator becomes a U(1) projec-
tion operator. For N > 1 this picks out all generators of U(/N) and leads to a gauging
of the full U(N) group. Note that, in order to satisfy the linear constraint (2.16), we
must take a specific combination of the SU(N) and U(1) operators. By taking multi-
ple copies thereof one obtains vector models with U(m;) x U(msy) X --+ gauging, where

m1+m2+...:N.

@ab,cd = g 6[a[d 5C}b} = g (5cb 5ad - g 5ab 5cd ’ (35)

We next consider a matrix model describing the embedding U(m) x U(n) C U(N =
mn) such that the scalars transform in the bi-fundamental representation (m,n). We
first try an embedding tensor that contains products of adjoints with singlets. However,
one finds that one can not satisfy the linear constraint (2.16) with this Ansatz. For this
we need to add a common U(1) factor that acts on both factors. We thus obtain

_ — _ _ 1 - - 1 _ _
k,k _ (U _ kgl l¢ k kgl Isk(s ksl kgl
O ™M™ = 9050 (010" — —o49)") — g8,'0" (6507 — ~655)

(Mm—n) hcichel
— ———2g0;"0; ;707 , 3.6
mn g J j (3.6)
for arbitrary coupling constant g. We deduce that the unitary matrix model desribes a
SU(m) x SU(n) x U(1) gauging, corresponding to the U(m|n) model of [20]. For m = n,
in which case the U(1) factor vanishes [22], this is the ABJM model of [19] .

Finally, we consider symplectic gaugings. Note that we can now raise and lower
indices using the symplectic tensor. We first try an embedding tensor that only contains
the adjoint of Sp(n). However, this does not satisfy the linear constraint (2.16) and we
must add an additional U(1) factor:

@ab,cd = gQuea — g(Qcade + chQad>a (37)

where the first term on the right-hand-side corresponds to the U(1) gauging and where
the term between round brackets corresponds to the Sp(n) gauging. This is precisely the
so-called OSp(2|n) model of [20].

e ./ = 5 superconformal gaugings:

The global symmetry group for .4 = 5 is Sp(IN). We first try to gauge the full Sp(V)
using the Ansatz

@ab,cd =g Qc(a Qb)da (38)

with arbitrary coupling constant g. This indeed solves the linear constraint (2.20) and
leads to a vector model with Sp(N) gauging. Similarly, one can take multiple copies
thereof with Sp(/N7) x Sp(Nsy) X -+ gauging with Ny + Ny + ... = N.
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It turns out that the vector model is a special case of a matrix model with SO(m) x
Sp(n) gauging. The corresponding embedding tensor solving the linear constraint is given
by

Ouniin.awman = 9 (Oui o1 Q7 Uz + 055 o U Lyi) (3.9)

for arbitrary coupling constant g. This is precisely the so-called OSp(m/|n) model of [20].
Note that the relative strength between the SO(m) and Sp(n) terms is fixed by the linear
constraint (2.20). Matrix models with SO(m) x SO(n) or Sp(m) x Sp(n) gauging cannot
be constructed simply because one cannot embed these in the global symmetry group
Sp(N).

A systematic way to construct solutions to the constraints on the embedding ten-
sor comes from the link to Lie superalgebras observed in [16]. Namely, utilizing Lie
superalgebras with (anti-)commutation rules

{Qav Qb} = (ta)abTa 5 [Tom Qa] = naﬁ(tﬁ)abe 5 (310)
where 7,4 is the Cartan-Killing metric, the embedding tensor defined by

@ab; cd = (ta)ab(tﬂ)cd Nag (311)

is guaranteed to satisfy the linear constraint as a consequence of the Jacobi identity
{Qa, Qp},Q.] + perms = 0. Applying this to the exceptional Lie superalgebras® as
presented in [37] in a convenient notation, we find the folllowing additional solutions to
the constraints of the embedding tensor.

In the case of the Lie superalgebra F'(4), the embedding tensor reads (where i, j, ..
refer to the spinor representation 8 of SO(7) and «, 3, .. denote an SU(2) doublet)
®z’ajﬂ,lwl§ = %anrgnﬁagﬁvg + 5ij5kl€’y(o¢€ﬂ)6 (3,12)
with SO(7) Gamma-matrices I'™. This provides a solution to the linear constraint (2.20)
and gives rise to a gauging of SO(7) x SU(2).

The second possibility corresponds to the Lie superalgebra G(3). The embedding
tensor is given by (where i, j,.. refer to the fundamental representation 7 of Gy and
a, 3, .. denote an SU(2) doublet)

Oiajsvis = (Oikdiyj + 5 Ciji) €aptrs + 030k (a€a)s » (3.13)

where Cjjy; is the invariant tensor of’ Go. This leads to a Gy x SU(2) gauge group®.

5The above results on solutions of the linear constraint make use of the classical Lie superalgebras
U(m|n) (denoted by spl(m,n) in [37]) and OSp(m|n). There exist two other classes of Lie superalgebras,
referred to as ”strange superalgebras” in [38] and denoted by P(n) and Q(n). However, as the structure
constants of these algebras do not fit the pattern exhibited in (3.10), the associated Jacobi identities do
not correspond to the constraints on the embedding tensor. As such, these algebras do not give new
solutions.

"In showing that the structure constants of G(3), which can be found in [37], have the required form
shown in (3.10), it is important to note that the Cartan-Killing form of G2 involves the invariant tensor
Cijhi-

8Note that the gauging of a Go C SO(7) subgroup in the .#° = 8 case is not possible because,
although Cj, is totally anti-symmetric and hence satisfies the linear constraint (2.12), the combination
Sikln; + %C’ijkl, which is needed for closure, does not satisfy the .#” = 8 linear constraint [23].
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Finally, the Lie superalgebra D(2|1;«a) (referred to as OSp(4]2;«) in [37]) gives a
deformation of the SO(4) x Sp(1) gauging with embedding tensor

Oiajpivis = (Oidj + V/2 €ijkt) €ap€ys + 0ijORi€x(aEB)s (3.14)

with 4,j,= 1,..,4 of SO(4) and a,3 = 1,2 of SU(2). This example corresponds to
deformation of the gauging of SO(4) x Sp(1) in the OSp(4|1) model. In standard notation
D(2|1, @), « corresponds to the ratio (1 + v)/(1 — ) of the two coupling constants of

SO(4).

e ./ = 4 superconformal gaugings:

A noteworthy feature of the case of four supersymmetries is that there is a direct product
structure. Each factor has a R-symmetry Sp(1) and a global symmetry group Sp(N). To
distinguish the first sector from the second, so-called “twisted” sector, we use a indices
for Sp(N) and a’ for the twisted Sp(N’). We already mentioned that there are three kind
of embedding tensors: those with only a-indices, those with only twisted a’-indices and
mixed embedding tensors with a and a’ indices.

Restricting first to the untwisted sector, the set of possible models coincides with those
described above for A4 > 5. The reason is that the .4/ = 4 linear constraint coincides
with that of .4~ = 5. Hence for every solution with .4~ > 5 there is a corresponding
solution with .4 = 4. The two classes with SO(m) x Sp(n) and SU(m) x SU(n) x U(1)
were first described by [16]. In addition to these two regular classes, the three exceptional
cases that occurred in .#* = 5 also make their appearance in .4/ = 4. The expressions
for the embedding tensor are identical to their .4~ = 5 counterparts.

The situation changes if we also include the twisted sector [18]. First of all, a relatively
trivial possibility is to include this without coupling to the untwisted sector. This allows
for additional gaugings parametrised by Ogy @, Which also has to be of one of the
above forms. More interesting is the possibility to couple to two sectors, using the off-
diagonal components O ¢ = Ora - 1t is impossible to excite this component for
generic gaugings in the untwisted and twisted sector; it can easily be seen that there are
no possible terms with the correct symmetry properties. Indeed, an identification has to
be made between the gaugings in the two sectors, as we will now illustrate.

For concreteness we will specify to a SO(m) x Sp(n) and SO(m’) x Sp(n’) gauging in
both sectors, respectively. Upon identification of the two orthogonal sectors, i.e. SO(m) ~
SO(m/), one needs to include an off-diagonal term (where a = {i,7} and ¢’ = {¢’,7'} and
i~1)

G)ab,c’d’ = gék/[z 5j]l’ QE QE[. (315)

This corresponds to a gauge group Sp(n) x SO(m) x Sp(n’), where the (twisted) hyper-
multiplets are in the bifundamental of the first (last) two factors. Similarly, upon iden-
tification of the two symplectic sectors, i.e. Sp(n) ~ Sp(n’), the following off-diagonal
terms has to be included (where a = {i,i} and o’ = {i’,i'} and i ~7')

Ouwcar = g 0ij O Q;;f(g Qj)p . (3.16)

In this case the gauge group is SO(m) x Sp(n) x SO(m’) where again the (twisted)
hypermultiplets are in the bifundamental of the first (last) two factors. By subsequent
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A e gauge group Lie superalgebra
4,81 (3.4) SU(2) x SU(2) U(2)2)

4,6 (3.6) | SU(m) x SU(n) x U(1) U(m|n)

4,6 (3.7) SO(2) x Sp(n) 0Sp(2|n)
4,5 (3.9) SO(m) x Sp(n) 0Sp(m|n)
4,51 (3.12) SO(7) x SU(2) F(4)

4,5 (3.13) Gy x SU(2) G(3)

4,51 (3.14) SO(4) x Sp(1) D(2|1; @)

Table 3: The equation number of the embedding tensor and gauge group of different super-
conformal models for 4 < .4 < 8 and the associated Lie superalgebra. For .4 =4
we only give the untwisted models; when including the twisted sector non-trivial
couplings such as (3.15) or (3.16) can also be introduced. For .4 < 3, there are no
restrictions on the gauge group.

applications of this construction one can obtain an (in)finite SO(m;) x Sp(n1) x SO(mg) x
Sp(ng) X - -+ gauge group [18].

A distinct possibility is to identify both gauge groups, i.e. SO(m) ~ SO(m') and
Sp(n) ~ Sp(n’). In this case one needs the off-diagonal component to consist of both
terms discussed above:

@ab,c’d’ — gék’[z 5]”/ ng Q]}l’—f- g 6” 51€’l’ le(g QE)[/ . (317)

Note that this leads to Oupcq = Oupcar = Ouiy - In this case the untwisted and twisted
hypermultiplets naturally combine into .4~ = 5 multiplets and one finds supersymmetry
enhancement [20], in this case to the solution (3.9).

A similar story holds for the SU(m) x SU(n) x U(1) gauging, where one can also
employ the twisted sector to obtain a chain of unitary gauge groups [18]. In addition, the
identification of both unitary groups in the untwisted and twisted sector leads to 4~ = 6
supersymmetry [20], as the embedding tensor automatically satisfies the corresponding
linear constraint (2.16). Finally, one can construct couplings between the untwisted and
twisted sector in the case that these are given by one of the three exceptional cases.

o ¥ < 3 superconformal gaugings:

From the gauged supergravity models with .4 = 1,2 or 3 supersymmetries it follows
that these is no linear constraint. Therefore, there is no restriction on the gauge group
and matter content. Furthermore, interacting superconformal field theories not based
on a gauging, and hence without Chern-Simons terms, are known to exist for A4 = 1
[33,34]. It would be interesting to consider the link with the corresponding deformations
in supergravity.
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This finishes our discussion of how the constraints are solved for different values of 4.
For the convenience of the reader we have summarised the different possibilities in table
3.

4 An example: the ./ = 6 superconformal theory

In this section we will present more details on our construction for the specific case of

N = 6.

The .4 = 6 superconformal gauge theory was first discussed in [19]. Tts A" = 2
superspace formulation was presented in [35]. The explicit form of the supersymmetry
rules have first been given in [20,36]. The theory contains 4N complex scalars X,;, where
I,J,...=(1,...,4) and a,b,... = (1,...,N), together with their complex conjugates
(Xar)* = X, They transform in the (4, N) fundamental representation of SU(4) x
U(N). The fermions are given by two-component Dirac spinors 1¢ describing 4N complex
fermionic degrees of freedom.

The corresponding action can be obtained by taking the conformal limit of A4 = 6
supergravity. In this limit the scalar manifold reduces to a flat space, and thus in the
ungauged case this results in the free Lagrangian [24]

&L = —30"X"0,Xas + 30" 05 (4.1)
which exhibits .4~ = 6 superconformal symmetry.

The conformal limit in the gauged case then corresponds to a gauging of (4.1). Tts
action takes the general form

& = —3D'"XYD,Xur + 500" D + Ly
—1em 4,905 (04,7 — 20,5 fPAAS) — LA TR Ay g, (42)

where Ay /K = (Ay,! ji)*, which introduces gauge vectors entering covariant derivatives

and a Chern-Simons term. Besides, it requires Yukawa-couplings and a scalar potential,
which takes a quadratic form in terms of a tensor Ay, which also enters the supersymmetry
variation of the fermions. The covariant derivatives of the scalars are defined as follows
D,uXaI = auXaI - @ab,chuchbI )
(4.3)
D#Xal — auXaI + @ba,chuchbI 7

and a similar definition applies to the covariant derivatives of the spinors. Here, we have
used that the U(N) gauge fields are anti-hermitian, (A4,,%)* = —A,,;*. The Yukawa
couplings read explicitly

gY = _%@ab,chdIXCJ&ng + i@ab,chdC'lvzéﬂj?
. (4.4)
+ % <EIJKL@ca7deICXJd@/J§¢bL + hC) s

where ¢F = (¢%)* and ¢X is defined in the appendix. Note that conformal invariance
forbids the occurrence of quartic fermion terms. Finally, the tensor? A,%;7% defining the

9The notation A, is inherited from D = 3 supergravity from which it arises in the conformal limit.
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scalar potential is given by
A (X)) = =10y (XY X Xy + 0 XFIPX ) (4.5)

where we have used the abbreviation X,° = X,; X".

The supersymmetry transformations leaving invariant (4.2) are given by

(SXaI — EIJ@D((; 7
5??? = ’}/MDHXQJEIJ =+ AQGIJK<X)€JK y (46)
5A#ab = %lzé’yﬂXbJGIJ —h.c. s

where the supersymmetry parameter €;; is in the real antisymmetric representation of
SU(4) and satisfies a reality condition, see (A.4). They leave (4.2) invariant, provided
the embedding tensor satisfies the linear constraint (2.16) and the quadratic constraints
(2.18). Note that the action takes a ‘universal’ form in terms of the embedding tensor in
that any particular gauging corresponds to a specific choice of © in (4.2), subject to the
linear and quadratic constraints (2.16) and (2.18), respectively.

It is instructive to verify the supersymmetry of the action corresponding to (4.2). The
lowest-order supersymmetry variation of the kinetic terms no longer vanishes due to the
non-commutativity of the covariant derivatives. Up to a total derivative we obtain

0Lin = 100 YN Fu X ery (4.7)

These variations are canceled by the supersymmetry variation of the gauge vectors in the
Chern-Simons term. The variation of the gauge vectors inside the covariant derivatives
gives rise to additional contributions linear in ©. These are canceled by taking the ©-
dependent terms (parameterized by As) of 61)¢ in the variation of the fermion kinetic term
and by taking the ©-independent term in the variation of the fermions in the Yukawa
terms. This cancelation takes place provided the linear constraint (2.16) on © holds

We next consider the variations quadratic in ©. The variation of the Yukawa couplings
leads to two types of terms, ¥le;x and ¥le;;, i.e., with uncontracted or contracted SU(4)
indices. The former terms vanish among themselves, which can be proven upon using
linear combinations of the quadratic constraints (2.18) with different index permutations.
Similarly, the latter terms cancel against the variations of the scalar potential.

Let us finally note that the supersymmetric action for all A4 < 5 take the same
universal form as (4.2), in which the Yukawa couplings and scalar potential are param-

eterized by the tensors As; and Aj that can be obtained from the supergravity models
of [28] as in [24].

5 Discussion

In this work we used the three-dimensional gauged supergravity models of [27,28] to
obtain information about superconformal gauge theories in three dimensions for an ar-
bitrary number .4~ < 8 of supersymmetries. The embedding tensor characterizing the
superconformal theory satisfies a linear and a quadratic constraint. For each solution
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of these constraints one obtains a consistent gauging. We solved the constraints using a
simple tensor analysis and presented the gauge groups and matter content of the different
superconformal theories. We find all the superconformal theories that occur in the recent
classification of [16,18,20,22]. On top of that we find three new superconformal theories
with 4 = 4,5 supersymmetry. These latter cases are suggested by the relation with the
Lie superalgebras [16] .

The supergravity approach allows to construct non-conformal gaugings and deforma-
tions as well [24]. These include (1) massive deformations of the superconformal theories
and (2) standard Yang-Mills gauge theories. The massive deformations occur in two
types: (la) scalar massive deformations and (1b) vector massive deformation. In the
former case one introduces mass parameters for a number of scalar fields. In the latter
case one gauges translations corresponding to a number of scalar fields. This requires the
introduction of new gauge vector fields, with a corresponding Chern-Simons term. In the
gauge where the scalars are vanishing, the vector fields obtain a mass term in addition
to their Chern-Simons term. By taking a non-conformal limit of gauged supergravity it
can be shown that the scalar and vector mass parameters of the .4~ = 8 superconformal
theory occur in the following representations of the R-symmetry group SO(8) [24]:

scalar masses : 35, vector masses : 35, . (5.1)

Decomposing into SU(4) x U(1) and projecting onto U(1) singlets suggests that the
A = 6 superconformal theory can be deformed by the following representations of the
SU(4) R-symmetry group:

scalar masses : 15, vector masses : 15 (5.2)

Similarly, this leads one to expect the following representations of the Sp(2) R-symmetry
group for A =5:

scalar masses : 5, vector masses : 5. (5.3)

The presence of a scalar mass term breaks the R-symmetry group to SO(4) x SO(A" —4)
[20,29-31]. Continuing to lower .4#” one could in this way classify massive deformations
of all superconformal theories. It would be interesting to construct these deformations
by taking the non-conformal limit of the gauged supergravity models of [28] and study
their interplay with conformal and non-conformal gaugings.
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A Notations and Conventions

This appendix contains information about the notation and conventions pertaining to
the .4~ = 6 theory discussed in section 4.

We choose the space-time metric to be n = diag(—++). The gamma matrices satisfy
the Clifford algebra {y*,7"} = 2n*” and obey the identities

)" = 0%, (M = =CyCct, () = BB, (A1)
where CT = —(C' is the charge conjugation matrix and B = —C"y,. Note that CTC =
1,0* = —C7' and B*B = 1. In case of U(N) symmetry, we use complex notation, i.e.,

the spinor fields are two-component Dirac spinors. A single Dirac spinor describes 2 real
physical degrees of freedom. We define the Dirac conjugate as

de = (@i, (A.2)

such that ¢1) is a (real) Lorentz scalar. For Dirac spinors there is a second bilinear
invariant, defined by

el = i (Wh)Soyh  and gLyl = i (@7).C (A.3)

where ! = (%)*. In case of Majorana spinors, satisfying ¢ = ¢7C, the two invariants
defined in (A.2) and (A.3) coincide. The supersymmetry parameter satisfies a reality
condition in order to be compatible with .4~ = 6 supersymmetry,

(EIJ)* = EIJ = %B€IJKL€KL . (A4)

Using this reality constraint, the supersymmetry transformation of the complex conjugate
spinor ¢! for A4 = 6 reads

Syl = 1B (eKEArD, Xy + 5P A o) excr - (A.5)

a
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