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Abstract

We investigate the asymptotic behaviour of a generalisegli@rnel acting on a finite
size interval —q; q]. We determine its asymptotic resolvent as well as the firstge
in the asymptotic expansion of its Fredholm determinanttheu, we apply our results
to build the resolvent of truncated Wiener—Hopf operat@sagated by holomorphic
symbols. Finally, the leading asymptotics of the Fredhobtedminant allows us to
establish the asymptotic estimates of certain oscillatounjtidimensional coupled in-
tegrals that appear in the study of correlation functionguaintum integrable models.
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1 Introduction

The sine kernel

inX(1—
su,u)=%_m“),

is a very important object in mathematical physics. In pattr, the Fredholm determinant of
the integral operatdr— S acting on some interval c R appears in random matrix theory [21].
In the bulk scaling limit, det[l — S] stands for the probability [22] that a matrix belonging to
the Gaussian unitary ensemble has no eigenvalugs.ifThe kernel (1.1) also appears in the
theory of quantum integrable systems. In particular, thterdenant det[l + yS], y being a
parameter, describes various zero—temperature coomlatnctions of the impenetrable Bose
gas [40, 33].

In all these interpretations of the sine kernel, one is egtd in the large behaviour of
its Fredholm determinant. The first attempt to analyzexthe +co asymptotics of det[| — S]
goes back to Gaudin and Mehta [21, 22]. In 1973, Des CloizeadXMehta [18] showed that

(1.1)

X2 1
logdet_1:11[l - ] :—g—zlogx+0(1), X — +00 . 1.2)
Three years later, using Widom'’s formula [44] for the asyotips of Toeplitz determinants sup-
ported on an arc, Dyson [19] gave a heuristic derivation efdbnstant termg, and proposed a
recursive method to compute the subleadingfogientscy, ¢, ... in the asymptotic expansion:
2
X 1 C1 Co
logdet_1:17[l = S] = ——= - = logx — 4+ —=+... . 1.3
gdef-1)[l - S] = -5 - Zlogx+Co+ — + 5 + 1.3)
However, the forementioned results were heuristic. It wdg im 1994 that Widom [45] man-
aged to prove rigorously the first term in the asymptotic)(1.

d
— log def 1.1.[1 - ] =—§+o(1) . (1.4)

One year later, this analysis was extended to the multigknial case [46]. While Widom
studied the asymptotic behaviour of the Fredholm detemtibs operator techniques, Deift,
Its and Zhou applied the Riemann—Hilbert problem (RHP) fdation for integrable integral
operators [30] to the sine kernel acting on a union of intenvaJ, and proved the existence of
the asymptotic expansion (1.3). However, their method dicaiiow them to obtain an estimate
for the constanty, as they inferred the asymptotic expansion of log flet S] from that of

d
Py = x& logdet] - S] . (1.5)

The first proofs of Dyson’s heuristic formula fog appeared in the independent, and based on
completely diferent methods, works of Ehrhardt [20] and Krasovsky [38] ayade recently in
[15].

We would like to point out that there is a very nice connectifrthe sine kernel to the
Painlevé V equation [33], aBy solves this equation. The link between Painlevé V &gd



was also investigated in [13] in the framework of RHP. It waswen that one can deduce this
Painlevé equation directly from the RHP data.

This article is devoted to the study a generalisation of ihe kernel (1.1). This kernel, that
we will refer to as the generalised sine kernel (GSK), is efftirm

V(4u= y—w[& (Ve (W) -e (e W], (1.6)
2 (A — )
where
e, (1) = et lXP+g(]/2 (1.7)

We will be more specific about the functioRs p andg later on.

Various particular cases of the kernel (1.6) already apmokar the literature. These par-
ticular kernels were mostly used for the description of elation functions of matrix models
or quantum integrable models equivalent to free fermioee €sg. [43, 41, 27, 28, 36, 9, 10,
29, 31, 8]). In the present paper we consider a rather geoasal, only based on the analytic
properties of the functiong, p andg. The GSK (1.6) plays a crucial role in the study of cor-
relation functions of (non free-fermion) quantum intedeagystems [35]. It is also useful for
the asymptotic analysis of truncated Wiener—Hopf opesaigth Fischer—Hartwig singularities
[37].

We investigate here the largeasymptotic behaviour of the Fredholm determinant of the
GSK in the framework of RHP. Our work is a natural extensiommfunpublished analysis by
Deift, Its and Zhou of the sine kernkek yS by RHP. This kernel was also analysed by RHP in

[8].

This article is organized as follows. In Section 2, we anmeuhe main results of the paper,
namely,

¢ the largex asymptotic behaviour of the Fredholm determinant of thegrdl operator
| +V,cf. (1.6);

¢ the asymptotic resolvent of some Wiener—Hopf operatorsected to (1.6);

¢ the asymptotic behaviour of coupled multiple integralsolding a cycle of kernels/
(1.6) versus some holomorphic symmetric functions.

The proof of the asymptotic behaviour of log def V] is given in the core of the paper
(Sections 3, 4, 5 and 6). More precisely, in Section 3, westgt@ problem into a certain RHP.
In Section 4, we transform this initial RHP into a RHP that easily be solved asymptotically.
This asymptotic solution is presented in Section 5 and usedktction 6 to obtain the leading
and the first subleading terms of log det{V] in the X — +co limit.

In Section 7, we apply these results to truncated Wienerfldpprators. We show how
one can use the asymptotic resolvent of the generalisedksimel to construct asymptotic
resolvents of truncated Wiener—Hopf operators acting-ex;[x], with xlarge. This asymptotic



resolvent is used to reproduce the low magnetic field bebavbthe so-called dressed charge
arising in the theory of quantum integrable models solvalléhe Bethe ansatz [6].

Section 8 is devoted to the study of the asymptotic behawdwome particular type of
coupled multiple integrals which can be obtained in termthefGSK. This is in fact our main
motivation to study the GSK: indeed, from the knowledge &f éisymptotic behaviour of this
type of multiple integrals one can obtain the asymptoticavadur of quantum integrable models
correlation functions, as it is done in [35].

Finally, in Section 9, we consider the case of further modifans of the GSK, in particular
those useful for the correlation functions of the integeakisenberg spin chains [35].

Some properties of confluent hypergeometric functions andfp of several lemmas are
gathered in the appendices.

2 Problem to solve and main results

2.1 generalised sine kernel: assumptions and notations

Let | + V be the integral operator with kernel (1.6) and actind-éa —-q; q]).
We assume that there exists some open relatively compaghbwairhoodU of [ -q;q]
such that the functionp, F andg, as well as the parametgy satisfy the following properties:

¢ F andg are holomorphic otJ, the closure olJ;

e pis holomorphic and injective obl, p([-q;q]) c R, andp stabilizes the upper half
planeH, (resp. the lower half plang(_), i.e. p(U N H.) C H.;

e yeDgr={1eC: | <r}, wherer is such thatrF| < 1 and ard1 + yF) € ] -7 ;x[ on
u.

We study the large expansion of the Fredholm determinantl of V under these assump-
tions. This will be done by asymptotically solving a certaiatrix RHP. It will become clear
in the next section that the assumptip{ —q;g]) c R is tantamount to imposing the associ-
ated RHP to be of oscillatory nature. Moreover, the gafd N H.) c H- is obtained by the
negation(y, g(1)) — (-y,-g(1)).

Note thaty plays here the role of a regularisation parameter; in pdaticit should be
stressed that our method does not allow to reachyfhle= 1 case corresponding to (1.3) which
requires a dferent analysis [20, 38, 15].

Before presenting the main result of this article, let usdieiice some convenient notations.
First, we define two auxiliary functions used in the article:

v(A) = 2_|—71T log (1 +vF (1)) , (2.1)
q

K(2; Q) = «(1) = exp f%;(ﬂ)dy . (2.2)
“q



Note thatx is a function of the two parametensandq, although we will sometimes omit the
dependence on the second parameter.

Finally, we will use the following simplified notations fdne values of the functiong and
v and of their derivatives at the points):

pi=p(ﬂ)b , p;=p’(ﬂ)b , etc (2.3)
=£q ==q

Ve = v(/l)‘ , Vi = V’(/l)‘ , etc (2.4)
A=%q A=%q

2.2 The main results
We now give the asymptotic behaviour of the Fredholm deteamtiin thex — +co limit:

Theorem 2.1. Let V be the GSK1.6) with p, g, F andy satisfying the assumptions of Sec-
tion 2.1. Then, in the > +co limit, log det]l + V] behaves as

log det]l + V] = logdet]l +V]© + o(2), (2.5)
with
q q
log det]l + V]© = —ix f v(A)p' (1) dA — (2 + v?) log x — f v(A)g (1) da
-q -q

G(Lv,)G(Lv_)x*(q;q)
(29p,)"* (299.)" ©-(~0; 9)

in which we have used the notations of Section 2.1. The B&resction [3, 2] admits the
integral representation:

+ log , (2.6)

q
1 v ()v() = v(A)V' ()
-q

z

G(z+ 1)=(zn)%exp{—z(22‘ Y +ft¢//(t)dt}, R@D) > -1 W)=
0

"2
I’

(2.7)

and we denote ,2) = G(1 + 2G(1 - 2).

Using the perturbation theory for singular integral equadione can refine the theorem and
obtain sub-leading corrections. Although, in principlething opposes to derive the next sub-
leading corrections, the computations become more and meob/ed. We have proved the
structure of the first corrections to the equation (2.6).

Proposition 2.1. Let V be the GSK1.6) with the conditions of Section 2.1. The leading asymp-
toticslog det | + V]© of log det | + V] as defined in Theorem 2.1 has non-oscillating and os-
cillating corrections.

Let0 < ¢ < g be such that the disks.Bs of radiusé centered attq fulfill D.qs C U. Let
€ = 2SURpy,uD_g, |‘R(v)|. Then the first non-oscillating corrections are of the form

N, 1
x O(xZ(l—é))’ 28)



with

vz{ d d (V ) v_ }
Ni=i ) —Z{20v, logx+o—logu, + p., Z)-—==. 2.9
1;1% 9%+ 0gq 1004+ Porga\ o) ™ g @9)
The first oscillating corrections are of the form

0O 1

and the leading oscillating cgfcient is given by

B V_V4 U\ 20(v,+v_) dox(ps—p-)
_ YV ) y2o (e g + , (2.11)
(20) p, p. O'=Z+l(u_)

where we have introduced

M- v.) [ 0"
o= g (G (212
w =0 2 (g ) - ) 213)

Remark2.1 The GSK depends only on the combinatiap(2) +g(1) (see (1.7)). Therefore the
Fredholm determinant and its asymptotics can only deperttismombination. This observa-
tion allows us to obtain the complete asymptotic expansepedding on the functiog() from
the asymptotic expansion of the Fredholm determimar¥ corresponding tg = 0. Namely, it
is enough to replace in the obtained formupde) by p(1) - )‘—(g(/l) and then expand into negative
powers ofx.

It is quite interesting to apply the latter proposition imer to obtain the first few terms of
the asymptotic expansion of détf V]. The reason why we draw the reader’s attention to these
asymptotics is because they present a very interestingtsten the leading oscillating terms in
the asymptotic expansion are just given by the sum of theilgaakymptotics evaluated at
shifted by 1 or-1. This structure of the asymptotics seems to restore, st peatly, the original
periodicityv — v + n, n € Z, of the Fredholm determinant of+ V.

Corollary 2.1. Let I+V be the GSK as abovedet | + V]©@ [v] the leading asymptotics of its
Fredholm determinant just as in Theorem 2.4, ahd O, as in Proposition 2.1. Note that we
have emphasized the structuredst [l + V]© [v] as a functional ofv. Then the oscillating
corrections Q can be reproduced from the non-oscillating part via thetstfii by +1:

detl +V]Q[y] % =det]l +V]O[v+1]+det] +V]O[v-1] . (2.14)

This structure of the first terms of the largeasymptotic expansion for ddt { V] leads us
to raise the following conjecture on the structure of thexgstptic series :

Conjecture 2.1. The asymptotic expansion of the Fredholm determideanfl + V] of the GSK
restores the periodicity — v + n, n € Z, of the determinant. In particular, this asymp-
totic expansion contains all tHé-periodized terms with respect toof the leading asymptotics



det[l + V]Q[y]. Thus, all the oscillating terms can be deduced from the ssmillating ones.
More precisely, let

(2.15)

A[V] (X) ~ det [l +V](°>[V](1+M+...+M+...)

xM

stand for the formal asymptotic series corresponding tortbie-oscillating part of the asymp-
totic series fologdet || + V]. There & (X)[v] are polynomials of degree k in X whose gve
cients are functionals i. Moreover each of the & has no oscillating exponents of the type
e*XP:  Then the formal asymptotic series ftet [| + V] is given by

detl + V]~ Y Alv+n] (X . (2.16)
nez

This conjecture is supported by (2.14) and also by the esiilf42] where several sub-
leading corrections to the asymptotics of the Fredholmrdetent of the pure sine-kernel were
computed.

The first application of the asymptotic behaviour of the GS&aansider in this article con-
cerns the asymptotic inversion of truncated Wiener—Hogfrafors. We will prove in Section 7
the following proposition:

Proposition 2.2. Let I+K be a truncated Wiener—Hopf operator pax; X[, acting on functions
g€ L%(R) as

X

[(1+K).0] ) =g(t) + fK (t-tHgt)dt . (2.17)

—X

The kernel K is defined by its Fourier transform F:
K®)=7F1F10 . (2.18)
and we suppose that there exigts 0 such that
« F admits an analytic continuation @ : |3(2)| < 6;
o & F(£+i6) e LY(R);
o the analytic continuation df + F never vanishes fd&(2)| < 5.

Then the resolvent+ R of | + K fulfills

_ [(dédn () ey 0@ _ix(_)} d(un-¢) .
R(/l,,u)_f A2 F(&) {a/_(f)el & a’—(Tl)e & —é:—T] +O(e ), (2.19)

wherea(1) is given by

a () = exp{—%ﬂflog(1+ F(y))/%}. (2.20)
R



Our main mativation to study the asymptotics of log det[V] comes from the theory of
one dimensional quantum integrable models. Indeed, thergtng function of the zero tem-
perature two-point correlation functions (at distang@f different quantum integrable models
[35] has a series expansion in terms of cycle integrals ofythe

d"a ey @xe@)-p()
T[] _r[SE 2 )”f(Zm)” n( 2 )U ) (2.21)
qq

Here the functior, is holomorphic in some open neighbourhooc[ ofy; q]*" and symmetric
in the n variables{1} (we seti,,1 = A1) and in then variables{z}; T' ([ —q;q]) is a counter
clockwise closed contour aroufieq; q| inside this nelghbourhood

In Section 8, using the above results for the GSK, we provddh@ving asymptotic ex-
pansion of7 , [Fn] in the X — +oo limit :

Proposition 2.3. Let ¥, and I, [#,] be as above. Then for» +oo,

q
1 . A
I[73] = o f i@ s o7l L )
- ’ e=0

DICE Cnlog(ZQFfX))ﬁ( o

foq" ) {rrq}p,u}”‘p)
T”( {oq)" ) T”( ()P, ()P

q
n
+(27T)ZZ:Z:fd/l p(n—p)(@-oc4)

- fq%{cﬂ”({“E}’“}p‘l’{#}”‘p)
2(2r)? & . n-p)(1-p) "\ (A+e, (Pt P

1 N—
—afn( o+ e (™ AT )}‘ fo(l). (2.22)
e=0

with
(-1t 9

o = (=)™t 8"log G (1, vo)
"7 (n-1)! gy"

L Y "

. vo= 'g log(1+7), (2.23)

=0 =0
and wherg{1}" denotes the set formed by n copies of the same parameter

Moreover, in Section 8 we will also describe the form of thb-feading corrections to this
result.
2.3 Comparison with known results

There are several results in the literature concerning shmptotic behaviour of the Fredholm
determinant deftl + yS]. This determinant corresponds to the GSK witk id, F = 1 andg =

10



0. Itis clear that we reproduce the answer concerning trdingaasymptotics of ddt + yS]
analyzed in [7] and [4].
As observed in [33])(& log det[l + yS] satisfies the fifth Painlevé equation. The authors

of [33] used this property to obtain an asymptotic expansiblog det[l + yS]. This fact was
also exploited by the authors of [42] in order to derive thetfiew terms in the sub-leading
asymptotics of the latter quantity. Their result reads

d . 2 -Vg
x& log det]l +yS] = —4ixvg - 2vy - |;

L5 {(F(—Vo))2(4x)4vo e4ix_(r(—vo))2 e4ix } (2.2

4x " (vo) " (vo) (4)()4"0

with v given in (2.23) and) = 2. It is straightforward to see that in such a lirif = ivg and

V2 . r (_VO) 2 e_Zin r (Vo) 2
- 0 IqX 4, |
> (20)° {ez 2 (F(Vo) ) a9 (r(—vo)) : (2.25)

which reproduces the oscillating terms (2.24) after sgttin- 2 and taking they derivative.

3 The initial Riemann—Hilbert problem

The GSK (1.6) belongs to a special algebra of integral opesathe so-called integrable integral
operators. This algebra was first singled out in [30] and #tadied more thoroughly in [13].
It is well known that many properties of these integrablerafmes can be obtained from the
solution of a certain RHP.

In this section, we formulate our problem in terms of a RHR tha then asymptotically
solve.

3.1 Notations

An important property of completely integrable integrabogitors is that their resolvent still lies
in the same algebra. However, before presenting the forfoulthe resolvent we introduce
some quite useful vector notations. Namely, let

W)= PE O E - Fi (e e ). (3.)

so that the kernéV has a simple expression in terms| & (1) ) and( E- (1) |:
(E“() | ER ()

V(,u) = 3 (3.2)
—H
Observe that
(E-) ER@) =0, (3.3)

11



and, hence, the kern¥lis not singular aft = u.
Let| FR (1)) be the solution to the integral equation:

q
|FR(/1)>+fV(A,u)|FR(ﬂ)>dA=|ER(;1)>, (3.4)

—q

and ( FL (1) | be the solution to the corresponding dual equation. It isveoient to write
[FR(2)) as well as its dua| F- () | in a form similar to] ER (1) ) and( E" (1) |:

_YVE@) (1, (1) _ JEm
Then the resolvent of the kernéldefined byl - R = (I + V)! reads:
L R VF()F
() = EOLEED YRR 14 e ) - ). (3.6)
H i (A - p)

3.2 The Riemann-Hilbert problem associated to the GSK

Proposition 3.1. Let V be the GSK1.6) understood as acting on?l([ —q; q]), and such that
det[l + V] # 0. Then, there exists 2x 2 matrix y (1) such that

IFR)Y =xWIERW), (F*@)=(E") k). 3.7)
The matrixy (1) is the unique solution of the RHP:

e yisanalyticonC\[-q;q];

oX(/l):O(i 1)Iog|/12—q2| for 1 — =q;

°X(/1)J:>oolz=(é 2);

e X+ ()G () =x-(1) forie]-qg;qf .

The jump matrix G for this RHP reads

1-yF@)  yFQ)E Q)

GX(A):(_)/FM)GE(/I) 1+ 7F () ):I+2i7r|ER(/l)><EL(/l)|. (3.8)

Finally, y and its inverse can be expressed in termgFot(1) ) and of its duak F- (1) |:

R L R L
) = f“: (/1)><E Wl A H) = 1 +fIE (/l)><F Wl " (3.9)

12



p
1Y+
J

Figure 1: Original contour for the RHP.

We emphasize that the big O symboI(C} 1 ) is to be understood entrywise. Moreover,

x= (u) stands for the non-tangential limit gf(1) whena approaches a poiptbelonging to the
jump curve from the left, resp. right, side of the contoue(b@g. 1).

Proof — The unicity of the solution to this RHP is proved along the edime as in [39]. The
proof of existence of the solution is based on the equivaémtween RHP and singular integral
equations which, in the case of the above RHP, implies

q
)((/1)=|2+f/ld_#ﬂ)(+(/1)|ER(/1)>(EL(M)| , 1e€C\[-q;q] . (3.10)

-q

The solution to this equation can be expressed in terms abgwvent kernel — Rof | + V

q
c@=to+ [ (B0 -R}@(E @I (3.11)
_q /l

In its turn, the resolvent kernel exists as det[V] # 0. Moreover, the explicit construction
of the resolvent through a Fredholm series shows (that) — R(1, ) is analytic inU x U.
Hence, so igFR(u)) = [|ER).(1 - R)| (). The estimatdy| = O(log|42 - ¢F) . 1 — g
follows from the integral representation (3.11) suppletedrwith the fact that botkE" | and
|FRY are smooth ofi-q;q].

Applying (3.9) to|ER(2)) and(E-(1)] we obtain the equations (3.7). Hereby one can easily
check that due to the orthogonality condition (3.3) the ¢farm (3.7) is continuous across

[_q’ q] O

It is also possible to express logarithmic derivatives dffte V] either in terms of the
resolventR of | + V or in terms ofy. Indeed, we have the

Lemma 3.1. The derivative ofog det || + V] with respect to x is related to the following trace
involving the matrixy

dxlogdet] +V] = 56 j—i P tr [Aax (D) oay ™ (D)), (3.12)
([ -a:a])

with oz = (é _01) andI' ([ —q;qg]) defined as in (2.21), whereas its derivatives with respect to

13



v and q are expressed in terms of the resolvent as

q
Oylogdet] +V] = I%R(/i,/i), dqlogdet] +V] =R(g,9) + R(-0,-q). (3.13)
Y

-q
Proof — The last two equations are easily proved by the multiplegiaieseries expansion of

logdet | + V]. We shall only focus on the equation relating thderivative of log det[ + V]
to y. Clearly

q
dxlogdet ] + V] = f [0V, (I =R (L) dA , (3.14)
-q
with
R e T O L O] 315

([ -a:a])

So that, using the representation (3.6) of the resolRéntterms of( F- | and| FR ) and the fact
that( FL(u) | os | FR(D) ) = tr [oral FR(D) X FL(u) 1], we get

q
) dz (E"(A) o3l ER (1))
Oxlogdet] +V] = - 954—7T|0(Z)f0|/l (z— 1)
r([-a:a]) —a

q
+1r ﬁ%p(z)fdﬁdmﬂu)xﬁu)|

r([-a:a]) —d
1 1 |ER (1) X} F" (u) |
X(/I—Z_/l—,u)o-g (IJ—Z)Z (316)
Using the integral expressions (3.9) foandy ™!, we obtain
p L o R
Oxlogdet] +V] = - 952—; p(Z)fd/l (E u(i'_i')f @)
r([-a:a]) —d
p. R L
+r 56 j—; P2 f A (x () — x(2)) g T WINE ()] (gl)iiz Ol
r([-a:a]) —d
_ 5{5 % Pt {0x @ rar 1 D), (3.17)
r([-a:a])
where we used (3.7). m|
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It is worth noticing that formula (3.12) is particularlyfective whenp is a rational function
as then the contour of integration can be deformed to thespdlp (including the pole ato).
The integrals can be then easily calculated. In particitathe casep (1) = A, we have the
following result:

Corollary 3.1. Lety, be the first non-trivial cogcient of the expansion gfaroundeo, i.e.

1
X(/l):lz+)%+o(z). (3.18)
Then
dylogdet | +V] [pig= -lztr y103) . (3.19)
Proof — —tr (oy1) is the residue of the pole at infinity afi> Atr {9,x(2) cax (1)} O

In this way, we recover one of the formulae derived for thes déarnel [13], but also for
more general kernels as in [27, 28, 31]. We emphasize thE@)& valid not only for the sine
kernel as it was originally derived, but also for the geriseal sine kernel witlp = id.

4 Transformations of the original RHP

In this section we perform several transformations on thé Rt y so as to implement Deift—
Zhou's steepest descent method [14]. The first substitutiaps the RHP for the matrjx into

a RHP for a matrix@ whose jump matrix has 1 on its lower diagonal entry. This jungirix is
then easily factorized into upptawer triangular matrices. This factorization allows ugl&dine
another RHP for an unknown matrikwhose jump matrices are already exponentially close to
identity uniformly away from the endpointsg. It remains to construct the parametricesjat
and-g. These parametrices enable us to define a mAtgatisfying a RHP with jump matrices
uniformly I, + 0 (1) whenx — +oo.

4.1 The first stepy — E
Let

p _ @
@ (1) = exp f,% du =K(/1)(:lng) . (4.1)
-q

Then clearlya (1) solves the scalar RHP
a_ () = a; (1) @A +yF (), 1€[-q;q], e —>1 at 1> . 4.2)

The functionsk (1) andv (1) were already introduced in (2.2) and (2.1). In the following
shall also use another representation for the functiQr) :
p(A) — Py ]V(ﬂ)

a(d) = Kp(/l)[—

p()-p-1 (4-3)

15



wherex, is defined as

q
log kp(4; Q) = logkp(A) = f(v (1)

0w vl
poo—pw)‘A—yym‘ (4.4)

We specify that we chose the principal branch of the logarithe. arge ] - ;7 [. Due to our
assumptions o, F andp, Morera’s theorem implies that the functionslog« and logkp, are
holomorphic orJ . Moreover we havéR (v (1))| < 1/2,¥1 € U. Indeed

i 1
v(1) = > log|1l+ yF (1) - Earg(1+7F ) , (4.5)
and we have assumed that étg- yF) € ] -7 ; 7 [.

We use the functior to transform the RHP foy. Let us define the matri¥ (1) according
to

— a() 0
=0 =2 (" D) 6)
This new matrixz (1) satisfies the following RHP:
e Zis analyticonC\[-q;q];
o E()| = O( i i )|/12 - q2|i03%(vi) log|2 - ¢?| fora - =q;
° E() = l2;
e 5, ()Gz(1) =E_(1) forae[-q;q] .
Here the new jump matrig= reads
1+ P)Q(1) P()exP
6= = ( ‘o POTT). @.7)
and
yF() i Sinav(d)
P(1) = ———— 2) €9 = _gjgm () 227 (8(D) 4.8
() = 13- W 7 05 (4.8)
_ ’)/F(/D 2 —0() _ o dmv() Sinﬂ-v(/l) 2
Q) = T5F ) a‘()e = 2i¢ — - (). 4.9)

The solution of this RHP foE exists as it can be constructed frgmmMoreover it is unique
as seen by arguments similar to those providing uniquerfdbe solution to the RHP foy.

16



4.2 The second steg —» Y

As already mentioned, the jump matiB¢ admits an explicit factorization into a product of
upper and lower triangular matrices:

Gz =M, M_. (4.10)

The matricedMl. are given by

ixp(1)
M+(/l):(é P(/l)fp ) M_(ﬂ):(Q(ﬁ)é_ixp(ﬂ) 2) (4.11)

and can be continued td N H.., resp.U N H_, where we recall thak{.. is the uppetower half
plane andJ is the domain of holomorphy of all the functions appearinghiea RHP. Then we
draw two new contourE. in p(U) and define a new matriX(1) according to Fig. 2.

2PN N

p(Him) p(H)

-> B R el [

p- P+

Figure 2: Contour§’, andI'_ associated with the RHP faf.

As readily checkedY () is continuous across-q; g[ and thus holomorphic in the interior
of ', UT'_. We have thus removed the cut aldneg; g ] and replaced it with cuts alorig UT _.
The matrixY solves the following RHP:

e YisanalyticinC\I', UT_;

(1 1 (IF RO gFRes) - :

[ T(/l) = O(l 1)( 0 |/l - q|¢‘x("i) |Og |/1 + ql ’ A /le—H>| iq,

(1 1\ [(laFgFReD _ .

° T = O(l 1) (I/l £ qER02) |5 gRen |09 T AL A 2o £,
e 1) =0} Tz aEttdlogiz g, 1 — =g
1 1 ’ AeH) -
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e T(1) o2

T, ()M, (1) = T- (1) forael,,
T,(MTW)=71_(1) forael_,

where the domainsl|, H;, H);; are shown on the Figure 2.

Clearly, the solution of the RHP fof exists and is unique. Hence, the matridttandy are
in a one to one correspondence.

Note that, except in some vicinities gfand—g, the jump matrice, and M- for r are
exponentially close to the identity matrix. Therefore, tody the asymptotic solution of the
RHP, it is enough to study the local problems in the vicisitiéq and—q.

4.3 Parametrix around —q

We first present the paramettixon a small diskD_qs c U of radiusé and centered atq, that
is an exact solution of the RHP:

e Pis analytic onD_qs \ {I'y UT_} ;

11 )( I+~ R0) 44 RO )

P(A):O(l 1 0 1+ glR0-) Iog|ﬂ+ql,ﬂm—q;

A1 L[ A+gRe)
P = O( 11 )( 4+ g7 R0

1 —oaR () .
—_ 3 —
P(ﬂ)—O( 1 1)|ﬁ+ql logl|1 +ql, AA—>€H”| q;

I _ .
|/l+q|‘R(y Ogl/l+q|’/lJ€_H|>| q1

P) =2+ O(%) uniformly for 1 € D _q,

° P+ (/l) M+ (/1) = P_ (/1) fOf /1 S F+ N D_q’é,
P, (ML) =P_(1) foraeT_nND_gs.

Heree = Zsup|%(v)| < 1. The canonically oriented contodD_q; is depicted in Fig. 3.
(')qu,b'

The RHP for® admits a class of solutions. Each element of this class #deglto another
one through a left multiplication by a holomorphic matriattis uniformlylz + O (1/x'-¢) on
0D_q. In order to construct the solutidf to this problem, we first focus on the simpler case
where the function$, g and«, are constant. Then the solution to the RHP#apnst can be
obtained by the dierential equation method [26, 11, 12]. This leads to thet&wiu

Vo3 I7rv

Peonst(d) = ¥ () L(A) [¢-q] (4.12)
Here{_q = x(p(1) — p-), v=ilog(1+yF)/2x,
W) - ¥ (-1 1;-i¢ ) ib12¥ (1 + v, 15if_q) ’ (4.13)

—iboy ¥ (1= v, 1;-iZq) ¥ (v, 15l q)
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:3(4)[

R(1)
Figure 3: Contours in the RHP f@®.
and finally

. 2 .

bro () = i S;'”[”V]r (1+V)2Véxpf+9, (4.14)
kg [X(Ps = p(A)]

21x(ps — p)Z .

b21(/1):—im<p[ (P ~ )] e P9 (4.15)

sin [rv] 2 (v)

¥ (a,c; 2) denotes Tricomi confluent hypergeometric function (CHF}h&f second kind (see
Appendix A). It solves the diierential equation

zy'+(c-2y —ay=0. (4.16)

Recall that¥ has a cut alon@®~. Note that this choice for the cut & implies the use of the
principal branch of the logarithm:r < arg(2) < =. The expression for the piecewise constant
matrix L depends on the region of the complex plane. Namely,

I —n/2 < arg[p(d) — p-] < n/2,

Lol (0 o | w2<anlp-pl<n @1

e—Zim/
( 0 1 ) —-n<arg[p() - p-] < -n/2.

The reader can check using the monodromy properties of Mri€HF (A.4) and (A.5) that
the jump condition for constant functioisandg are satisfied by the matriR.ons: Moreover
the asymptotic expansion f8f (a, ¢; Z) atz — ~ allows one to check th&..nsthas the correct
behaviour at infinity. We remind that this parametrix alspegred recently in the work [32].

In order to extend this result to the case of arbitrary holghiz functionsF (1), g (1) and
kp (1), it is enough to add the dependency in all places where these functions appear. One
ends up with the following solution to the RHP f6r:

P (1) =¥ () L ()]

(o3 iirvz(l)

(4.18)
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Herel_q = X(p(4) - p-),

_ ¥ (-v (1), 1;-id ) ib1o() W (1+v (1), 1;iLq)
=iy w (1-v(2).1;-iL) ¥ (v (1), 1) ’ (4.19)
with
sinfrv ()] T? (1 + v (1) i .
b - _ eg(/l)+|xp_ = —iy . )
2 = D x(ps — P Ui, (20
A ) [x(pe = pW)PY s v
(I EI7) E A TTo ) 421
and finally
u(d;x) = H {kp(1) XD [p, - p(ﬂ)]v(ﬂ)}‘2 gXP-+9(), (4.22)

In the above formulae we have explicitly stressed the degrerel of the functionb; o, by
andv on A. Finally, the matrixL (1) is given by (4.17) with’ replaced by the function ().

This construction originates from the observation thatrdacements — F (1), g —
g(1) and«p — «p () preserve the jump conditions as the latter hold pointwisé.cddrse,
once the parametri® is guessed it is not a problem to check directly that it sokesRHP
in question. The asymptotic behaviour is inferred from {AvBhereas the jump conditions can
be verified thanks to (A.4) and (A.5). Furthermore, due todbnition of the matrixL, the
solution is continuous across the line fipd1) — p-] = 7 and thus analytic in the whole domain
{1eC;R[p(D) - p-] <O}

4.4 Parametrix around g

The RHP for the parametrﬁ? aroundq reads

e Pis analytic onDgs \ ([, UT_} ;

— (1 1\ -qgrRe) - g Res) -

L] P(/l)—O( 1 1)( O |/l—q|_%(v+) |09|/1—CI|, lmq:

~ ~ 1 1 |/1 _ q|+‘}’\(V+) O .

.« P = O( 11 )( 1 g Be) g e logjla—q, 24 o @
e AW =0 Hn-q=*ogi-q. 1 — q;
1 1 ’ AeH) ’

5(/1) =l + O(Xl_l_g) uniformly for A € 9Dg;

. P ()M, () =P_(2) for 1€, N Dy,
P, (ML) =P_(1) fordel_ N Dgygs.
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:3(4)[

R(1)

Figure 4: Contours in the RHP fe?.

ande = ZSUFbD |‘R(v)| < 1. The solution of the RHP for the parametiB(aroundq can be
formally obtalned from the one atq through the transformatiog — —q andv — —v on the
solution to the RHP fof. Indeed, the two RHP are identical modulo this negation.

Just as for the parametrix arourd, we focus on the solution

P ) =F WL GOe 2, (4.23)
wherelq = x[p (1) - ps], and

—— ¥ (v (1), 1;-igy) b2 (1) W (1-v (1), L)

= =iy (1) ¥ (1 + v (1), 1;-iL) ¥ (-v (1), ;i) (4-24)
Here

Buo(1) = i 20 r(z g YD pa) - p P OSDHR Z iy ()i ¥,

TKp
2 ~g()—ixps
Bos() = i— mkp(A) € )
SN ()] T2(—v(0) [X(PC) — pOIPD T %)

and

o TA=v@) (XD = p ) e

u(/l,x)_l_(l+v(/1)) { ol X+l (4.25)

Just as for the parametrix arourd, the matrixL_ (1) depends on the quadrant of the complex
plane:

2 -n/2<arg[p(d) - p:+] <7/2,
1 0
E(/l) — ( 0 e2i7rv(/l) ) n/2 < arg[p(/l) - p+] <m, (426)
imv(A)
( o ) x < arg[p(d) - p.] < /2.

21



4.5 The last transformation — II
Let

TP (1) for A € Dy,
) ={ TP ) fordeD_gs (4.27)
T(2) for 1 € C\ {Dgs UD_qs}-

Introduce the curvé’ = {T'; U F_}Q{Bq’g U B_q’g}. ThenlIT is continuous acros& \ {q, —q}.
Sincell is holomorphic in a vicinity of¢’, we have thafl is holomorphic inDgs U D_gs \
{g,—q}. This, in turn, due to the estimates 8¢ # and Y around the pointsq, ensures that
the singularities at these points are of a removable typ&celd is holomorphic on the disks
Dgs U D_qs. Finally, we see thail satisfies the following RHP:

e Il is analytic inC \ Xy (cf Fig. 5) ;
e II(A)=1,+0(1/2) forad — oo;

M, ()M, () =TI (1) foraeTl’,

I, (H)MT() =1_(1) foraerl”,

M, ()P =T_(1) fordedD_gs,
M, ()P =T_(1) fora e dDg.

The solution to the RHP fdi, exits and is unique as seen by standard arguments.

'’
>r+

’
lr_
-<

n=I"U F:r U 6D_q75 U aDq’a

Figure 5: ContouEp appearing in the RHP fdi.

The jump matrices fofl are uniformly exponentially close t in x onI"_ UT’, and uni-
formly 12 + O(x*"*) on 9D U OD_qs, With E = 25URp 040, |R(V)|- As & consequencey
is the unique solution of the RHP, up to uniformly(ﬁ‘l) corrections. In addition, using the

equivalence between singular integral equations and Ri¢Ragymptotic expansion &f can
be obtained by a Neumann series. This will be done in the upmpsection.
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5 Asymptotic solution of the RHP

In this Section we asymptotically solve the above RHFfor

We derive an asymptotic expansion into negative powensfof the jump matrices fofI,
and use it to prove the existence of an asymptotic seried.fdrhe corresponding asymptotic
series fory follows readily. One can finally infer the asymptotic belwawi of the resolvent of
the GSK up to any order in/X.

5.1 Asymptotics of the jump matrices

Denote the jump matrices forby Io+A (1). Then the matrix (1) has the asymptotic expansion
in the limit X — +o0:

A (4 X) ~M-143
A(A)_;T + o(x ). (5.1)
With & = 2SUpp, L ap_,s | B (V)]

The explicit form of the matricea®™ (1; X) depends on the position afin the contour
Y. they vanish to any order in/X onI”. UTI”, whereas the asymptotic expansion foon
0Dqs U D_q, follows promptly from the asymptotic expansion of TricomHE (A.6). More
explicitly, for anyn € N*,

ST
— 9 "7 fordedD_gs,
[P() - pT" a0
AO ) =1 A @) (5.2)
’ 02T for 1 € 0Dy,
[p(1) - p.]" Qﬁ
0 forael” UT”.

We have separated the jump matrices into their pole paits) — p.]™" and regular partAff‘))

andA", with

' 1 nusx D" () 0
N/ Wy _ i - v - (—v(2 n
e D R (U 53)
y(Du(; X
for A € 0D_q,, and
' 1 ity CD")2 0
nyi. i D" (v(a n
AD@WH =Gl " ( 0 (—V(A))ﬁ) ®4)
Y()T(A; X)

for 1 € 0Dgs . Here we use the standard notatipf, = I' (v +n) /T (v) andu(4; X), resp.
i (1; x), have been defined in (4.22), resp. (4.25). Thus, the mattiedepend orx, but their
entries are a OF).
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5.2 Asymptotic expansion forll

Using the equivalence between RHP and singular integraltems we can expreg§sin terms
of its boundary value from the+" side of the contoulp

() = |2+Tlﬂfn+(s)A(s)ldTSS. (5.5)
Zn

In its turnTI, (1) belongs to.? (Xr) and fulfills the linear singular integral equation of Cauchy
type

M,(2) = Iz + Cf [MLA](2) . (5.6)

Recall that the Cauchy operator bf(Zy) is defined as

g(s)ds ¢
—-s i

t ¢ . (5.7)

Cryldl(@) = lim Cyy[al(t)  and  Cyylgl(t) = Tlnf
Zn

The notationt — z" stands for the non-tangential limit bhpproaching from the "+ " side of
the contourzy;. Recall that the Cauchy operator is bounded: i.e. therd¢seaisonstant, such
that, for any functiorg € L2 (Zr), one has# an [g]” < ¢ |lgll, wherel|.|| is the canonical 2 (Z)
norm.

The matrixIT, can be asymptotically approximated by the following series

Proposition 5.1. LetH(f) be defined recursively according to

Kk
n¥ =% ¢t [mPa®] with 0l =1, (5.8)
p=1

Then, for any integer M- 0, there exists a constant(®) > 0 such that

M-1
N | o M)
I, Z PP < 5. (5.9)
p=0
Proof — Let us prove this statement by induction bh For M = 1 we have that
I, = Toll = ||CS [(TL, = 12) A] + C, [A]]| < G2 IITL, = T2l Al + c2 [IA]] - (5.10)
Therefore, forx large,
c2||A c@
I, — 1o < 2l C(d) (5.11)

T l-cllAll T oxt-E
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Let us now suppose that the result holds upitoThen,

Z ) -

k

M
LA - (k—p)A(P)
e ] i

M-
k=1 p=1 k=0
— M —
< G MLl Cay X M5 43" 6 [[AP]| x P C(M — p) x(P-M-0-5)
p=1
C(M+1)
S D) (5.12)

for some constant€,,, andC(M + 1). We used the fact that al(P are inL? () and that
|IIT,|| is bounded in virtue of (5.11). O

Let us now extend this result for poim$eing uniformly away from the contod;. Define
the matrices

p
n9@ =1, nP@ =>"Cy, [nPPa9] @, p>o (5.13)
k=1

M
Mz M) = Y xPrP(), (5.14)

which are analytic away frorBr;. Then we have the following result:
Proposition 5.2. Let K be any compact subset 6f\ ;. Then,Vk € N, YM € N*,

kI C(M) Igth(Zn)
d(K, ZH)k+1XM(1—§) ’

|okIT (1) - oKy M - 1)| < 1eK. (5.15)

Here|.| denotes the usual max noffiilj = max |Hi,j|, d(., ) is any distance ot andlgth(Zr)
is the length of the curvEy.

Proof — Letk e N, M € N*, then

M-1
Ky - > xPakn®(a
p=0

IA

p=1 1=1

M-1 p

k! C(M) Igth(Zr)
= xM(1-8) gk+1 (K, ZH)

due to (5.9). m|
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5.3 The functionsf. to the leading order

We now perform the transformations frdmback toy.
The solution to the RHP of Proposition 3.1 reads

x() =) x9) . (5.16)

We cally© the zerd order solution (i.e. obtained faf = I5). In the vicinities of the endpoints
of [-q;q], x© is given as

o = | PW M1 @()~3, 1€ D_qsN{0<arg[p(d) - p-] <7/2},
§ P M) ()2, A€ Dgy N {/2 < argp(d) - pi] <.
Similarly, on[ —q; q], and uniformly away from the endpoints,

XOW) = MM ey ()™, de]-q+5;9-6] .

Inthe J (1) = 0* limitand forR (1) € [-q;q],

M;la;‘”( N 8; ): (a/+e_)_"'3( ez'lm ) (5.17)
sothat, fori e |-q+6;q9+6],
f-+(—0) @) v - im1e( 1
( 10 (3) ]zé @[3t (1) e, (1) €™P] ( 1 ) (5.18)

where we have explicitly written all the dependencelon
Whena € [ -q; —q + 6§ |, we should multiply the latter expression #y Using the decom-
position (A.7) of Humbert CHF into a sum of two Tricomi CHF wetg

O (1) )_ i (€(A) )‘73(F(1+v)<b(—v,l;—i§_q)]
(f_(o)(/l) - (Kp(a)ga F(L-vo(vLil,) ) (5-19)

with g = x[ps — p(4)] and{_q =
Analogously, ford e [q-6;q

( £ ) )_ o2 (e+(ﬂ)41q 7 T(L-vo(v1id)
0w ) kp (1) ) F@+)®(-n1li-iLg) )

x[p() - p-].
I,

(5.20)

Note that the piecewise expressions for the funct'rtifl?s(/l) are in fact analytic in a vicinity
of their respective domain of validity, although they haeei obtained by taking the limit af
approaching a point if—q; g ] from the upper half plane. More precisely, the formula (3.19
holds onD_gs, (5.20) onDgs, and (5.18) on the connected component of the interiax,of
containing[ 6 — q; g — ¢ ]. This observation follows from (3.3), but of course it canchecked
by a direct computation based on the expression for the xpatri the lower half plane.
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5.4 Integral bounds for the resolvent

We now introduce a functioR© (1, 1) and show that it is a good approximation of the resolvent
in the sense that

r(R-R?)=0(x1) . (5.21)
Such estimates are necessary for the integration of-therivative of log detl[ + V].

Definition 5.1. LetII; (1) denote the solution of the RHP given in Subsection 4.5 whospg
are on circles of radiug and on the corresponding curvé$ andI”..

We can then write the solution of the RHP fpasy (1) = T)(T) There)((o) do not depend
explicitly on r. The radiusr only determines which patch we should use for the definition o
the matrix)(go). Moreover the whole combinatidﬁT)(gO) does not depend on the radiuat all.
Hence, we can represent the exact resolvent as

1 H;lil—) 100 0 ()| ER
—u

R(1u) = (E- () [/ ] (1)) - (5.22)

There, without altering the value &(1, 1), we can chose €fierent values ot depending on
the point we consider. This is quite useful as we can take ahe\of the radius in order to
have estimates aroung and another one to perform estimates in the lpdlk q; q— ¢ ]. This

will become clearer during the proof of the proposition belo

Definition 5.2. Let us fixs, @ > ¢ > 0 and define what we call the diagonal zZ&rorder
resolvent

RO (1, 1) = 72 @) (

ot () 19 () - 0,19 () £ (), (5.23)

where the functlons((f) (1) are given by5.18)fora e [6 —q;q—6],(5.19)ford e [-q;6 — ]
and(5.20)for A € ; q-6;q]. Similarly,| FR© (1)) and(Fb o (1) | are defined in terms of the
same functionsi

We stress that the radiuspreviously introduced to build the exact solutlﬁn(/l))((o) ()
andés appearing in the definition are, a priori, unrelated.

Proposition 5.3. Let R(4, i) be the exact resolvent of the generalised sine kernel. Then
tr(R-RO) = 0(x1), (5.24)

where theO is uniform iny € Dq,.

Proof — According to the preceding observations we havedfar] —q; -q+6[U]q-6;q],
R(2,2) = RO (2, 2) + (FO (2) T2 (1) 0aTT25 (1) | FRO (1)), (5.25)

and

R(1,2) = RO (2, 2) + (FEO () |52 (1) 9aT15/2 (1) | FRO (2)), (5.26)
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for 1 € [6-0q;9-5]. The advantage of using twoftérent matricedI for the corrections
of R(4, 1) with respect to the zefborder resolvenR© (1, 1) is that the corrections are always
analytic on the whole domain where they are considered. ©eg ot need to take into account
that I1s (1) has a jump across = +(gq-6). This might be problematic as, for instance, the
integral ofd,IT1(2) on[—q;d — gq] might be ill-defined. Moreover the uniform estimates that
we have derived for the matriX (1) only hold uniformly away from the jump contour. As we
will only integrate the terms containindz;s on[—q;6—q[ U |q—46;q], we will be in this
situation. The same holds for the terms involvifig,. However, we would not be able to
use the uniform estimates (5.2) féfI1; when integrating it o —q;é — q], as we would not
always be uniformly away from the boundary of the jump confouIl;.

With this way of understanding the corrections we have

6~ q
tr(R-R?) = ( + )dﬂ (FHO () |5 (2) 91125 (1) [ FRO (1))
-4 g
q-0
+ f dA (F5O () [Ms/2 (2) 01152 () [FRO (). (5.27)
6-q

Let us start by the bulk part of integral, i.e. the part[@n-q;q—6]. From the explicit
form for fio) on[é—q;q-4]givenin (5.18) we see that these functions are uniform{§)O

Moreover, the uniform estimates for the matri¢&g, (1) for 2 uniformly away from the jump
contour guarantee that

(5O () 52 (1) 020572 () FRO (1)) = O (1), (5.28)

the O(x*~*) being uniform iny, at least fory small enough.
The situation at the boundaries is a little more complex. YW consider the right boundary
as the other case is treated similarly. We still have Ihgt{1) = |, + O(xg‘l) anda,Ilzs (1) =

O(xg‘l) uniformly on[g-46;q]. However the functions‘io) (1) are no longer uniformly a
0O(1) on this interval. We should thus estimate the following gmée

q
> f £ ) 19 () Gy () da (5.29)

-5

with G+ (1) = O(x*%) being related to the entries B2 (1) 4,152 (1). The situation being
similar for all the possible choices efando’, we explain the mechanism féu, o) = (+, +).
The asymptotics of Humbert CHF guarantees that

®(a, 1;+it) = |‘t:—|; (1+0(1) t— +oo (5.30)

for some computable constarttsdepending ora. These constants are continuous with respect
to a belonging to an open neighbourhoodvdf g — § ; q]), and so is the ¢1) term. Hence, there
exist anaindependent constaft such that

1+ 1t)2@ @ (g 1;it)| < C . (5.31)
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Indeed the latter function is continuous Brand has a finite limit ato. Moreover the constant
C can be chosen in such a way that the estimate holdsbetonging to some small vicinity of
v([g-9;q]). Hence, by explicitly extracting the~* factor coming fronG, , (1) we get that,
for some constant’,

tO ) 19 ) G.. ()] < ' Yoy (p(D) - p.) (5.32)
with @y (t) = x2R0@W) (1 + x|t])~2R0W) | The functiongy (t) fulfills

lex (P() = ps)l < €lp () — py 2RO (5.33)

as, for anye € R, t — t*/ (1 +t?) is bounded. The latter function is integrable [ap—6;q]
(we consider the cagi (v)| < 1/2). Thus the integrals in (5.29) do eventually yield>&?)
contributions. m]

One can prove, in a very similar way, the estimates for thédi-Schmidt norm of the
resolvent. Namely,

Proposition 5.4. Under the assumptions of the previous proposition,
|R-RO||, =0(x1) (5.34)

with ||.||> being the Hilbert—-Schmidt norm.

5.5 Asymptotic expansion of the resolvent

We now prove that the asymptotic expansionIiocan be used to obtain an asymptotics expan-
sion for the diagonal of the resolveR(1, 1). We derive point-wise bounds for the latter as this
guantity appears in thg-derivative of the Fredholm determinant:

dqlogdet|] +V] =R(q,q) + R(-0,-0) . (5.35)

We need to estimate the error when we replace the exact esséhby the approximate one
RO, The magnitude for the error term follows from the followiregult:

Proposition 5.5. Lety(? be the solution of the RHP fgrup to the leading order in x, that is to
say the one obtained frofl = I, and corresponding to the contodif; with disks D.q s having
radiusé. Define the leading vectokF-© | and| FR© ) as

(FEO Q) =B~ IO 1IFROW) =xO0) ER (1), (5.36)
and the leading order of the resolvent by

(FEO () | FRO ()

RO (4, ) =
A—p

(5.37)

Then

k
R(1,4) =RO(1,0) + >’
p=1

R('D)M’J)Jro( X ) (5.38)

xP x(k+1)(1-8)
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for A uniformly away fronk; and belonging tq4 —q; q]. Here,

RO (2,2 = ~(F5O (1) | 9,FRO (ay, (5.39)
RP (2, 1) = —(F5O ) TP ) | FRO (1)), p>0, (5.40)
in which

k
I (4K aaT1 (4 K) = Y TP () xP + 0 (5.41)

1
£ x(k+D)(17) |

Proof — Clearly,

FLO)) | ERO) | .
AL = T ﬂ)l b #IFRO)),

= ~(FHOW) [0,FFOW) — (FHOW@) 17 () 021D FFOw)).
—HU

+(F-O) |“_1“31f(ff) -

The corrections to the leading order for the resolvent arerghere by the second term.

The inversion operator oM, (C): u — u! is continuously dierentiable around the iden-
tity 1,. Thus there exists an open neighbourh®df the identity matrixl, and a constant
C > O such thaty A, B € W, one had|A™t - B-Y| < C||A- BJ.. Here||.|| denotes any matrix
norm. The matricesl (1) andII (1; k) belong toW for x suficiently large, as they both go te
in the x — +co limit for A uniformly away fromXy;, and we get, from Proposition 5.2,

[T () 011 (2) =TT (; K) AT (A; K|
< CIIIT(A) = (A, K)o ()l
+ C (IITL () + ([T (2) = TT(2; K [1011(2) = 911 (4; K)|
< CK
= yk+D)(1-8)’

for some constar€(k). Thus, uniformly away fronZ;; and on the real axis, one has

[ FEO ) T2 9,112 — T4 K) ,11(4; k) FRO))| = O(ﬁ) (5.42)

In the last equality, we used the fact tﬁé?) are at most of order Gf) on the real axis, as
follows from their behaviour aroungdg. m|

6 Leading asymptotic behaviour oflog det|l + V]

In this Section, we prove the result of Theorem 2.1; that isay, we compute the leading
asymptotic behaviour détf+ V]© of det]l + V] up to o(1) corrections in th& — +co limit.
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More precisely, we show that

G(1,v,) k"7 (0q; Q)
(29p, %)’

q
logdet] +V]@ =2 f div(2) log’[e_(2)] + Z Iog[
*q o=%*

q
1 V() v(p) = v() V' (1)
+ Efd/ld,u o . (6.1)
-q

This result will be obtained by two fierent methods based on the integration of equations
(3.13). The first one, which uses the derivative of the Fredhdeterminant ovey, is based
on the uniformness of the asymptotic expansion for the vesolfor y small enough. It is
worth mentioning that this way is technically quite invalvel he second method deals with the
derivative of the Fredholm determinant oegrAlthough we have not been able to provide a full
rigorous proof for it, we would like to draw the reader’s atien to this method as it is much
more direct and simple.

6.1 The leading asymptotics from they-derivative method

Due to Proposition 5.3, the proof of the leading asymptatiche Fredholm determinant from
the first equation (3.13),

q
dylogdet] +V] = fd—;R(/l,/l), (6.2)

—-q

only necessitates the use B (1, 1) defined in (5.37). Recall tha®® (1, 1) has diferent
leading asymptotics in the bulk-g; q[ and near the boundary. L&t> 0 be stficiently small.
Then

RY(1.2) 1€[q-6:q],

R(O)Eya,l): O (10) Ae[-q+8:q-3]. (6.3)
R0 1e[-q;-q+6].
where
©) B F(1) B P+ = p(A) A
R D) = 5 yE ) {264 loge, (1) - 29, log lkp(ﬂ)(p( - p_) ,

R (1.) = v (v: x[p - p-]) {2v' log x - 20, [vlog (p: = p) - 20, log |
+V [ @+v) +y A=V + g} +ixvpT (v x[p-p-]) + wp (v x[p- p-]).

RY (1.4) = ~vp (vi X [P, ~ pI) {2 log x - 20 [vlog (P~ p-) ~ 20 10g ko |
+ o[y L+v) +y (L= )]+ g} +ixvp'r (v x[ps = pl) = wp (i X[ s - p).
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Herey(2) = diz logT'(2) and we have introduced the shorthand notations

o (;t) = O (-, 1;-it) @ (v, 1;it),
o (v; 1) = (01D) (v, 1;it) @ (—v, 1;—it) + (01P) (—v, 1;—it) © (v, 1;it),
T(v;t) = =@ (—v,1;-it) D (v, 1;it) + (0,D) (v, 1;—it) D (v, 1;it)

+ @ (-, 1;-it) (6,9) (v, 1;it) .

Moreover, in order to lighten the above expressions andairanes in the following, we omit
the explicit dependence on the argumeantf the diferent functions involved (like,, p, and
their derivatives”, p/, etc.).

We can now split the integration contour into three parts

q -g+o g-6 q

fR(O)(/l,/l)%: f%R(_Ogu,m f d—/le)k)(/l,/l)+fd—/le°)(/l,/l). (6.4)
y y y y

-q -q —g+6 gq-6

The bulk integral is carried out straightforwardly. Theeigitals over the vicinities of the end-
points are more involved. Consider, for instance, the natigon over| —q; —q+ 4 |.

Using the asymptotic series for Humbert CBHA.9) and the equations (A.10), (A.11) we
get that

e(at) — €™,

. e dia
p&t) + TA_aTd+a {2Iogt—¢(1—a)—¢(1+a)—m} ,

. ira _ﬁ
T(at) + € (1 1+t) ,

are uniformly Riemann integrable di* in the sense of the definition of Lemma B.1 (See
Appendix B). Using the integration Lemma B.1 as well as themedes for the integrals of
andgy (A.10), (A.11), we find

—Q+0 —Qg+0 dLe

/l nv
(0) - _ / - -
f R™(4,4)dA f TOTaA—Y) {2v"logx — 20, [vlog(ps — p)]
-q -q
+' (W) +y(-v) +d}

—Q+0

da emy/ 4iy
+ f O] {2Iog[><(p— P =¥ (N =)+ 5 (= p_)}
-q

—Q+0
2iv
+ix dApy{———— -1
_[ P {x(p—p-)+1 }

v ei7rv_

* m{Z—w(V—)—w(—v_)}m(l) . (6.5)
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Here the d1) is with respect to the successive limig — +oo0 ands — 0. The two terms
proportional to logx compensate each other. The remaining part of the first three of (6.5)
is an O(¢) and can thus be dropped. The integral in the last two line§.6) (s evaluated thanks
to the second integration Lemma B.2 (see Appendix B). We get,

—Q+0 —Q+0 d
(0) i [
fR (1,2)da i f F(v)F(l—V)d/l
-q -q
gm-y_

TTeoora-v) {=2log[x(p(6 =) - p)] +2-y (v-) —¢(-v-)} +0(2) . (6.6)

The integration ovefq— ¢; q] can be treated similarly. The result reads

q q
fR(O)(/l,/l)d/l— Ifl"(v;all"(l—v)

gq-6 q-6

¥ ﬁ {=2log[x(ps - P@- )] +[2-y () —y (-v.)]} +0(1) . (6.7)

So that,

q q
(0) N (S LSRN

fR (1,2) da f2i7r(1+yF) |ixp’ + g — 20, log | da

%q g

q- -0 -5
vF da yvF p.—p q
* V'Og( ) {1+7F} [m(le) 'og(p—p_)L_q

6—q
yv_F_
2I7r(1+ F)

yviFy
+ 2r @t F) {2log[x(p(@-9) - p)] -2+ ¥ (vy) + ¥ (-v4)} +0(2), (6.8)

{2log[x(p(6 - Q) = p)] =2+ ¢ (v-) + ¥ (-v-)}

e vF . . .
where we used - . Using the integral representation for the Barnes
FOTA—) ~ 2n@+yF) o9 gralrep
G-function (2.7), it is not a problem to see that

G(Lv.)G(Lv_ )]

q q
fR(O) (A, /1) — =0, fvaﬁ loge_di + Iog(
[X(Ps — p- )]y e

-q -q

q
+2 f 8,8, 10gkpdl - 2 f [aﬁayv]vlog(? pp) di. (6.9)
_q -
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Now we should recast the last line as a derivative with resjpec We have

q
2 f [ayvaﬁ |og,<p—[aﬂayv]v|og(g+ _pp)] di

_ K@) (pe - P\ (s - po\2°
_aylog{ﬂ—(—q;q)( 2qp, ) ( 2qp. ) }

+ > |odyvelogk (oa; 6) - ovedy logk (o; 0)|

) q
_ a-4
Zf[ayaﬁv] [|09K+V|Og(q+/i)] di. (6.10)
—q

It remains to apply the identity

q

q
), f v (A)y(zﬂ(a—_vﬂ)(y)l/(/i) didy = _zf[ayaﬂ] [|OgK + vlog(g;—j)] da

“q
+ Z[o-ayvg log (cq; ) — ovedy logk (g )] . (6.11)

o=%x

Indeed, we have for the r.h.s. of (6.11)

q
RHS = f(wﬁyv - vO,v, N v_0,v — vﬁyv_) a1
q-1 g+

-q

q
1 1
+fv(ﬂ)ayaﬂu){ﬁ_#+io+ ﬁ_ﬂ_io} dA dp

1 1
(V“67V+V67V“){q—a/1+io+q—aa—io} da

q
1 1
+:qfv(y)67v(/l){(/l_#+ 07 + T i0)2} didu. (6.12)

There we have regularized all the integrands and then peeian integration by parts. On the
other hand, one has for the I.h.s. of (6.11)

q
LHS = f[ayv(,l)aﬂ(a) +v(,1)ayaﬂu)]{d_#l+ S+ A_#l_ iO} didu. (6.13)
—q

Taking the last integral by parts we arrive at (6.12).
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Thus, the I.h.s. of (6.8) is presented as a derivative wipeet toy. Since the asymptotic
expansion is uniform iry we can integrate this result from 040 As log det | + V] |,—o= O we
get the desired result.

6.2 The leading asymptotics from theg-derivative method
The method we use here is based on the second equation i, (3.13
dqlogdet] +V] =R(qg,9) + R(-q,—0). (6.14)

For the purpose of this sub-section, we assume|‘1m§f (/1))| < 1/4. Indeed we are then able to
use the pointwise estimates for the resolvent establishBdoiposition 5.5. Such a restriction on
|‘R (% (/l))| could be relaxed by much more refined estimates. Recall tieahas forl uniformly
away from the boundar¥; corresponding to disks of radids

C@ _C

_RO
RAH-RO| < = < 75

, with e = 2sup/Rv| , (6.15)
u

so that theg anti-derivative ofR(q, ) + R(-q, —q) — R© (g, g) - R? (-g, —q) will be a o(1) in
the X — +oo limit.
Equation (6.3) allows us to determine the value of

RO (1,2) = ~(F=O (1) | 9,FFO (1))
= %Ef) fOw) £9) {9,10g f, — 8, log f_} (6.16)

at both endpointg and—q.
Consider, for instancé&®® (-q, —q). We have, forl € D_q,

RO (4,2) = () ® (=, 1;=id_q) @ (v, L3iLq) {zaﬁ loge, (1)
—20,[logkp(A) + v(2) logg] + V(DY 1 +v) +y (1 -v)]
(0.0) (v, 15i4q) . 0.0) (-v. 1 —ig_q)]
d)(v, 1; i{_q) (D(—v, l;—ig“_q)
(020) (#Lii)  (@r10) (-1 —ig_q)n

—ixp'(4)

-/ (4)

(6.17)

(D(V, 1;i§_q) (D(—V, 1;—i§_q)

where, so as to lighten the formula, we have omitted the aegairh of v(1) whenv appears
as an argument of another function (hérer ®). The symbold, stands for the derivative of
a CHF with respect to its variable, whereasstands for the derivative with respect to its first
argument. Recall also thétg = x[p (1) — p-] andq = X[p+ — p(2)].

It is remarkable that the last two terms involving derivasivof CHF vanish in tha — —q
limit. The resulting expression can be further simplifiedrtks to the identities:

_ q-41 A+q
log icp(A) = log () + v() {Iog (m) ~log (m)} , (6.18)
Y)Y () [W(L+) + 6(1 = )] = 82109 G(L,v) + 2v(A) V' (), (6.19)
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Thus, we obtain

RO (~q,~q) = ~2v_[9;log e+(ﬂ)]‘ﬁ +2Vv_logx
=4
2 p/l

+2v v_log(2qp.) — o

—2v_v. +2v_|0,log K(/l)]‘ , (6.20)
A=—q

where we have used the notations (2.3), (2.4).

The final aim is to integrate (6.14) over the variagleOne should keep in mind that the
function (1) = «(2;q) is actually a function of the two parametetsandqg. Therefore, one
should replace partial derivatives atl = +q by total q derivatives thanks to

d
d—[log k(—0; )] = -0, log«(4; q)‘ + dglog k(4; q)‘ : (6.21)
q A=—q A=—q

ThenR© (—q, —q) is almost a totaj derivative:

RO (-9.-q) = —2v_[d,log e+(/l)]‘ + E log [G(l—’v_)zl
= 4 29 0
2 L flogk (- @] + v- L2 (6.22)
— 2v_— llogk (- emv) e
dqg q
Similar calculations based on the expressions (5.20§ formroundq lead to
d G(1,
RO (q,0) = -2v,[d,log e+(,1)]‘ +— |Og[(—"+)zl
1=q q (zqu)v*
+ 20 flogr (@ @)l - v. = | (6.23)
V+dq gk (0:q Vi 3 . .

Hence, we have

dqlogdet] +V] =23 v,[0, Iog&(A)]‘ +£Iog[ G(Lv,)G(Lv.) l
o=+ A=0q

da | (2qp % (2qp,. %"
2
+ZZ dlogx(aq ) <V+—qV—) +o(1). (6.24)

It remains to express the last line as a taalerivative thanks to Lemma B.3. After an
integration with respect tq of (6.24) we arrive to

q
logdet] +V] = Zfd/l v(12) log’[e_(2)] + log

G(1,v+) G(L, v-) €+ (q; ) l
(299, %% (2ap. )" ©-(~0; 9

q
+ % fd/ld,u A% V(/g :;(/l)v ) +C+o0(1), (6.25)
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whereC is ag-independent integration constant still to be determined.

One can give arguments that this constant should beyalsdependent. Indeed, the asymp-
totic expansion of the Fredholm determinant, being a foneti of the holomorphic function
yF(2) in U, can depend on this function either in the integral form witegration overfq; q],
or through the values ofF and of its derivatives at the ends of the integration contapand
g. In both cases the result should dependyoriHence, theg-independent constai can not
depend onyF (1) and, thus, it ig/-independent. We can then fix the const@ry settingy = 0
in the asymptotic formula. This yieldS = 0. A rigourous proof of this equality within this
g-derivative method is however still missing. Indeed, alitjo the above statement (about the
functional form of the asymptotic expansion of the Fredhdieterminant) is clear in the case
of one-dimensional oscillatory integrals without saddienp its generalisation to the needed
series of multiple oscillatory integrals would require gigeal work.

6.3 The first corrections to the leading asymptotics of the Fedholm determinant

We close this section by deriving the sub-leading correstitom thex-derivative (3.19) of
logdet | + V]. This will constitute the proof of Proposition 2.1.

In order to prove the claim of the Proposition 2.1, one hastivd the first two sub-leading
corrections for the matriXI. As one might expect the computations are, by far, simplat th
those necessary to fix the constant. We also would like totpmibthat one can obtain the
sub-leading asymptotic of ddt } V] by the g-derivative method. However, the computations
are quite involved, so we omit the presentation of this metho

We derive the first term in the/X expansion of log det [+ V] thanks to (3.12):

dxlogdet] +V] = 5{5 j—i P tr [ (D) oay ™ ()] (6.26)
r([~awal)

where we chose the contoli([ —q; q]) to lie outside of the contouXy; but still in the region
of holomorphy forp. There the solution for the RHP fgrhas a simple form:

x () =11(A) 73 (). (6.27)

In order to derive the first correction to the leading asyriggoit is enough to consider the first
two terms in the asymptotic expansion f@¢?):

n® (1) N @ (1) + O (D).
X

X2

() =1 (6.28)

There, as follows from (5.15), the O is uniform on the wholatoarI' ([ —q; q]). Thus

dylogdet] +V] = — d* (A )‘”OES) 5{5 W o tr[os 0,11 (1)
([ -a: q]) F([ m])
‘2 56 U b trfors [P0 - MOWAIOW]} + O (D) . (6.29)
X2 4

([ -a:a])
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The first term in this expansion will yield the leading cotres. Indeed,

d/l (9,1(!(/1)
pP) —1 a0
([ -a; q]) ([ -a; q])

Here we shrunk the contour {e-q; q] and used the jump condition far.

In order to evaluate the higher order corrections in (6.28need to derive the expressions
for the matriced1® = Cy, [A®] and1®@ = Cy, [TMAD + A@)] outside ofLy;. An elementary
computation of residues yields:

AD @AY (%)

4,1 (4 2 , 6.31
== e, (a+q)2_ ©31

p (Dloga (1) = —|fd/lp DvQ) . (6.30)

as well as

4,11@ (1) - 1Y (1) 6,01 ()
5 (0289) (0% + AQ) (@6 X) (143 (o )

o=t (- oa) p]?
283 (g %) + [AD (o 0] .
4 Z [ 2 ] { P 5 - 2 3}
=i 2(p5) Pr(A-0oa)” (A-00)
A% (@ %), A% (~a; %)
2q P p.(2 - q)(ﬂ +0q) (6:32)
Thus the Ixterm in (6.29) gives the cdigcient of logxin (2.6). Indeed,
95 j—i p)tr[o3 9,110 (/1)] tr sl (—a; %) + 03AL) (@ )]
r([-a:a])
—(2 +2). (6.33)

We now focus on the last term in (6.29). It yields, aftenantegration, the first correction
to (2.6). A straightforward computation leads to

56 LT {ors|0,1@ (1) - 1 (1) 0,11 (2) ]}
2in
r([-aa])

P - p- ,
= P, tr{ora[AG) (@ %) . A (~a )]}

- 3 2t (068) (060 + ) (009 (2:80) e ]} (6:34)

The first term corresponds to the oscillating correction:

a(g;x)  u(=0;x)
R e (6:35)

tr{os[AG (@ %) . AY) (q; x)]}:2v+v_{
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The last term gives the non-oscillating one:

s (0103) (o) = 2%, (6.36)
and
X gl 86 i (93) a0
_ _ piv o1(l0ga (1 0)  + ivzaﬂ (ogu(t )
- Z {20'1/ log X + o ddq ogu, + 2 ddq(p?;) VF;{’}, (6.37)
with
(o
=0 L fap Y - (6.39)

Putting all this together we obtain

V2 42

q
oxlogdet] + V] :—ifd/l v p (1) -
-q

, d (v, Vg
xzzpa_{ 5 00u: bl g (%) - |

+ —I (p+ ; /_) ’V_;/+ {u—+X2(V++V—)eiX(p+—p—) _ &X_Z(V++V—)eix(p——p+)}
(20)° piplx> (U= Uy

ax(p+—p-) 1
* ( N ’X3(1—§))' (6.40)

The first two terms reproduce the already known answer fotethging asymptotics. The re-

maining ones reproduce the first oscillating and non-@&ily corrections as given in Proposi-
tion 2.1. Note that for the oscillating terms, one only skidantegrate the exponent with respect
to x as all the other terms will give subdominant contributions.

7 Applications to truncated Wiener—Hopf operators

Truncated Wiener—Hopf operators appear in many domainsatfiematical physics such as
scattering or diusion processes. Moreover, many observables (dressegyengomentum
or dressed charge) related to quantum integrable modeksohartons of integral equations of
truncated Wiener—Hopf type (2.17).
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Let us recall that a truncated Wiener—Hopf operator canteegreted as an integral operator
| + K onL2(R) such that it acts oh? (R) functions according to

X
(I +K).o(t) =¢@(t) + fdt’K(t—t’)gp(t’)dt’. (7.1)
0
The kernelK is characterized in terms of its Fourier transfdfm
K@) = FL[F](t), with Tﬁwmﬁi%j%§H@€M,VFeU®) (7.2)
R

The study of truncated Wiener—Hopf operators is equivateat2x 2 matrix RHP. Another
facet of this equivalence is the correspondence betweemeated Wiener—Hopf operator and
the GSK acting orR in which p = id andg = 0. Indeed, it is easy to see that

Ko=FLoVoF|y], (7.3)

whereV acts inL2 (R) with a kernel

— dxé-n _ 1

V(&) =F(©) I ) (7.4)
The operator identity

l+K=F"1(1+V)7F, (7.5)

together with the facts thatis trace-class ang** are continuous, ensures the equality between
the Fredholm determinants:

det[l + K] = det|l +V]. (7.6)
The kerneN is related to

Vi) = F@Fm @7

by a similarity transformation. Hence,

det[l + K] L20x) = det|l + V] L2(R) - (7.8)

7.1 The Akhiezer—Kac formula

Our study of the generalised sine kernel allows us to redtwefkhiezer—Kac formula describ-
ing the largex behaviour of Fredholm determinants of truncated Wienepfldperators:

Theorem 7.1(Akhiezer-Kac [1, 34]) Let | + K be a truncated Wiener—Hopf operator as above
and such that
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e F is analytic in an open neighbourhood UR;
e F goes sfficiently fast to 0 at-o ;

e 1+ F (&) does not vanish on U.

Then
logdet | + K] = x7(0)+ E[F] + o(1). with E[F] = ftT(t) (~t) dt, (7.9)
in which O
(t) = % f log(F(£) + 1) e™ de . (7.10)
R

Proof — The largex asymptotics of deti[+ K] follows from (7.8) after taking the — +co
limit in the leading asymptotics for the corresponding galiged sine kernel (2.6). This limit
may seem a little heuristic as we did not specify any estimate for the small o terms with
respect to the leading asymptotics. However, the validitguzh a limit may either be seen
by refining all the estimates obtained in the previous seatioby considering the RHP for
(3.1) on the whole real line from the very beginning. We shake the second approach more
explicit in the forthcoming subsection 7.2. Here we formadlike theq — +co limit in the
leading asymptotics of Theorem 2.1.

One should notice that, in the asymptotic formula (2.6)tladl terms evaluated at the end-
points vanish due to the fact tha{+q) logqg — 0 whengq — +co, which is a consequence of
the suficiently fast decrease &f at infinity. Hence, the only constant contributi&hF] to the
asymptotics of log det [+ K] is given by the integral

q

E[F] = lim_ %fv/u)v(”l):;wv' “) 2 (7.12)

-q

Let us recast the constaBffF] in a more standard form. We have

E[F] =—8—71TZfd§dn log’ (F(f)*1)'09(F(n)+1§:log’(F(n)+1) log (F (&) + 1)
R n
i 1 1 iXn-+i
= rcn'zfd‘fdndXdy{f—n+|0+g—n—|O}T(X)T(y)(X_y)eI n+yE .
R
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Let H be the Heaviside function, then

E[F] = 5 [ dndxdyr(970) (x-) (¢7VH ) - &9 ()
1 +Ii 1 0
— -2 [ ¥ ) 2)+ 7 [ dr6) ey (-2
0 —00

- f dyr) (Y)Y .
0

which ends the proof of Theorem 7.1. m|

It happens that this correspondence between truncatede¥idopf operators and gener-
alised sine kernels can be pushed further so as to obtairsyineptotic behaviour of Fredholm
determinants of truncated Wiener—Hopf operators with syimhaving Fischer—Hartwig type
discontinuities. Considering the GSK for finigecorresponds to the asymptotic behaviour of
a determinant whose symbol has two jumps. The case of synmawiag general Fischer—
Hartwig type singularities is studied in [37, 16, 17]. Theuls for the case of Toeplitz, Han-
kel and Toeplitz+ Hankel determinants with Fisher—Hartwig singularitiepegred recently in
[16, 17].

7.2 The resolvent of truncated Wiener—Hopf operators

Proposition 7.1. Let | + K be a truncated Wiener—Hopf operator pax; X[,

X

[(I+K).g] (t) = a(t) + fK(t —t)gt)dt’, with K(t) = 7 [F](t). (7.12)

“x
Suppose that there exists> 0 such that

e F admits an analytic continuation t{a: 19(2)| < 6};

o &£ F(E+i) e LI(R);

¢ the analytic continuation df + F does not vanish on U.

Then the resolvent4 R of | + K fulfills

R(/la/l) - d‘fdn (é‘:){aiggi x(f n a’+§i; —|x($ r])} % + O(e—%X)’ (713)

R

where

a(d) = exp{f}%dy}, and v(1) = IZ log(1+ F(2). (7.14)
R
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Proof — The GSK associated o+ K through the transformatiof L o[I + V] o F = | + K

acts on the whole real axis with the kernel

d@E-mx _ dn-é)x
2ir (& —n)

Just as for the leading asymptotics of log det [K] (see Section 7.2), one can obtain the
leading asymptotic of the resolvent 6fjust by taking formally the limity — +co in all the
expressions derived in the first part of the article. Noté thahis process all power law cor-
rections vanish: they are computed as contour integralsndraq and, since= approaches 0
suficiently fast at infinity, the residues &t vanish in theq — +oo limit. However, in order to
justify this limit, one should also check that all the unifoestimates still hold foq — +co.

An alternative way is to consider from the very beginning aFRfidr y on the whole real
axisR. This is actually much simpler, than the RHP on a finite irdérvThen it is enough
to perform the first two transformations described in Secticso as to obtain jump matrices
that are already uniformly close tg up to exponentially small corrections ¥ Moreover, the
jump matrices for this RHP are given iy, andM-1 (4.11), so that they approach the identity
matrix atA — oo just as fast ag goes to zero at infinity. As expected, there is no need for
parametrices, and the corrections are immediately expafigrdecreasing withx. It means
that, up to uniformly exponentially small corrections, theolventRy of V is given by

V(&m) =F() (7.15)

(0) _ F (£) {@+ (n) ix(é-n) _ Y+ (f) g X(é- r])}
A v R P s M (7.16)
where as usuat (1) is given by (7.14). Note that the integral in (7.14) is welfided in virtue
of the assumptions made én
We should now take the Fourjeverse Fourier oRy in order to geR. To this end, we must
justify that the sub-leading corrections do admit a Fourimsform in two variables. Recall the
exact expression for the resolvent:

Ry (1) = RO (1) + (PO () 11 ”ir_[fi‘) “2IFRO ) (7.17)

Here, the matrixdl is defined in terms of1, (1), the limiting value ofII on £ when A ap-
proaches a point &p; from the “+” side of the contour:

1_1(/1)=|2+f/1d 1‘I+()(O O)mezuxz

1+F (2
dz 0 0\F@a% (2 iy
+f4 H+()(1 o) 11 F @ X | (7.18)
The ! integrability of F as well as the asymptotic condltlcm(/l) I, guarantee that the

integrals are well defined. Thus one readily infers from &y the asymptotlcs dfl on the real
axis:

—20X —20X
M) =lp+ & +o(e ) , (7.19)

A A2
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whereC is some constant matrix and where we have explicitly extdhtite exponential decay
in x of the matrixC. Hence using the boundednessfﬁ’? on the real axis we obtain that

F ) +O(e‘25XF(/l)).

Ry (1, 1) = RO (4, ) + e2*C
v (4, 1) = R, (4, 1) U W

(7.20)

Hence the corrections admit a Fourier transformt iand an inverse Fourier transform jinas
oscillatory integrals. Therefore, taking the Fourier sf@amm does not change the nature of the
corrections. i

Itis clear that, up to a similarity transformation, a Wierldopf operator onfa; b] has the
same generalised sine kernel as the same operator actir@; an-[b]. Therefore our method
works for any interval, of course up to a similarity transfiation on the resolvent (7.16) bf
We chose here to present this less standard form of Wieng@f-dferators as it fits better the
forthcoming application.

We apply our asymptotic inversion formula for truncated ki¢ie-Hopf operators acting on
a symmetric interval x; X] to re-derive some formulas concerning the low magnetid fie-
haviour of the so-called dressed charge [6]. This functi@ditionally denoted (1), describes
the intrinsic magnetic moment of an elementary excitatioova the ground state in the XXZ
spin-1/2 model. It satisfies the following integral equation:

sinZ
2nsinh(@l + i) sinh@d —i2) -

Z() + f QKA —p)Z) =1, with K() = (7.21)

K is often called the Lieb kernel ande ]0; 7 [ is some real parameter describing the coupling
of the model. The large parameters a function of the external longitudinal magnetic field; it
goes to infinity when the magnetic field vanishes.

For the study o, one should distinguish two domains in the intervak[; x]: the bulk, i.e.
the region1| < X, and the boundarie$ ~ +£x. While the asymptotic value &(2) in the bulk
(1 < X) is enough to describe the intrinsic magnetic moment of etegary excitations, the
value ofZ at the boundaries+x) determines the critical exponents of the two-point fumrsi
of the model [23, 24, 25, 5]. As we will see, the bulk and thermary behaviour of the dressed
charge difer fundamentally.

First, let us note that, setting directly= +o in (7.21), one can solve explicitly the integral
equation forZ by taking the Fourier transform: one obtains in this case Zlfd) is equal to a
constant valu& (1) = nr/ [2(r — £)] on the whole real axis.

Let us now consider the limix — oo in (7.21) in a more accurate way, namely, taking
large but finite, and use the method described aboveKLt the Fourier transform d,

sinh[£ (£ —n/2)]

K©) =7 K = 5@

(7.22)
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Then in virtue of Proposition 7.1,

X

Z(A)=1- fR(/l,y) du (7.23)
1 %@ a, (0) i) A+ &) —i(x+2) }
=1 T {—a_ (g)é e —0 (O)e e (7.24)
R

First let us study the bulk limit i.e|d] < x. Using the jump equation satisfied by.:
[1+ K(1)]as(2) = a—(1), we recast the integrand as

3 K () {Ch O gox-ne _ 2= ) e—i(x+/1)§}
J Ar[1+K(@]E-i07) (a4 () - (0)

= I f @ K€ +i¢/2) a.(0)  ex-E=¢/2)
T1+K(0 J 27 |1+ K@ +ig2) € +ig/2) £+{)2

Z()=1-

R

(7.25)

KE-i¢/2) _ a(0) et
1+KE—ig/2) a-(E-i/2) &£-¢/2

Here we have separated the integral into two parts and theadribe contour to the upptwer
half-plane. This gives a pole contribution fr@m= i0. The integral appearing in (7.25) is clearly
a O(e‘(x‘“D?/z). So that, in the bulk,

1 B T
1+K(©) 2(@-9°
up to exponentially small corrections. As expected, wevecthe value oZ obtained in the
case of an infinite interval. Note that the corrections beedarnger and larger as we approach
any of the endpointgx.

Let us now study the behaviour of the dressed charge at thedbaes. Since the kernil
is even, so iZ. We can thus focus on a single boundary, $ay x. We have,

2091~ [ 5= {R@) @.(0) K@ - e_M}. 727

(7.26)

Z(1) ~

J 2r(€-i0) |7V e 1+K(e) @O
As before, the integral of the second term gives an expasgnsmall contribution C(e‘xf).
The integral of the first term is explicitly computable. Ugionce again the jump equation
satisfied by, (£), we have,

Z(X) =1- a/+(0) f % a/;l(é:) _;jlj(-)_ a/:l(é:) + O(e_xf)
R

_ d o) -1 _
= 1—C¥+(O)fﬂﬁ +O(e Xg)
R

= a,(0)+ O(e™) . (7.28)
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We have computed the remaining integral by residues, sipb@g) — 1 = O(g‘l) foré —» o in
the respective half plane of holomorphy.

For an even kernel like the Lieb on€(¢) = K(-£), and then it follows from the integral
representation (7.14) afthata, (&) = e=1(=£). This means that 2 K(0) = a7%(0). Hence, for
x large enough

1 b3
2 ~ 1+K@0) VN2@Ex-2) (7.29)

and the value aZ (1) at the boundary is the square root of its value in the bullowgxponentially
small corrections. In the limix — +oo this correspondence becomes exact.

8 Asymptotics of multiple integrals

We have already mentioned that the asymptotic expansiomedftedholm determinant of the
GSK can be used for the asymptotic analysis of correlatiorctfans of quantum integrable
models. For a relatively wide class of integrable systers, dorrelation functions can be
presented as series of multiple integrals of a special t$pk [These series can be summed up
to Fredholm determinants for the models equivalent to feemions. In the general case, such a
reduction to determinants is not known. However, the asgtigbehaviour of individual terms
of the series can be derived from the asymptotics of the Bteddeterminant of the GSK. In
the present section we consider this problem.

More precisely, our purpose is to derive the lasgasymptotic behaviour of the following
type of integrals (cycle integrals):

q .
d"a )\ eX(e@)-p(1)
In[Fn] = 56 @ ) @y Tn( 2 ) : (8.1)

r([-a:a]) -q j=1 (Zj - /lj)(zj - /l,-+1)

In this expressionf, is a holomorphic function ofRvariablesty, . .., An, 21, ..., Z, IN UM xW",

in which U and W are open neighbourhoods pfq;q], andI'([—-q;q]) denotes a closed
counter clock-wise contour W surrounding —q; q ] with index 1. We moreover assume that
Fn is symmetric separately in thevariablesis, .. ., 4, and in thenvariablesz, . . ., z,. Finally,
we agree uponp,1 = Aj.

8.1 Leading asymptotic behaviour off ,[F]

Let us first suppose that the functigh is of the special (factorized) type

w1 )- 1‘[ (1) 6] 5.2

whereg is a one-variable holomorphic functionthand¢ is a one-variable holomorphic func-
tion in W, non-vanishing oiW. For two such functiong and¢ we introduce the associated
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GSKV®9) given by (1.6) provided the identificatidf(1) = ¢(1)¢(1) ande9® = ¢(2) is made.
Then, the integral (8.1) can be expressed in terms of lof deV¥ )] as

7] f a2 ]‘[ VNt die)

(_ )n 1
~ (-1
In this specific case, it is straightforward to obtain thedlag asymptotic behaviour of the

multiple integral (8.3) in the large limit thanks to the results of the previous sections.
This remark leads us to the following definition:

o log det[l + V(“’"’”]‘ . (8.3)
v=0

Definition 8.1. Let U, W be two open neighbourhoodq efy; q], and letH (U) (resp.H (W))
be the set of holomorphic functions on U (resp. on W). Let also

Sy {Z Far ) s pe N, (o ¢0) € H(U) x H(W) and ey 0} . (84
=) [-a:a]

in which 7—',1(9”"’5) denotes a pure factor function 2h variables defined in terms gfand¢ as in
(8.2). We define the linear functionall on SV

_1)n—1
O] = ED g iog det + V0O, 8.5
n [ n ] (n_ 1)| Y g [ ] ‘7:0 ( )
and by imposing linearity on functiong}_, FL#et)  Here 4 denotes the generalised sine
kernel(1.6)with F(1) = p()¢(1) anded® = ¢(2), andlog det[l + V@D|© denotes the leading
asymptotics of the Fredholm determindog det[l + V#¥)] as in Theorem 2.1.

It is easy, using the expression (2.6) of logdet V(W)](o), to obtain an explicit expression
for 1[F#9):

q
P17 = f o) ) X (1) 600) + /(D)

—q

+ Y (bn = calog (2a1, %)) [¢(or) ¢(or0)]”

o=%x

fqd N [o(q) ¢(aq)]" - [@(oq) ¢(oq)]P [p(A) p(2)]"P
p(n-p)(@-oc4)

q
n dAdu - n-
+=— f m{aa[ﬂﬂ) $(D] [¢() (1P () p(e0)]" P

— 3ule() 6(1)] L) dE)]P [p(D) $(D]™ P}, (8.6)
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whereb, andc, are given by (2.23). The — +oco asymptotics of the Fredholm determinant are
uniform in+y to any fixed orden in 4. This means that

Lol 7 = 17 + 0(D). (8.7)

In the next proposition we show thﬁ{f) can be extended into a linear functional on the space of
holomorphic functionsq, (not necessarily of the forlﬁ#""”) that are symmetric in variables
A1,...,Ap andnvariablesz, ..., z, separately. This extension t}f’), as we prove below, is the
good way to evaluate cycle integrals (8.1) with such arbitsymmetric functionsr.

Proposition 8.1. Let U and W be open neighbourhoodq efy; q], and letSym, (U, W) be the
set of holomorphic function®, on U" x W" of 2n variablesAs, ..., An, 21, . . ., Zy, SYymmetric

in the n variablesis,..., A, and in the n variables 1z.. ., z, separately. Thenr(ﬁ) extends
to a continuous linear functional o8ym,(U, W) endowed with the topology of the sup norm
convergence on compact sets.

Proof — 1(10)[5‘}9""’5)] contains at most first order derivatives of the functiprad¢. Now recall
that, for any compact&, P such that K ¢ P andP c U

VkeN, g such that/ ¢ e H (U), |6, < ccligllop - (8.8)

where|l.llo.x = Sup.k || is the sup norm with support on the compHctin consequencer(lo) is
continuous orS V. The latter is dense i, with

p
SYW — {Z T s e, (o) € HU) X fH(\N)} . (8:9)
=1

Hencelr(]o) extends by density to a continuous linear functionat}h". Due to the density
Theorem C.1 (See Appendix C), we have ti5at" is dense inSym,(U, W). Thereforel®
extends to a linear functional @ym,(U, W). O

Corollary 8.1. Let U and W be open neighbourhoods|efg; q], and letF, € Sym,(U, W).

1HereP is the interior of P
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Then,

o (" )

1O = fd/l {ixp'(2) + 9} ”( (A+e, ‘5:0
{oq)"

+ > (b - colog (201, X)) 7”“( o) )

{cq)" {oq)?, (" P
n-1 aq 7:n( P )—Tn( {O_q}p’{/i}n—p )

n {oq}"
B | e G

n dadu A+ €, (Pt P )
i 2(21)? & Z f (n-p)(1-w {af”( A+ e (AP P

_ (+ b, )Pt (P )}
af”({u+e},{u}p—1,u}”—p o 10

There{A}" denotes the set formed by n copies of the same parameter

Proof — Apply Theorem C.1 to (8.6). m|

Finally, we have the following largg asymptotic behaviour for integrals of the form (8.1)
(which seems hardly attainable through a direct analysiBemultiple integrals):

Theorem 8.1. Let U and W be open neighbourhoods|efg; q], and letF, € Sym,(U, W).
Then, when x> +o0, the integralZy[#y] (8.1) behaves as

Tol 7ol = 1©[Fa] + O('OgTX) (8.11)

the explicit expression oﬁol)[?‘n] being given in Corollary 8.1.

The whole dificulty of the proof is to show that the smal(3) in (2.5) is preserved by the
density procedure formulated in Theorem C.1. This is naialrsince the series converging to
%1 may not converge absolutely. We need therefore, so as te pha/theorem, to study more
precisely the sub-leading corrections and to see how they feough all the steps described
above. This will be done in the next subsection.

8.2 Study of sub-leading corrections

In this subsection, we study the behaviour of the sub-legdimrections to log dettf-V](©@ when
the above procedure is applied. In particular, we will shbat they indeed remain subleading,
which will prove Theorem 8.1. In fact we will prove an even mgeneral result:
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Theorem 8.2. Let U and W be open neighbourhoods|efg; q], and let¥n € Sym,(U,W).
For any positive integer M, there exists a continuous linkeuctional ln M such that

(M) |Ogn X

The explicit expression for,(]M) can be obtained by some perturbative computations that
become more and more involved with the growthvbf We will nevertheless obtain the general
structure fonr(]M), showing that it can be decomposed in terms of non-oscitjedind oscillating
contributions, with oscillating factors of the forgf™P+=P-) m e z*:

M

M
1 . 1 :
[l = 107l + - A EDY = | (8.13)
N=1 N=2
1 . .
(0) Tn + Z _N ngnOSC)[fn] Z elxm(P+ p- )Z (N,m) [77”] , (8.14)
N=1 N= 2|m|
|m|<M/2

|(N:nosS)r 1 (resp. 1N 9SO [#,]) being given in terms of the functiofiy, and of its derivatives
up to ordemN (resp. up to ordeN — 2) evaluated atq or integrated from-q to q.

8.2.1 General strategy

In the previous subsection, we have defined the functid}ﬁétfrom the leading asymptotic
part logdet[ + V]© (2.6) of the GSK. More precisely, we have seen in Corollaty tBat
d)logdet| + v]©@ l,=o yields the functiona(-1)""* (n — 1)! I,ﬂo) [#n] after the density proce-
dure, as explained in Proposition 8.1 and Theorem C.1, iieppln order to estimate the
corrections td ,(10)[7-“,1] for the largex behaviour of cycle integralg,[#,] of lengthn (8.1), we
have to take into account the corrections log dlet /]3“Pto log det] + V]©,

logdet] + V] =logdet] + V] +logdet] + V], (8.15)

and to analyze thefkect of the density procedure on theh y-derivative of the subleading part
d)logdet| + \V/]sub ly=0. We will show in particular that it preserves the small o(1ffwespect
to thex — +oo limit, i.e. thatd} log det | + V]sub ly=0 can only generate o(1) corrections.

In the spirit of Definition 8.1, we therefore introduce the:

Definition 8.2. Let U, W be two open neighbourhoods|efq; q]. We define the linear func-

tional I"?on Sy as

1 n-1
| SUb (0 9)) —) " log det[| + V&AL (8.16)
1 =0

and by imposing linearity on functlorE[ 15",1(‘” 40, Here, as in Definition 8. 1}'”(9" ) denotes
a factorized function o2n variables defined in terms gfand ¢ as in(8.2), and \*%) denotes
the generalised sine kern@l.6) with F(1) = ¢(2)¢(1) anded@ = ¢(2).
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According to the scheme presented in the previous subsethie next steps will be:

e to obtain a convenient representation fﬁ)‘fb[ﬁf“""ﬁ)]: this means in particular to obtain
the form ofn-th y-derivatives of log det[+ V]“in terms of the function§ andg, to set
0(2) = log¢(2) andF(2) = ¢(2) ¢(2), and to estimate this result in the largémit;

e to apply the density procedure: one should first extend byiteand continuity the
functional 13"P to the spaceSy; then, for any holomorphic functioff, in 2n variables
A1, ..., An, 21, . .., Zn, SYymmetric separately in the variablé¢snd in the variableg, one
has to consider a sequen@g, ¢x) such thatzl'(\':l 7—‘,1(‘”"’5") — Fn S0 as to be able to define
and characteriz&"9 7] and to see how it behaves in the lasgimit;

« to refine the procedure in order to get an asymptotic expareits"Y77].

8.2.2 y-derivatives oflog det]l + V]su°

As in Section 6.3, we will obtain the corrections to log det[V]© through thex-derivative
path, starting from formula (3.12) that we recast as

q
dxlogdet] +V] = —i f dip () v(2) + 5{5 j—i p) tr {[0,01()] o3I YD)} . (8.17)
—a r([-a:a])

Here, as in Section 6.3, we have chosen the counter cloak-wgstourl’ ([ —q;q]) to lie in
U and to encirclegr;, which means thag(1) = I1(2) @™ 73(1) onT' ([ —q; q]). Integrating this
equation with respect tr, we obtain

log det | + V] = f dx’ 56 % p(2) {tr{[aﬁnu)] osll ()}
oo 1([-aia])

. iftr{A(l) (zX) o3)

X 2in(1—2)>2
s n(A-2

dz} . (8.18)

The convergence of this integral will be proved later on. \&eall that the second term in
(8.17) produces also, when integrated oxgethe logx term appearing in the definition (2.6)
of logdet ] + V]© (see (6.33)). We have therefore substracted the corresgpodntribution
(second term of (8.18)) in the definition of log det] V]S,

In order to obtain then-th v derivatives of this expression, we have to computesthe
derivatives 0fd,;I1(1) and of[171(1), which in their turn follow from those of the jump matrix
A(A).

¢ y-derivatives of A

In order to determine the-th y-derivative aty = 0 of the jump matrixA (2), it is convenient
to express it in the following form:

A@) = k73(2) A@) 73(2). (8.19)
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Here, the matrle(z) depends ow only through the combinatiopF(2), whereasc*?3(2) de-
pends ory through the comblnatlo!f_qq du [v(@ - vW)] /(z- w).

It is easy to compute the multiptederivative ofX(z) aty = 0. Itis given as

an K(z)‘ = Adgrsa002 [GQAO(Z)]‘ - F'(2). (8.20)
y=0 y=0
In this expression, AJY] stands for the usual adjoint action of the maddon the matrixY,
andAg denotes the jump matrix atF = 1 andg = 0.
It remains to compute the-derivatives of«*73 (z). They follow from the Faa-di-Bruno
formula:
Ps

q
n ¥n n S
R il | Vi W Rl P
(9;‘K 3(Z)‘ = — Zinsf — . (8.21)
0 5 Th=0 [ ps! =1 b K
2SR sl

Therefore, gathering these informations and applying hi&ils rule, we obtain that

82A(z)‘ = Z
Ve

P+POTA=N p1._Py=0 Q... ch=0 H (ps)! (gs)!
Po=1 3N sp=p =0 se=q s=1

C C CpCﬂ p P!

X Adgrgns | (- OPA0@) ()
S s s Ps+0s
><Fp°<z>n[2.il “Z*,'j@
Ps
p0+p205;%:n

Note that, in the first line, we have extended for convenigheesum over parametepg andgs
up ton, since anyway, due to the constraipt,< pandps = 0if s> p(resp.gs < gandgs =0
if s> Q).
In the last line, we have changed the order of summationsrayatporated all thé& inde-
pendent prefactors into the definition of the mafi¥®? (z x). More precisely,
n
p+a=n-po £;sa=q [] (s)! (Ps — Q)"

3PN zx =] ((2_|7lr):)p
s=1
s=1

xAdergg@/z[(—03)2&1@5-‘*9-65“Ao(z>‘ (o9t | (829)
‘y:

chca,pq

From the properties of the jump matrixg(2), it is easy to see that the diagonal entries of the
matricesd(P) (z x) are a @x 1), whereas their fi-diagonal ones are a@g x/x) uniformly
on the contour&y.
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o y-derivatives of 9,11
Let us recall the integral representation #qfT (1), which is a direct consequence of (5.5),

1 dz
Zn

Therefore, they-derivatives ofd,I1(1) can be directly obtained from the onesAft) and of
1, ().
Recall thatlI, (1) satisfies the following integral equation dl, (L2 (ZH)):
(1-cg )il =1z, (8.25)

where the operatdtgH is defined by

C&, [M]=Cf [MA], VM e My(L*(Zn)). (8.26)

This matrix Cauchy operator is invertible, at least ¥darge enough. Indeed, using the conti-
nuity of the scalar Cauchy operator:

Jc; > Osuchthatvge L*(Zn), ||C3, [g]||L2(ZH) < G219l 2y, - (8.27)
one gets that the operator nom@énm fulfills:

eIl < c2 Al ey ==, O (8.28)

— 400

Moreover,Cén being a holomorphic function of we have that, fox large enough, (- CQH) is
invertible and that its inverse is also a holomorphic fumttdfy. In particular, (8.25) implies

9, = (1-C2 ) "o (,C8 I . (8.29)

A straightforward induction shows that there exist someffm’entsd{ PD ¢ 7 such that

n

A=Y, D, @ (1-cy) ooy

r=1%_ pi=n
-1 -1
o(l-C§ ) o(afPCt )o--o(I-C8) o(afrcy )IIL]. (8.30)
This expression simplifies at= 0 asA; , = 0 andIl, | _, = I2. Hence,

n

agm‘y_ozz Z P (aP1Ch Yo (052CR ) oo (05 )12l (8.31)
- r=1%_ pi=n

We can slightly deform the flierent contour&, so as to regularize the explicit integral rep-
resentation for the above chain of operators. Namely, liegathe construction of the jump
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contours for the matrices occurring in thefdrent transformations applied to the RHP for
we are able to write

n

{l ()

L =33 e (apch(l)) (a;’zcg(z))o..-o(a;’cg(,))uz]. (8.32)
=0 =iy pen n m

There, the contoursg) are such that the side ofzg‘l) is at small but non vanishing distance
from the + side ofzg), with the exception of a finite number of points of intersewati(cf.
Fig. 6). The matrixA corresponding to the contomﬂ) is equal toM! — 1, on F’i('), toP -1y

on 0D_gs, and to® — I, on 0Dqs. We emphasize that, already in (8.32), one can use the
integral representation for the Cauchy operators withorring to boundary values. Indeed,
the integrand appearing in (8.32) is already integrablg’ffl = = x ... x =

Figure 6: Encased Contouiﬁ) (in the casep = id).

Finally, one infers from (8.32), from (8.22) and from theegtal representation fai,I1
(8.24) that, whem € T'([ —q; q]), there exist some recursively computablefﬁomnts”( Pal)
such that

n i .
. dz &Upih (z; x) . (UPul) (z1; %)
RO == >, 2, @in)
y=0 r=1 pr=1, pr1,....Pen=0 x(r) (/l Z )2 (Zg 1 Zf)
) Pe=n i [

Pem

Xl_[ pro(zg)l_[ fw . (8.33)

In this expression, the integration is performed over trmabnzx(” 2(1) % Zg), and
the second summation is performed over integgys1 < ¢ <r, 1 <j<n, W|th 1<pp<n
and 0< pj < nfor j > 1, and such that)_, p, = n, in which we have introduced the notation

Pr = Pro +E P
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e y-derivatives of II"1

All the above observations also hold for the inverse mdiri (1). IndeedII ! satisfies the
integral equation

Mt (1) = 1o+ 'cy, [, (8.34)
in which
'cy [M] =C{ [VM], VM € My(L?(Zn)), (8.35)

and the matrixV is defined by the equatiorl, + V = (I> + A)~L. In other words\V is the
adjugate ofA (we remind that we consider22 matrices and that delt | A] = 1). Hence, one
easily sees that, for> 1,

Z Z~(pz. dz otPih) (z;%)...0MPiN (z; %)

=15 p X0 (2im) (A-2z) If[ (Z-1-2)

P/o> 1 I

[ (A)‘y:0 =

Pem

xl_[ FPfO(zf)l_[ f s IR RCED

whereo(tPi)) (z x) is the adjugate matrix af(tPah) (z x).

e y-derivatives oflog det ]| + V]5tP

From the expressmns (8.18), (8. 33) and (8.36), it is easgéahat there exist some combi-
natorial codficients6!P"? e Z (with (i Pud) = _5p,5n) Such that

, da dr+tZ
{Pai}
R NN X

=0 14T <n pro>l >0
>1 150 Pro= ZP’Slp[ >Per 2 1-([ —q;q]) ><(r+t)

f dx’ tr({pt’J )({21}1 X’)[g]

+00

A-z)* (- Zr+1)H(Z€ 1-%) H (z-1-2)

{=r+2

X

r+t Pem

xl—[ FPo(z )]—[ fw ll , (8.37)

2\We stress that this matrix has nothing to do with the fierential operator usually denoted By
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in which, in the termg = 0, the empty produci? — z.1) H}fm (21 — 2¢) should be under-

stood as 1. In this expressiolmf,ftp"j })({zj}; x)[g] corresponds to the following trace:

{P1jh) o o > X L X
trg-’(p)lj )(Z, X )[g] =tr {0-3 ag[Ao(Z, X ) - ;Ag—)(Z, X )]‘y: }

: (8.38)
0

trgtp” })({zj bxX)[g] = tr {6({ iz x)...80Pi(z: X) og

X Q({pr+1i})(zr+l; X’) . .Q({pr+ti})(zr+t; X’)} ifr+t>1. (839)

In (8.38),Agl)(z; X') corresponds to the first term in the asymptotic expansidt) (& Ao(2).

Remark8.1 We have gathered in the tenm= 1,t = 0 the contribution of the second term in
(8.18), as well as the term that would correspond to the iaution of only one jump matrixA
in the first term of (8.18). Note that, in this tenm= 1,t = O, the only non-zero contribution

comes from the diagonal elements/fhence from the sequenggo = n, py; = 0forj> 1

(indeed we havé(l"g”}) = =Opon)-

Remark8.2 It is easy to see from these expressions that the integralsxbare convergent.
Indeed, it follows from the asymptotic expansion of the measAq that

n
GQ[AO(Z; X) — )}(Agl)(z; x)]‘yzo = O(Iog2 X) (8.40)
uniformly on the integration contour, so that an integmatid the trace (8.38) is convergent. We
emphasize that the trace (8.39) is at leagfl@ x)"/x?) uniformly on the integration contour:
indeed, each of the matricé&Pi") or o(Pi) is uniformly a O((log x)® /x); in addition, the
trace (8.39) involves a product of at least two such matréteser + t > 2. These estimates
guarantee that the integrals owéiin (8.37) are well defined.

8.2.3 Application of the density procedure and proof of Thecem 8.1

In order to be able to apply the density procedure, we shoidess more explicitly the func-
tional dependence &} log det[I + VEAL| o on 79,

TheF-dependence df} log det]l +V]SUb l,=0 has already been explicitly extracted in (8.37),
and all theg-dependence is contained in the tranég”})({zj}; x)[g]. Using the structure of the
matricesd!Pi) (z x) andp(!Pi) (z X), one can be more precise concerning thigependence.

Indeed, it follows from (8.23) that there exist some fficeents Dgf”}’{q}]({zj}; x) which are
piecewise smooth on the integration contour such that

r+t
R (A TR+ D SR o A (PP exp{z &g (z»} . (8.41)
[T eH.tEc{)il 0} =1
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Note that these cdicientsDl'?"9((z;}; x) are at least @(log x)" /) uniformly on the inte-
gration contour. Integrating these ¢eients with respect tg, and defining

X
Sl e} : {Pej} N (IR .
Bz = P [ aeDlf ! iz x), (8.42)
which are at least Qlog x)" /x) uniformly on the integration contougii), one gets

r+t
aQIogdetﬂ+V]SUb‘ = > Z 56 ()fzdl)rz+t

" s miRen qq}) o

r>1,t>0 p >1
Dr e (21

e i z)? (- Zr+l)H(Z€ 1-Z) H (z-1-2)

i {=r+2
r+t P

x n FPo (z) ecr9(z) n f—F () - F" () . (8.43)

We stress that eaci%%) may only appear in combination with at least dhé&) (aspe > 1):
F (z) €9%). This guarantees that the functional above is continuotis respect to the sup
norm on the space of symmetric functionsimariablesz andn variablesa.

Before applying the density procedure, let us introduce rapee useful notation. Define
the finite diference operat(ﬁizm)(p) by its action on pure product functions

5 () - FX2) = FX@2) - F*“™2) F™(u). (8.44)

This action naturally extends to symmetric functionsefiriables

.....

5P 7oz, | =7l (@) |- Fal(120™),, ™ @] @.45)

We remind here thap, = pqo + X ;Sfrs, With 22“1 ps = n. We have moreover used the
notation{zta}pf which means that the variabie is repeatedy, times, and{{z| p'} , which

=11
means that the variablg is repeatedp; times, z, is repeatedp, times, ...,z is repeated

pr times. The purpose of introducing such finitéfeience operator is to recast products of
functionsF™(z,) — F™ (1) appearing in (8.43) into a more compact form. Namely,
Pem Pem

q
Fm(Zc’) F%) M) - FM ()
af =T| [ =
lf _[ Z — 1

q
_ ﬁ Pem f dﬂ[ m] ﬁ ﬁ 6(m (l,l[ . Fﬁ{’—p{'o (Zg) .
: Zr — Memj

m=1 j=1
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Therefore, setting?? = ¢(2) andF(2) = ¢(2) ¢(2), we get

dr+tz
ah log det| +V("”’¢)]SUb‘ = Z Z 56 p(4 )f i)’

y=0 r+t
%§5+%§8 Zplp:]_ F([ —q;q]) ><(r+t)
~{ },{E} .
x D1t (2119
el""’i’“e 0 (- 2z1)* (A - Z+1) H (2-1 - ZZ)[H (z-1—2Z)
° =r+2
r+t n P q dﬂ[ . ot
M Pr D/+€r
<[ 1111 fzg——J 0P wemi) - | | {9 (@) 7+ (2)}. (8.46)
=1 m=1 j=1 Memj 1

It follows immediately from the density procedure formektin Theorem C.1 thatS\P
can be extended into a linear functional 8ym, (U, W). Its action on a holomorphic function
Fn € Sym,(U, W) is given as

u ~ (_1)n—1 dr+tz
In b[Tn] - (n_]_)l Z Z é ( ) f 2 )r+t

UG Haben F([—Q:Q]) 2*"*‘)
=Tipej)ile) .
Dr e M z) %)
X
g0 (1= 21)° (A - Zr+l)H(Z€ 1—25)[H (ze-1-27)
r+2
r+t n Pem 9 d
e,m,j (m) ( {Hz }1<t’<r+t )
X 0z, - Fr . (8.47
1_[ ch’ Hemj biem) " Hz } }ls€5r+t ( )

=1m=1j=1 |*=
The sum appearing in (8.47) is finite, and since each integimm O(log" x/x), IS"[F] is
itself a O(log" x/x). Hence Theorem 8.1 follows directly, since

Tn[Fn] = 1 [Fal + 18P 7] - (8.48)

8.2.4 Asymptotic expansion of S“9#;] and proof of Theorem 8.2

In order to prove the existence of an asymptotic series af f¢# ], i.e. for IS“I7,], we should
be more precise on the structure of thefﬁo'&entsﬁr,t, i.e. show that they themselves admit an
asymptotic expansion. Let us recall that thesefftmients are obtained from the traces (8.41)
involving the matrices({Pi}) (z: x) ando({Pi}) (z;; X). The latter being obtained from the jump
matrix Ao. _

Clearly, all terms corresponding to an integration on thei(mrsr;(') yield exponentially
small corrections. Thus in what concerns the proof of an agsgtic expansion we can only
focus on integrations along the contodfd_q . We decompose the relevant cont¢iDq s U

8D _qs "V into sums of elementary skeletoﬂ@x(m) = 0Dyyq X+ X 0Dy, g6, Where
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eacho; takes values if+1}:

dr+tZ dr+tZ
f (2i7r)r+t - Z f (2I7Z')r+t O(X_Oo) . (8-49)
ol
The matricedPi) (z x) (8.23) admit an asymptotic expansion into inverse powebsaf
0DqsU0D_q,. This fact follows from the asymptotic expansion/ef(z). The latter is obtained
by taking adequate-derivatives aia = 0 or 1 of the asymptotics series (A.6) fif(a, 1;2)
whenz — . This is licit as, for fixedM, the Qz"M~1) estimate in the asymptotic series (A.6)
is uniform with respect ta and since we perform a finite number of derivative with respec
a. This asymptotic expansion takes the following form:

M Adgrs lixps +a)/2 [6$pj}’k) zX) ] (Iogpo x) e oD
€
- K(p(2) - p )k XML ) 4o
8P (zx) = 3 @ o 3) (8.50)
M Adgrslixo-+o1/2 [6_ Tz X—)] logP x
= X(p(2) - po)* O( XM+ ) 2800w

the corrections being uniform on the contours. There thgatial entries of the matrices
6$pj}’k) (z X.) are some constants (i.ex and z independent), whereas thé&-diagonal ones
are polynomials of degremy in the variableX. = log[+x(p(2) — ps)].

An exactly similar structure holds fai'Pi)) (z x) as it is adjunct todPi) (z. x). Hence,
on the skeleto®D,qs = 0Dyqs, X -+ X 0Dy, q4,.» the trace (8.41) can be expanded in the
following form:

tr({p{’j})({z_}. X)[ _ S i \ b {pfj} {6} a
N=2 " Ki..k=1 €1,...erm€(=1,0} >

r+t
exp{gl e [9(z) + iXPo,]

b g
+O(Iog X

. (8.51
;Iji(p(Ze)—pw)kf XM+2) ooh

There we have explicitly factored out the dependence onshi#lating factor exgixZe; p,, }-
In this expression, the c@iecientsD,  are piecewise smooth on the integration contour and are
polynomials of degreg&, |e| pso in log x.

We set, forN > 2,

1-N=() [{Pej} tab| o . _ ) Xﬂ [{pu ] ,
X ZDr,t [{O—i}a {ki}]({z'} ;log X) = Q’:r,t (X’)N Dr.t (i), ({z};log X) (8.52)
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wheny} ¢ps,, = 0, and

X2 Pt kZ x DX [{ P {{k. }] ((z:);log x) + o('ogn X)

({pgj Pej tei} 1 X' 3 Po, €
f( ;)N [{O_i}’{ki}]({Z},logX)el (8.53)

otherwise. Note at this stage that, due to the constiaigt= 0, there exist some integar# 0
such that BZ Preec = gxm(p.—p-),

We then insert the result of integration into the expres&iomSU?[7;], rearrange the asymp-
totic expansion into decreasing powers»fnd separate the oscillating and non-oscillating
parts. We obtain

M M
1 1 log" x
BUVAEDY N H VA EDY = | (NSO + o( T ) : (8.54)
N=1 N=2
where
N+1 {p
oSO = > 2, 38 [{Of" ](Iog X) [Fa] (8.55)
L OLe0rt=t Ky, Kat=1 i)
{pejhla} Zerpsr,=0 2Iq=N+1
r+t
: o 2P
(om0 - T3 Y A e (LT
rt o, Oret=t s=2 Ky,...,Kt=1
{pej}ial fop(rp¢0 =s

(8.56)

In these expressions,

NI VD) @5

1<r+t<n  Peos-»Pin e, g41€({+1,0}
lpu} {a}  r=1,t20 ppo=1, ) pr=n =0

and the functionab, ; is given by

ol 1y iz
S e C R e RN e

([ -a:a]) aDxrn

g6
NI ARG P
Dr,t[{o_i}’{ki}]({z},logx) rt 1
* ke
(A-z)*(1- Zr+1)H(Z€ 1—25)[11 (2.1 — 2,) ¢=1 (PZ) = Pr)
r+t n Pem q d )
e,m, j (m) A {{l }1<t’§r+t )
nglnlz[ljzl fzé’—llf,m,j 0z (Hemj) ‘7‘~n({{ ey o) (8.58)
—q
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The coéﬁcients@r,t being polynomials of degreg, le| pro in log X, this ends the proof of
Theorem 8.2 concerning the existence of the asymptoticreskpa of cyclic integrals to any
order in I/ x.

As it is presented, the form of this asymptotic expansion feak quite involved. Note
however that the integrals over the contoaBXg“) in (8.58) can be computed; they are ex-
pressible in terms of partial derivatives of the functignat +q (see Appendix D). It is proved
in Appendix D that the non-oscillating tert{: "9[#] of orderN can be expressed in terms
of derivatives off, of total order not higher thaN, whereas the order of such derivatives does
not exceedN — 2 in the case of " °9[#,]. This property is useful in [35], when we sum up the
asymptotic behaviour of a whole class of cycle integralhefform (8.1) to obtain the asymp-
totic behaviour of correlation functions. To perform thisremation we use the knowledge of
the number of partial derivatives applied¥@. We finally point out that the integral over
produces derivatives of the functig?) evaluated at-q.

9 More general kernels

In the applications to quantum integrable models, one damstneeds to use some modified
versions of the GSK.
Consider the operatdr+ V, acting on[ —q; q| with kernel

e, (e (u) —e (e ()
2in[0(2) — 0 ()] ’
wheree, andF are defined as in (1.7). We assume in addition éHata biholomorphism otJ
onto its image, that (| —q; q]) c R andg (U N H.) c H..
Then the asymptotic behaviour of log dey] Vg] when x — oo follows from Theorem 2.1.
More precisely, we have the following corollary:

Vo (A1) = VF () F () @ (1) 0 (1) (9.1)

Corollary 9.1. Let 'V, be as above. Then

G(L v,) & (0" K ‘”‘f(crq Q)
[(6(q) - 6(-0)) P, X7

q
+%fdﬁd V() 6 () V() = () &' (1) V' ()

q
logdet || + V] = Zfd/l v(2) log'[e_ ()] + Z log

-q

50D — 600 +0(1), (9.2
where
_ 1 L V() = v(w)
v(d) = i log(1+yF(), K(;q9) =exp 9(/1) m & () duy, (9.3)

and, as before, p= [01p(A)] laz+q, v+ = v ().
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Proof — The change of variables(1) = £ maps the kernély on the one of the GSK

e 00 ¢)e o) —e 007§ e 06 ()
2im (& —1n)

This kernel acts oh6(—q) ;6(q) | which is, a priori, a non symmetric interval. However, it is
enough to apply the transformatian— 1 — (6(q) + 8 (—q)) /2 so as to recover the symmetry of
the interval. Then, it remains to enforce the inverse tr@msations on the asymptotic formula
for the Fredholm determinant f. m|

VEn) = yF 06740 Foo-1(n)

Let us write explicitly the asymptotics (9.2) in the casehd# kernel

e (e (u) —e (1)e () .
2ir sinh(l — p) . e() = elxP+gl/2.

Vsn(4, 1) =y VF () F(w)

as it plays a crucial role in the analysis of the asymptotitav@ur of the two-point functions
in the massless phase of tKXZ Heisenberg chain [35]. In this case, equation (9.2) reads

V() v(u) = v(A) V' (1)

logdet|l + Vg = 2fd/lv(/l) log'[e_(1)] + = fd/ld

tanh(1 — )
+ 3 Jlog— o) o, f d1 tanh( ;(A)ﬂ) +0(1). (9.4)

o=t [Slnh(zl) Pe-X]

It is clear that the last equation can be used in order to mlataianalog of the asymptotic
expansion for multiple integrals of the type (8.1) whererthtonal functionsz — A are replaced
by the hyperbolic sintg— 1). Namely, let

Shre1 — d"1 ({/l ) L &x(p(z)-p(4;))
I[Pl = é‘ (2i )n f (2im)" (2) g sinh(zj —/lj)sinh(zj —/1j+1) . (9.5)
r([-a:a]) =
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Then under the conditions of Corollary 8.1 one has the faligvasymptotic estimate

sh {/l}n
I [7:n — fd/l |Xp (/1)"'8 } ( {4+ €}, {/l}n_l )‘6:0

+ 3 (b = ulog (inn(@)p, ) o (o |

_ {oq}" {ocq)P {Y"P )
( ) 7”( (oQP (4P

(27r)2 Z Z f p(n - p)tanh(q - o)

o=+ p=1
q
dadu A+ e, (AP, P )
2(27r)2 Z f (n—p)tanh(1 — ) {afn( {2+ (P, (P

—1 n—
—afn( u+eb ™ AU )} +o(l). (9.6)
H+e ‘e=0

~_
-
—
=
=
7
N
—_—
P
=
7
o©

Conclusion

We have obtained in this article the leading asymptotic egjma of the Fredholm determinant
of the GSK. As we have mentioned, our main motivation is to\afs result to the asymp-
totic analysis of the correlation functions of quantum gnédble models, using in particular the
asymptotic study of multiple integrals performed in Seti# This is done in [35].

Another development is to extend the above analysis so aartdlé truncated Wiener—
Hopf operators with symbols having Fischer—Hartwig typgcdntinuities. The corresponding
results are published in [37]. The results for the case oplfiae Hankel and Toeplitz Hankel
determinants with Fisher-Hartwig singularities appeassntly in [16, 17].

Let us also point out some unsolved problems. One of themernadhe derivation of the
asymptotics of the Fredholm determinant of the GSK via théhotk based on its derivative
over endpoing. It would be important to obtain a complete justification listmethod, since
it is rather powerful and at the same time relatively simple.

Another problem is to prove the conjecture on #he v periodicity for the asymptotic ex-
pansion of the Fredholm determinant. If this property daad,ithen all oscillating corrections
can be obtained from the non-oscillating ones via a simgfé @hv by integer numbers. This
could lead to a much simpler way to compute sub-leading ctores for such determinants.
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A Some properties of confluent hypergeometric function

For generic paramete(a, c) the Tricomi confluent hypergeometric functigh(a, c; z) is one of
the solutions to the dierential equation

zy'+(c-2y —ay=0. (A1)

It satisfies the properties:
¢ Differentiation:

¥Y'(a,c;2 = 5g[(a -c+1)¥(@+1.c2-¥Y@ac z)]
= %[(a —c+2¥(@ac2-Y@-1c7)|. (A.2)
e Monodromy:

¥(a, 1;28€™") = W(a, 1;2) (1 - mé™ D 4+ mdralet)

27Timé7'ra€+2
FZ—(a)\P(l -a1;-2, (A3)
wheree = sgn(3(2)). In particular,
’ . in—ima+z

alizdn) = ¥alde ™ + TEo—wl-ali-).  I@<0 (A4

! ! ialma+z
Y(a, 1;z6 27) = ¥(a,1;2)e?™ - Zj;lze(a) Y(1-a,1;-2), J(2 > 0. (A.5)

e Asymptotic expansion:
> (a)n(a.— C + l)n _a_ 37'[' 37'[

. n a—n

¥(a,c 2) ~ nz:;)(—l) SRR, 2, —T<angl) < (A.6)

with (a), = I'(a+ n) /" (a).
We have the following recombination between the Tricomi CHg, c; z2) and the Humbert
CHF® (a,c;2)

®(ac2)=r 2:3((—:)61) €Y (a,C; 2) + %e“”(a‘c)”‘ll (c-ac -2, (A7)
wheree = sgn(3(2)), and
. o (@)n 2"
cp(a,c,z):nzzgjﬁa. (A.8)
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Such a recombination formula allows to obtain the asympt@tpansion of the Humbert CHF:

_ re (e (@), (@-c+1), M
cD(a,c,z)zr(C_a)( ) Z 2 +O(lIZ72 MY

') ,acv(C-an(l-a)y lc
r()ezza ;—n!zn +0(jA o N|). (A9)

One can estimate integrals involving a product of two CHF élevls, either by using La-
place-type integral representations for the functi®n(®, c;2) and¥ (a, c; 2) or applying the
method given in [37]. The latter uses Erdelyi's represamadf Laplace transforms of products
of CHF in terms of Lauricella function adjoint to some asyaotjat expansion of Lauricella
function. In any case, the result reads:

f dt{e™™p (a;t) - 1} = ~2ia, (A.10)
0
f _ira 2ia ,

dt{e Sr(at)+1+ H—l}:2|a—a[¢(a)+¢(—a)], (A.12)
0

and the Riemann integrability of the integrands is part efdabnclusion. We remind the defini-
tion of the functionsr (a; t) ande (a; t):

ety =®(—v, 1;-it) D (v, 1;it), (A.12)
T(v;t) = =@ (—v,1;-it) D (v, 1;it) + (0,D) (v, 1;—it) D (v, 1;it)
+ @ (-, 1;-it) (6,9) (v, 1;it) . (A.13)

B Three preparatory Lemmas

Here we prove three preparatory integration lemmas useddtidh 6.

Lemma B.1. LetR (u,t) be a function of two variables defined oxxR*, where | is an open
interval of R containing0. Suppose that the partial applications— R (u, t) are €1 (1) for all
but finitely many t's and thatt R (u, t) is Riemann integrable uniformly in u, i.e.:

Yo >0,YM >0, Yug e l, Jv >0 such that

uel-v+uv+w[nl,ke{0,1} = fdt[a';ﬂ(u,t)—a‘;ﬂ(uo,t)] < p. (B.1)
M
Then for ge € (1)
) +00
fxg(t)R(t,xt) dt:g(O)fR(O,t)dt+o(l) (B.2)
0 0

where the smalb (1) is with respect to the successive limit% +co ands — 0.

65



Proof — One has
) ) X0
j&@mﬂmm—g©ﬂmmmm=jﬁyfmmMRmowL (B.3)
0 0 Xy
Consider a function
g:uamkgfwmmwﬂum (B.4)

on the compact set [@] x R* x R*. g is clearly continuous on the interior and the uni-
form Riemann-integrability oRR (y,t) guarantees that it is continuous in an neighbourhood of
(%, 400, %), (*, *, +00) and(x, +oo0, +0). Hence|g| is bounded, say b, as continuous function
on a compact set. Thus,

0 X0
[ [alemre0)e] < (8.5)
0 Xy
which ends the proof of Lemma B.1. m|

Lemma B.2. Let ge € (1) for some open interval | containing then

0
fg(?)::t =g(0)logxs +0(1), (B.6)
0

whereo (1) stands with respect to the successive limiisx+oco ands — 0.

Proof — We have

o o t
xdt g (y)x
fg(t)rxt_g(O)Iog(X6+1)+fdtfdy1+Xt (B.7)
0 0 0
(0)logsx+0o(1) + | dyd (y)lo ( x+1 (B.8)
=4 g f yg (y) 109 xy+ 1 .
But,
fdyg (y)lo g(y+ 1;?) < sup|g | x (6 —log (6 +1/%) /X) — 0. (B.9)
which ends the proof of Lemma B.2. i
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Lemma B.3. Letk be defined in terms afas in(2.2), and set

q
H(Q) = f dagy LYW =)V | > eve log(eq; o). (B.10)
2 A—pu ~
Then,
d : d : (vs —v-)* _dH(q)
2v, aq [logk (g, )] — 2v- aq [logk (-a; 9)] - T dg (B.11)
Proof — Using (2.2), one can express the derivativéddf) as
dH V' (e !
Ty =Y f d M+Zev(eq)— [log (ec; @] ©.12)
Thus, proving (B.11) amounts to establishing the equality
v (eq) -V
Zev(eq)—[logk(eq g - L= v(eq) f d %. (B.13)
The latter follows from an integration by parts:
3 ev (€q) < [log (eq; )]
pry dq ’
_ZevE V+ +Efd V(“)_VE (Z“_Eq)
— €0)
_Zévs v+ —v_+v_e—vf+26qv fdv(y)—v
—2¢q —€q
3 —-y_ )2 v (/1) -V,
= + Z Vefd “q
This ends the proof. m|
C The density Theorem
Theorem C.1. Let U, W be two open neighbourhoods|[efq;q], and let#, W) be a

{z}
holomorphic function on Ux W", symmetric separately in the n variabldsand in the n
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variables z. Then, for any compact subsets K (resp. P) of £p(W&) there exists a sequence
(¢p: @), I H (K) x H (P) such that

{1

- ) = Z ¢p () ¢p(z)  uniformly on K' x P". (C1)

Tn(
p=0 i=1
Proof — Let K andP be as above.

Let X = K" x P"/ ~, where the relation- is defined as follows{4,2) ~ (1’,Z7) if there
exists a couple of permutatioffs, 7) € G, x G, such thaf{1?,Z") = (1, Z), wheredA? stands
for (Axq), - ... ds(n))- Since®, x G, is a discrete group, its action &' x P" is by definition
proper, i.e¥L > K" x P"

{(oym) € G x Gy : L7 NL =0} isdiscrete (C.2)

This ensures thaX is a compact Hausdfirtopological space. Moreover the spagg X, C) of
continuous functions on X is canonically identified with t@ace of continuous functions on
K" x P" that are symmetric in the first or the lasvariables.

Define the subspac® of ¥ (X, C) as the subset of functiorﬁg“”‘” of the form

n
o) [ 1) _ Yo (2
where(yp, ¢) € H (K) x H (P), and letS be theC*-algebra generated [§. We have thag and
hencesS separates points M. Indeed, le(1, 2) and(u, y) be any two representatives k' x P"
of two distinct points inX. Thus

o there existst; € K such that exactly of the n coordinates of the-tuple 1 are equal to
i, whereas exactly of then coordinates of the-tupleu are equal tatj, with p # q;

e or there existg; € P such that exactlyp of then coordinates of the-tuple zare equal to
z, whereas exactlg of then coordinates of the-tupley are equal t@;, with p # .

The situation is similar in the case of the firsand lastn variables, therefore we only treat the
first case. By Lagrange interpolation there exist a polyr@bi®isuch that, for any coordinate
Ak of 2 and any coordinatgy of u satisfyingAx # A anduy # Ai,

Q) =Qu) =1 and Q(A)=2 (C.4)
The function
o A\ _T
n(Ql)( ) ) = ]pl Q(1p)es (C.5)

separates the projections @f, zZ) and(u,y) on X. ThusS is aC*-subalgebra o (X; C) that
separates points. It then follows by the Stone-Weiersttassrem thatS = ¢ (X; C).
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Let 7, be holomorphic orU" x W" and symmetric in the first and in the lastariables.

There exists compact sdts c U andP, c W such thatk c KoE andP c POE. Here,KoE stands
for the interior ofK.. Thus the restriction of, to K{ x P{ also belongs t&’ (X,; C), with
Xe = KI' x P/ ~, and therefore there exiaﬁp,%)peN in ¢ (K¢; C) x € (Pg; C) such that

( t4) ) an (4i) ¢p (2) uniformly on K" x P?. (C.6)

Z
p=0 i=1

In particular the sequence converges uniformlytpon (0K,)" x (P.)", the latter set being
compact. Therefore we have

@p (i) ¢p (%))
ZI(ZIJT)” (2I7T)n1_[ - /ll)(; Z) ZH‘PP(/I)‘?(Z)

p=0 i=1
= (gjﬁf L G B
K. H(ﬂ i) (i — z)
uniformly in (4, 2) € K" x P". Moreover,
W —
op () = f T’;% and ¢p (2 = %@p_(yz) (C.8)
K, P,

are holomorphic irK, resp.P. m|

D Form of the sub-leading terms inI S

In this appendix, we focus on the general structure of thelsathng asymptotics of cyclic
integrals. We show that the/gN term in the non-oscillating part can be obtained as an action
of at mostN partial derivatives of the functiotf, followed by an evaluation atq or by an
integration over{q; qJ.

In principle, the contour integrals defining (8.58) can benpated to the end. However,
the result is quite intricate, and we do not need, for thenurtapplications, the formula in its
whole generality. Indeed, we are interested in a particsildr-class of such integrals. More
precisely we shall focus on the sub-class that is susceptiblproduce the highest possible
derivatives of the functiorf,,. Here, by highest derivative we mean the total degree ohall t
partial derivatives that might act on the integrand. Thiscéass is identified in the upcoming
lemma.

Lemma D.1. Letr,t € Nwith r +t > 1 label negationsr, ..., € {+}. Also introduce
syficiently small n_umber@ <01 <+ < Orat < (as well as positive integers K. ., K.
Finally, let G € H (Diryqs, X - - X Doy g ) @NC

(bl d™'z ﬁ 1 ﬁ ! ﬁ !
glakl ) = : G({z). (D.1)
r.t @mtilza-z L za-2] ) @z -oqk

X(r+t)
9 D<rq 0
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with 9D = 9D 16, X - X ODgy g v
Then the mtegrag( aik )[G] can be computed as some combinatorial sum involving
derivatives of G at the points;q, the maximal order of such derivatives being equal to

r+t

D K= =N+ 6o+ 60— 2 (D.2)
i=1

Here n, resp. n, is the number of times the sequenes,...,o), resp. (ori1,...,0rst),
changes sign, anél o, ;0 denote the usual Kronecker symbols.

Proof — Let us prove the claim by induction on+ t.
First, forr +t =1, (D.2) is obviously satisfied. Indeed,

(o 9G] = (ff [G] = (a"—le) (o). (D.3)

(k- 1)'

Let us now assume that the result holds for any func@oap to some value of + t. We
will prove that it also holds for +t + 1

Note first thaig!"V[G] = 17N [G], in which G, (&), (ki) are obtained fron®, {oi},
{ki} by a reordering of the varlables Hence, it is enough to ptbeeclaim forG,.1.1. We will
have to distinguish two cases, depending on whathet = 1 orr + 1 > 1.

Inthe case + 1 =1, itis easy to see that

(0'. )[ ] — (k 1)| Q(O'Z ,,,,, Ot+1:K2,....Ke+1) [akl le(o_ q’{z}t+1)] i (D4)

which means thag(“’”’““ )[G] can be expressed in terms of derivativesSodf maximal order

(ZH3k —1—n +6o) + (ki — 1), hence the result.
Let us now consider the case- 1 > 1. We have

( - r+t+1 r+1 r+t+1 1 r+t+1 1
{oik{ki)
Griit [C] = (ks _1)| f l_[ 2in l_[ Z1-% n Z-1— n

Z =2 (Zg—O’gC])k[

(=2 =r+3
(r+t)
D705
-1 S({2)
X0 | ——
a-2 ‘21=01q
r+t+1 r+1 r+t+1 1 r+t+1 1
IE: em= oo H aar
gy (=2 2 Z-1=Z L 3 71—y (Ze—000)

Q.0

Zk. (Z— gq)kl - (05G) (0. (2} 25) . (D.5)

At this point one should distinguish between the two possilalsesoi0, = 1 oro10 = —1.
We first assumerio, = 1 (i.e. that there is no change of sign betwegnand o), and set
G;(227 L] zf+t+1) = aléle(Zl, AR Zr+t+l) |Z]_:0']_q- Then

O_I r+t+1 k2+k1

sihik r+t+1)
gE{Jrl,}t{K}) [G] = Z o grt [G+] (D.6)
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The latter can be expressed in terms of derivative® of maximal orderk + (ko + ky — k +
S K - — g+ 60— 2) = SR - 2 - ey — g+ Sio.
We now assume that;o> = —1. This leads to
ke—1
Lk ({ i r+t+1 r+t+1) ~
Gl [G] = - Z T e (D.7)

k=0
where the function

alz(lG(Zl, ) Zr+t+1) |21=o-1q
(22 + ooq)lak

is holomorphic inside the integration cont@iD,,qs, X - - - X 0Dy, ,q.,..- ONCE again, the result

will be expressed in terms of derivatives@fand the maximal order of these derivatives will be

ki — 1+ (XK — Nt + 610 — 2) = 2K — ey — e + 60 — 2, which ends the proof
of Lemma D.1. O

GE(ZZa R Zr+t+1) = (D8)

RemarkD.1. The integral can be explicitly computed using the recureeiocmulas (D.6) and

(D.7). In particular, in the simplest casg = --- = oy ando,1 = - - - = 0741, WE have
r+t
GrTMIIG] = (-pytoemae 1_[ R A G (D.9)
U1, Uit =1 Z=0iq
urel,

in which the parameteng are summed over selfs defined as

14 -1 r+¢ r+0-1
rgz{o,...,Zk,- -y, —1}, rwz{o,..., Dki- >y —1}, Q<t<r),
j=1 i=1 j=r+1 j=r+1
(D.10)
r r-1 r+t r+t-1
I, :{ij— uj—l}, rm:{ ED) u,-—1}. (D.11)
j=1 =1 j=r+1 j=r+1

Corollary D.1. The subleading terms of order N in the asymptotic expangdsd) for the
cycle integral7,[#,] are obtained in terms of derivatives of the functin More precisely,
the non-oscillating term{l": " #] involves derivatives of, of total order at most equal to
N, whereas the oscillating on§i °*{ 7] involves derivatives ofy, of total order at most equal
toN-2.

Proof — In order to apply Lemma D.1 to the integral O\Ii{DX(Ht) in (8.58), let us set

S ] [CIR T,

ke
- 0¢q
(a- 21)2 (A=2z41) =1 ( p(z) - pa'f)
q

r+t n Pem d,“[m,] (m) {{ } }1<t’<r+t
Xl_H_H_[ fZg demj Oz (uem;) '¢n({{2€} o ) (D.12)

=1 m=1 ]=l q }1S55r+t

G({z) =
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The poles ar; = 1 andz.1 = A being outside of the skeletcﬁDfrg’?)
holomorphic in a vicinity of the pondisD;ggt).

Applying the result of Lemma D.1 to this function and using fact that} ki = N + 1 in
(8.55), it follows immediately that the expressionl§f "°}#,] cannot involve derivatives of
the function#, of order higher thaN. This maximal order of derivatives corresponds t00
andVi o = o with o = +in (8.55).

Similarly, as in (8.56)Y ki < N, I{N:°Y# ] cannot involve derivatives of, of order
higher thanN — 1. Moreover, due to the constrainise, = 0 and}; e,p,, # 0, it follows that
the variablesri have to take both values and—, which means that eithér> 1 orn, > 1 in
(D.2) (we recall that > 1). Hencel (N °9[#,] cannot involve derivatives of;, of order higher
thanN - 2. m]

, this function is indeed
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