Riemann-Hilbert approach to a generalized sine kernel and applications

Abstract : We investigate the asymptotic behavior of a generalized sine kernel acting on a finite size interval [-q,q]. We determine its asymptotic resolvent as well as the first terms in the asymptotic expansion of its Fredholm determinant. Further, we apply our results to build the resolvent of truncated Wiener--Hopf operators generated by holomorphic symbols. Finally, the leading asymptotics of the Fredholm determinant allows us to establish the asymptotic estimates of certain oscillatory multidimensional coupled integrals that appear in the study of correlation functions of quantum integrable models.
Document type :
Journal articles
Communications in Mathematical Physics, Springer Verlag (Germany), 2009, 291 (3), pp.691-761. <10.1007/s00220-009-0878-1>


https://hal-ens-lyon.archives-ouvertes.fr/ensl-00283404
Contributor : Jean Michel Maillet <>
Submitted on : Wednesday, October 5, 2011 - 9:47:14 AM
Last modification on : Thursday, October 6, 2011 - 9:21:13 PM

Files

GSKfinal-CMP.pdf
fileSource_public_author

Identifiers

Collections

Citation

N. Kitanine, Karol Kozlowski, Jean Michel Maillet, N. A. Slavnov, Véronique Terras. Riemann-Hilbert approach to a generalized sine kernel and applications. Communications in Mathematical Physics, Springer Verlag (Germany), 2009, 291 (3), pp.691-761. <10.1007/s00220-009-0878-1>. <ensl-00283404v3>

Export

Share

Metrics

Consultation de
la notice

129

Téléchargement du document

21