Riemann-Hilbert approach to a generalized sine kernel and applications

Abstract : We investigate the asymptotic behavior of a generalized sine kernel acting on a finite size interval [-q,q]. We determine its asymptotic resolvent as well as the first terms in the asymptotic expansion of its Fredholm determinant. Further, we apply our results to build the resolvent of truncated Wiener--Hopf operators generated by holomorphic symbols. Finally, the leading asymptotics of the Fredholm determinant allows us to establish the asymptotic estimates of certain oscillatory multidimensional coupled integrals that appear in the study of correlation functions of quantum integrable models.
Type de document :
Article dans une revue
Communications in Mathematical Physics, Springer Verlag, 2009, 291 (3), pp.691-761. <10.1007/s00220-009-0878-1>


https://hal-ens-lyon.archives-ouvertes.fr/ensl-00283404
Contributeur : Jean Michel Maillet <>
Soumis le : mercredi 5 octobre 2011 - 09:47:14
Dernière modification le : mardi 8 décembre 2015 - 01:02:40
Document(s) archivé(s) le : vendredi 6 janvier 2012 - 02:21:32

Fichiers

GSKfinal-CMP.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

N. Kitanine, Karol Kozlowski, Jean Michel Maillet, N. A. Slavnov, Véronique Terras. Riemann-Hilbert approach to a generalized sine kernel and applications. Communications in Mathematical Physics, Springer Verlag, 2009, 291 (3), pp.691-761. <10.1007/s00220-009-0878-1>. <ensl-00283404v3>

Exporter

Partager

Métriques

Consultations de
la notice

187

Téléchargements du document

84