DIFFERENTIATION OF KALTOFEN’S DIVISION-FREE DETERMINANT ALGORITHM

Abstract

Gilles Villard
CNRS, Université de Lyon
Laboratoire LIP, CNRS-ENSL-INRIA-UCBL
46, Allée d’Italie, 69364 Lyon Cedex 07, France
http://perso.ens-lyon.fr/gilles.villard

Kaltofen has proposed a new approach for computing matrix determinants. This approach has brought breakthrough ideas for improving the complexity estimate for the problem of computing the determinant without divisions over an abstract ring [8, 11]. The same ideas also lead to the currently best known bit complexity estimates for some problems on integer matrices such as the problem of computing the characteristic polynomial [11].

We consider the straight-line programs of [8] for computing the determinant over abstract fields or rings (with or without divisions). Using the reverse mode of automatic differentiation (see [12, 13, 14]), a straight-line program for computing the determinant of a matrix A can be (automatically) transformed into a program for computing the adjoint matrix A^* of A [8] (see the application in [8, §1.2] and [11, Theorem 5.1]). Since the latter program is derived by an automatic process, few is known about the way it computes the adjoint. The only available information seems to be the determinant program itself and the knowledge we have on the differentiation process. In this paper we study the adjoint programs that would be automatically generated by differentiation from Kaltofen’s determinant programs. We show how they can be implemented with and without divisions, and study their behaviour on univariate polynomial matrices.

Our motivation for studying the differentiation and resulting adjoint algorithms is the importance of the determinant approach of [8, 11] for various complexity estimates. Recent advances around the determinant of polynomial or integer matrices [8, 11, 15, 16], and the adjoint of a univariate polynomial matrix in the generic case [7], also justify the study of the general adjoint problem.

1 Kaltofen’s determinant algorithm

Let K be a commutative field. We consider $A \in K^{n \times n}$, $u \in K^{n \times 1}$, and $v \in K^{n \times 1}$. Kaltofen’s approach extends the Krylov-based methods of [13, 9, 10]. We introduce the Hankel matrix $H = (uA_i^j v_{ij}) \in K^{n \times n}$, and let $h_k = uA^k v$ for $0 \leq k \leq 2n - 1$. We assume that H is non-singular. In the applications the latter is ensured either by construction of A, u, and v [8, 11], or by randomization (see [11] and references therein).
With baby steps/giant steps parameters \(r = \lceil 2n/s \rceil \) and \(s = \lceil \sqrt{n} \rceil \) \((rs \geq 2n) \) we consider the following algorithm (the algorithm without divisions will be described in Section 3).

Algorithm \(\text{Det} \)

STEP 1. For \(i = 0, 1, \ldots, r - 1 \) Do \(v_i := A^i v; \)

STEP 2. \(B = A^r; \)

STEP 3. For \(j = 0, 1, \ldots, s - 1 \) Do \(u_j := uB^j; \)

STEP 4. For \(i = 0, 1, \ldots, r - 1 \) Do

\[\text{For } j = 0, 1, \ldots, s - 1 \text{ Do } h_{i+j} := u_j v_i; \]

STEP 5. Compute the minimum polynomial \(f(\lambda) \) of the sequence \(\{h_k\}_{0 \leq k \leq 2n-1}; \)

Return \(f(0) \).

\section{The adjoint algorithm}

The determinant of \(A \) is a polynomial in \(K[a_{11}, \ldots, a_{ij}, \ldots, a_{nn}] \) of the entries of \(A \). If we denote the adjoint matrix by \(A^* \) such that \(AA^* = A^*A = (\det A)I \), then the entries of \(A^* \) satisfy

\[
a_{ji}^* = \frac{\partial \Delta}{\partial a_{ij}}, 1 \leq i, j \leq n. \tag{1}
\]

The reverse mode of automatic differentiation (see \cite{1,12,13,14}) allows to transform a program which computes \(\Delta \) into a program which computes all the partial derivatives in \(\Delta \). We apply the transformation process to Algorithm \(\text{Det} \).

The flow of computation for the adjoint is reversed compared to the flow of Algorithm \(\text{Det} \). Hence we start with the differentiation of **STEP 5.** Consider the \(n \times n \) Hankel matrices \(H = (uA^{i+j-2}v)_{ij} \) and \(H_A = (uA^{i+j-1}v)_{ij} \). Then the determinant \(f(0) \) is computed as

\[
\Delta = (\det H_A)/\det H.
\]

Viewing \(\Delta \) as a function \(\Delta_5 \) of the \(h_k \)'s, we show that

\[
\frac{\partial \Delta_5}{\partial h_k} = (\varphi_{k-1}(H_A^{-1}) - \varphi_k(H^{-1}))\Delta \tag{2}
\]

where for a matrix \(M = (m_{ij}) \) we define \(\varphi_k(M) = 0 + \sum_{i+j-2=k} m_{ij} \) for \(1 \leq k \leq 2n-1 \). Identity \cite{12} gives the first step of the adjoint algorithm. Over an abstract field, and using intermediate data from Algorithm \(\text{Det} \), its costs is essentially the cost of a Hankel matrix inversion.

For differentiating **STEP 4**, \(\Delta \) is seen as a function \(\Delta_4 \) of the \(v_i \)'s and \(u_j \)'s. The entries of \(v_i \) are involved in the computation of the \(s \) scalars \(h_i, h_{i+r}, \ldots, h_{i+(s-1)r} \). The entries of \(u_j \) are used for computing the \(r \) scalars \(h_{jr}, h_{1+jr}, \ldots, h_{(r-1)+jr} \). Let \(\partial v_i \) be the \(1 \times n \) vector, respectively the \(n \times 1 \) vector \(\partial u_j \), whose entries are the derivatives of \(\Delta_4 \) with respect to the entries of \(v_i \), respectively \(u_j \). We show that

\[
\begin{bmatrix}
\partial v_0 \\
\partial v_1 \\
\vdots \\
\partial v_{r-1}
\end{bmatrix}
= H^u
\begin{bmatrix}
u_0 \\
u_1 \\
\vdots \\
u_{s-1}
\end{bmatrix} \tag{3}
\]

and

\[
[\partial u_0, \partial u_1, \ldots, \partial u_{s-1}] = [v_0, v_1, \ldots, v_{r-1}] H^u \tag{4}
\]
where H^s and H^u are $r \times s$ matrices whose entries are selected $\partial \Delta_3/\partial h_k$’s. Identities \ref{eq:1} and \ref{eq:2} give the second step of the adjoint algorithm. Its costs is essentially the cost of two $n \times \sqrt{n}$ by $\sqrt{n} \times \sqrt{n}$ (unstructured) matrix products.

Note that \ref{eq:3}, \ref{eq:4} and \ref{eq:5} somehow call to mind the matrix factorizations \ref{eq:6} (3.5) (our objectives are similar to Eberly’s ones) and \ref{eq:7} (3.1).

Steps 3-1 of Det may then be differentiated. For differentiating \text{STEP} 3 we recursively compute an $n \times n$ matrix ∂B from the δu_i’s. The matrix ∂B gives the derivatives of Δ_3 (the determinant seen as a function of B and the v_i’s) with respect to the entries of B.

For \text{STEP} 2 we recursively compute from δB an $n \times n$ matrix δA that gives the derivatives of Δ_2 (the determinant seen as a function of v_i’s).

Then the differentiation of \text{STEP} 1 computes from δA and the δu_i’s an update of δA that gives the derivatives of $\Delta_1 = \Delta$. From \ref{eq:8} we know that $A^* = (\delta A)^T$.

The recursive process for differentiating \text{STEP} 3 to \text{STEP} 1 may be written in terms of the differentiation of the basic operation (or its transposed operation)

$$q := p \times M$$

(5)

where p and q are row vectors of dimension n and M is an $n \times n$ matrix. We assume at this point (recursive process) that column vectors δp and δq of derivatives with respect to the entries of p and q are available. We also assume that an $n \times n$ matrix δM that gives the derivatives with respect to the m_{ij}’s has been computed. We show that differentiating $\ref{eq:9}$ amounts to updating δp and δM as follows:

$$\begin{cases}
\delta p := \delta p + M \times \delta q, \\
\delta M := \delta M + p^T \times (\delta q)^T.
\end{cases}$$

(6)

We see that the complexity is essentially preserved between $\ref{eq:10}$ and $\ref{eq:11}$ and corresponds to a matrix by vector product. In particular, if \text{STEP} 2 of Algorithm Det is implemented in $O(\log r)$ matrix products, then \text{STEP} 2 differentiation will cost $O(n^3 \log r)$ operations (by decomposing the $O(n^3)$ matrix product).

Let us call Adjoint the algorithm just described for computing A^*.

3 Application to computing the adjoint without divisions

Now let A be an $n \times n$ matrix over an abstract ring R. Kaltofen’s method for computing the determinant of A without divisions applies Algorithm Det on a well chosen univariate polynomial matrix $Z(z) = C + z(A - C)$ where $C \in \mathbb{Z}^{n \times n}$. The choice of C as well as a dedicated choice for the projections u and v allow the use of Strassen’s general method of avoiding divisions \ref{eq:12}. \ref{eq:13}. The determinant is a polynomial Δ of degree n, the arithmetic operations in Det are replaced by operations on power series modulo z^{n+1}. Once the determinant of $Z(z)$ is computed, $(\text{det} \ Z)(1) = \text{det}(C + 1 \times (A - C))$ gives the determinant of A.

In \text{STEP} 1 and \text{STEP} 2 in Algorithm Det applied to $Z(z)$ the matrix entries are actually polynomials of degree at most \sqrt{n}. This is a key point for reducing the overall complexity estimate of the problem. Since the adjoint algorithm has a reversed flow, this key point does not seem to be relevant for Adjoint. For computing $\text{det} A$ without divisions, Kaltofen’s algorithm goes through the computation of $\text{det} Z(z)$. Adjoint applied to $Z(z)$ computes A^* but does not seem to compute $Z^*(z)$ with the same complexity. In particular, differentiation of \text{STEP} 3 using \ref{eq:14} leads to products $A^*(\delta B)^T$ that are more expensive over power series (one computes $A(z)^T(\delta B(z))^T$) than the initial computation in $\text{Det} A^* (A(z)^T$ on series).

For computing A^* without divisions only $Z^*(1)$ needs to be computed. We extend algorithm Adjoint with input $Z(z)$ by evaluating polynomials (truncated power series) partially. With a final evaluation at $z = 1$ in mind, a polynomial $p(z) = p_0 + p_1 z + \ldots + p_{n-1} z^{n-1} + p_n z^n$ may typically be replaced by
\((p_0 + p_1 + \ldots + p_m) + p_{m+1}x^{m+1} + \ldots + p_{n-1}z^{n-1} + p_nz^n\) as soon as any subsequent use of \(p(z)\) will not require its coefficients of degree less than \(m\).

4 Fast matrix product and application to polynomial matrices

We show how to integrate asymptotically fast matrix products in Algorithm \textsc{Adjoint}. On univariate polynomial matrices \(A(z)\) with power series operations modulo \(z^n\), Algorithm \textsc{Adjoint} leads to intermediary square matrix products where one of the operand has a degree much smaller than the other. In this case we show how to use fast rectangular matrix products [2, 6] for a (tiny) improvement of the complexity estimate of general polynomial matrix inversion.

Concluding remarks

Our understanding of the differentiation of Kaltofen’s determinant algorithm has to be improved. We have proposed an implementation whose mathematical explanation remains to be given. Our work also has to be generalized to the block algorithm of [11].

Acknowledgements. We thank Erich Kaltofen who has brought reference [14] to our attention.

References

