Integer and Floating-Point Constant Multipliers for FPGAs
Nicolas Brisebarre, Florent de Dinechin, Jean-Michel Muller

To cite this version:

HAL Id: ensl-00269219
https://hal-ens-lyon.archives-ouvertes.fr/ensl-00269219
Submitted on 2 Apr 2008

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Abstract

Reconfigurable circuits now have a capacity that allows them to be used as floating-point accelerators. They offer massive parallelism, but also the opportunity to design optimised floating-point hardware operators not available in microprocessors. Multiplication by a constant is an important example of such an operator. This article presents an architecture generator for the correctly rounded multiplication of a floating-point number by a constant. This constant can be a floating-point value, but also an arbitrary irrational number. The multiplication of the significands is an instance of the well-studied problem of constant integer multiplication, for which improvement to existing algorithms are also proposed and evaluated.

1 Introduction

FPGAs (for field-programmable gate arrays) are high-density VLSI chips which can be programmed to efficiently emulate arbitrary logic circuits. Where a microprocessor is programmed at the granularity of instructions operating on 32 or 64-bit data words, FPGAs are programmed at the bit and register level. This finer grain comes at a cost: a circuit implemented in an FPGA is typically ten times slower than the same circuit implemented as an ASIC (application-specific integrated circuit). Despite this intrinsic performance gap between FPGAs and ASIC, the former are often used as a replacement of the latter for applications which don’t justify the non-recurring costs of an ASIC, or which have to adapt to evolving standards.

FPGAs have also been used as configurable accelerators in computing systems. They typically excel in computations which exhibit massive parallelism and require operations absent from the processor’s instruction set.

State of the art and contributions

Multiplication by a constant is a pervasive operation. It often occurs in scientific computing codes, and is at the core of many signal-processing filters. It is also useful to build larger operators: previously published architectures for exponential, logarithm and trigonometric functions [8, 7] all involve multiplication by a constant. A single unoptimised multiplication by $4/\pi$ may account for about one third the area of a dual sine/cosine operator [7].

The present article essentially reconciles two research directions that were so far treated separately: on the one side, the optimisation of multiplication by an integer constant, addressed in section 2, and on the other side the issue of correct rounding of multiplication or division by an arbitrary precision constant, addressed in section 4.

Integer constant multiplication has been well studied, with many good heuristics published [3, 6, 13, 5, 1, 15]. Its theoretical complexity is still an open question: it was only recently proven sub-linear, although using an approach which is useless in practice [9, 15]. Our contribution in this domain is essentially a refinement of the objective function: where all previous works to our knowledge try to minimise the number of additions, we remark that these additions, measured in terms of full adder cells, have different sizes (up to a factor 4 for the large multiplier by $4/\pi$ of [7]), hence variable cost in reconfigurable logic. Trying to minimise the number of full adders, and looking for low-latency and easy to pipeline architectures, we suggest a surprisingly simple algorithm that, for constants up to 64 bits, outperforms the best known algorithms in terms of FPGA area usage and latency. Boullis and Tisserand [1] also tried to minimise adder size, but as a post-processing step, after an algorithm minimising the number of additions.

The FloPoCo project aims at exploring the implementation of such non standard operations, especially in the floating-point realm [4]. This article is a survey of the issue of multiplication by a constant in this context.
Section 3 describes a multiplier by a floating-point constant of arbitrary size. The architecture is straightforward specialisation of the usual floating-point multiplier. It is actually slightly simpler, because the normalisation of the result can be removed from the critical path.

Finally, Section 4 deals with the correct rounding of the multiplication by an arbitrary real constant. Previous work on the subject [2] has shown that this correct rounding requires a floating-point approximation of the constant whose typical size is twice the mantissa size of the input. This size actually depends on the real constant, and may be computed using a simple continued fractions algorithm. The other contribution of [2] is the proof of an algorithm which consists of two dependent fused-multiply-add operations. All these architectures are implemented in the FloPoCo framework.

2 Multiplication by an integer constant

Several recent papers [1, 9, 15] will provide the interested reader with a state of the art on this subject.

Let \(C \) be a positive integer constant, written in binary on \(k \) bits:

\[
C = \sum_{i=0}^{k} c_i 2^i \quad \text{with} \quad c_i \in \{0, 1\}.\]

Let \(X \) a \(p \)-bit integer. The product is written \(CX = \sum_{i=0}^{k} 2^i c_i X \), and by only considering the non-zero \(c_i \), it is expressed as a sum of \(2^i \) \(X \). For instance, \(17X = X + 2^4X \). In the following, we will note this using the shift operator \(\ll \), which has higher priority than + and −. For instance \(17X = X + X \ll 4 \).

If we allow the digits of the constant to be negative \((c_i \in \{-1, 0, 1\}) \) we obtain a redundant representation, for instance \(15 = 01111 = 1000\overline{1} \) (16 − 1 written in signed binary). Among the representations of a given constant \(C \), we will pick up one that minimises the number of non-zero bits, hence of additions/subtractions.

The well-known canonical signed digits recoding (or CSD, also called Booth recoding [10]) guarantees that at most \(k/2 \) bits are non-zero, and in average \(k/3 \).

2.1 Parenthesing and architectures

The CSD recoding of a constant may be translated into a rectangular architecture[5], an example of which is given by Figure 1. This architecture corresponds to the following parenthesing: \(221X = X \ll 8 + (−X \ll 5 + (−X \ll 2 + X)) \).

![Figure 1: Multiplier of an 8-bit input by 221, using the recoding 100100101](image)

We introduce a new tree adder structure that is constructed out of the CSD recoding of the constant as follows: non-zero bits are first grouped by 2, then by 4, etc. For instance, \(221X = (X \ll 8) \ll 5 + (−X \ll 2 + X) \). This new way of parenthesing the sum reduces the critical path: For \(k \) non-zero bits, it is now of \(\lceil \log_2 k \rceil \) additions instead of \(k \) in the linear architecture of Figure 1.

Besides, shifts may also be reparenthesised: \(221X = (X \ll 3 - X) \ll 5 + (−X \ll 2 + X) \). After doing this, the leaves of the tree are now multiplications by small constants: 3X, 5X, 7X, 9X... Such a smaller constants will appear many times in a larger constant, but it will have to be computed only once: the tree now becomes a DAG (direct acyclic graph), and the number of additions is reduced. A larger example is shown on Figure 2.

2.2 Lefèvre’s constant multipliers

We have saved adders by going from a tree to a DAG. Lefèvre [13] has generalised this idea to an algorithm that minimises the number of adders: it looks for maximal repeating bit patterns in the CSD representation, and generates them recursively. Lefèvre observed that the number
of additions, on randomly generated constants of \(k \) bits, grows as \(O(k^{0.85}) \). Here is an example of the sequence produced for the same constant 1768559438007110. This example was obtained thanks to the program \texttt{rigo.c}

![DAG architecture for a multiplication by 1768559438007110](image)

In the Rigo/Lefèvre code, each of these intermediate variables is positive, and subtraction is allowed. Cost analysis is slightly simpler if we allow negative intermediate constants, but no subtraction. We then need unary negation to build negative constants. To minimise the use of negation, which has the same cost as addition on an FPGA, one may always transform a DAG into one with only one negation computing \(V_{-1} = -X \).

To sum up, a DAG is built out of the following primitives:

- **Shift:** \(V_z \leftarrow V_y \ll s \) (\(z = 2^i \)),
- **Neg:** \(V_z \leftarrow -V_y \) (\(z = -i \)),
- **ShiftAdd:** \(V_z \leftarrow V_y \ll s + V_j \) (\(z = 2^i + j \)).

Each variable is a single assignment one, and it is possible to associate to it

- the maximal size in bits of the result it holds \(|V_z| \),
- the cost in terms of full adder of this computation, noted cost(\(V_z \)).

Thus an optimisation algorithm will maintain a list of the already computed variables, indexed by the constants.

The size \(|V_z| \) is more or less the sum of the size of \(z \) and the size of \(X \): If \(z \geq 0 \) then \(|V_z| = |X| + \lfloor \log_2(z - 1) \rfloor \), where the \(-1\) accounts for powers of 2; If \(z < 0 \) then \(|z| = 1 + |X| + \lfloor \log_2(1 - z) \rfloor \): one has to budget an additional sign bit for sign extension. This bit will actually be useful only for multiplying by \(X = 0 \), whose multiplication by a negative constant is nevertheless positive. This detail is worth mentioning as it illustrates the asymmetry between negative constants and positive ones.

Computing the costs is easy once the \(|V_z| \) have been computed:

- The cost of \(V_z \leftarrow V_y \ll s \) is zero (wiring only).
- The cost of \(V_z \leftarrow -V_y \) is \(|V_z| \). Again, it is probably best to use this primitive only to compute \(V_{-1} = -X \).
- The cost of \(V_z \leftarrow V_y \ll s + V_j \) is \(|V_z| - s \) only: the lower bits of the result are those of \(V_j \). There is one exception: if \(V_i \) and \(V_j \) do not overlap, \(i.e. \) if \(|V_j| < s \), then the addition is free if \(j \) is positive: the higher bits are those of \(V_i \) and the lower bits those of \(V_j \). If \(j \) is negative, one needs to sign-extend \(V_j \), and the cost is again \(|V_j| - s \). This situation may only happen if the size of the constant is at least twice that of \(X \), which, strange as it may seem, happens in several applications: the high-precision polynomial evaluation that motivated [13] is an example, and the trigonometric argument reduction of [7] is another one.

This code translates to a much more compact DAG than the one presented on Figure 2, because it looks for patterns in the full constant instead of just exploiting them when they appear accidentally (and probably only at the leaves).

Still, this code isn’t targetted to our context and may actually produce suboptimal results, as synthesis results in Table 1 show. On the one side, it doesn’t try to balance the DAG to minimise the latency. On the other size, it only minimises the number of additions, but not their actual hardware cost, which depends on their size. Let us now formalise this last issue.

2.3 DAG definition and cost analysis

Each intermediate variable in a DAG holds the result of the multiplication of \(X \) by an intermediate constant. To make things clearer, let us name an intermediate variable after this constant, for instance, \(V_{255} \) holds \(255X \), and \(V_1 = X \).

```plaintext
| u0 = x | u1 = u1 + u3 |
| u3 = u0 << 19 + u0 | u2 = u2 << 2 - u2 |
| u3 = u3 << 20 | u2 = u2 << 1 |
| u3 = u3 << 4 + u3 | u2 = u3 << 5 + u0 |
| u7 = u0 << 14 - u0 | u6 = u7 << 6 + u0 |
| u6 = u7 << 6 + u0 | u5 = u6 << 10 + u0 |
| u5 = u6 << 16 | u1 = u1 + u2 |
```

![Figure 2: DAG architecture for a multiplication by 1768559438007110](image)

\[1\] http://www.vinc17.org/research/mulbyconst/
Of course, architecture generation will produce hardware only for the useful parts of the adders (see also Figure 1). Space is missing to exhibit VHDL produced by FloPoCo, but readers are invited to try it out.

This cost function describes relatively accurately the cost of a combinatorial constant multiplier. It has to be extended to the case of pipelined multipliers: one has to add the overhead of the registers, essentially for the lower bits since a registered adder has the same cost as a combinatorial one in FPGAs. In principle, one pipeline stage may contain several DAG levels, at least for the lower levels.

2.4 The IntConstMult class in FloPoCo

FloPoCo currently implements this DAG structure and outputs VHDL for it. It also implements cost analysis, but no design space exploration based on it: it currently only builds the simple DAGs illustrated by Figure 1 and Figure 2.

For comparison, two sequences produced by rigo.c, for the significands of $\pi/2 \times 2^{50}$ and $\pi/2 \times 2^{107}$, were hand-translated into FloPoCo DAGs. From the synthesis results of Table 1 (these are FP multipliers, but their area and delay are largely dominated by the significant multiplication), one observes that for the 50-bit constant, although the number of additions is smaller, the final area is larger, as many of these additions are very large. This justifies the introduction of a new cost function. More work is needed to actually use it in an optimisation program. Fair comparison would also require to apply to the DAG given by rigo.c post-optimisations suggested by [1].

3 Multiplication by a floating-point constant

For the needs of this article, an FP number is written $(-1)^s \cdot 2^E \cdot 1, F$ where $1,F \in [1,2]$ is a significand and E is a signed exponent. We shall note w_E and w_F the respective sizes of E and F, and $\mathbb{F}(w_E,w_F)$ the set of FP numbers in a format defined by (w_E,w_F). We want to allow for different values of w_E and w_F for the input X and the output R:

$$X = (-1)^{s_X} \cdot 2^{E_X} \cdot 1, F_X \quad \in \mathbb{F}(w_{E_X},w_{F_X})$$

$$R = (-1)^{s_R} \cdot 2^{E_R} \cdot 1, F_R \quad \in \mathbb{F}(w_{E_R},w_{F_R})$$

In all the following, the real value of the constant will be noted C, possibly an irrational number, and we define

$$C = (-1)^{s_C} \cdot 2^{E_C} \cdot 1, F_C$$

the unique floating-point\(^2\) representation of C such that $1,F_C \in [1,2]$. Here F_C may have an infinite binary representation. We note C_k the approximation of C rounded to the nearest on $w_{F_C} = k$ fraction bits:

$$C_k = (-1)^{s_C} \cdot 2^{E_C} \cdot 1, F_{C_k}$$

Finally, we also define the real number

$$R_1 = \frac{2}{1,F_C} \in [1,2]$$

We now describe a multiplier that computes the correct rounding R_k of $C_k \times X$. Then, Section 4 will compute the minimal k ensuring that $\forall X \in \mathbb{F}(w_{E_X},w_{F_X})$, R_k is the correct rounding of $C \times X$.

Of course, if C is already a p-bit-significand FP number, it will be $k = p$.

The architecture given by Figure 3, and implemented as the FPConstMult class in FloPoCo, is essentially a simplification of the standard FP multiplier. The main modification is that rounding is simpler. In the standard multiplier, the product of two significands, each in $[1,2]$, belongs to $[1,4]$. Its normalisation and rounding is decided by looking at the product. In a constant multiplier, it is possible to predict if the result will be larger or smaller than 2 just by comparing F_X with F_{cut} — in practice, with F_{cut} truncated to w_{F_X} bits. This is also slightly faster, as the rounding decision is moved off the critical path.

Exponent computation consists in adding the constant exponent, possibly augmented by 1 if $F_X > F_{cut}$. Sign computation is also straightforward. Exceptional case handling is also slightly simpler. For instance, if the constant has a negative exponent, one knows that an overflow will never occur. Likewise, if it is positive or zero, underflow (flush to zero) cannot happen.

4 Correct rounding of the multiplication by a real constant

This section proposes a method for computing the minimal value of $k = w_{F_C}$ allowing for correct rounding (noted \circ) of the product of any input X by C. First, for a given k, we show how to build a predicate telling if there exist values of X such that $R_k = \circ(C_kX) \neq \circ(CX)$. This allows us to look for the minimal k verifying this predicate, knowing that it is generally expected to be close to $2w_{F_X}$.

\(^2\)As the exponent is constant, the point doesn’t actually float at all.
<table>
<thead>
<tr>
<th></th>
<th>FloPoCo linear CSD</th>
<th>FloPoCo DAG CSD</th>
<th>Lefèvre/Rigo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+ LUTs delay</td>
<td>+ LUTs delay</td>
<td>+ LUTs delay</td>
</tr>
<tr>
<td>X on 24 bits, π/2 on 50 bits</td>
<td>19 435 30 ns</td>
<td>15 467 14 ns</td>
<td>12 645 16 ns</td>
</tr>
<tr>
<td>X on 53 bits, π/2 on 107 bits</td>
<td>38 2018 68 ns</td>
<td>26 1628 21 ns</td>
<td>22 1508 18 ns</td>
</tr>
</tbody>
</table>

Table 1: Synthesis results for floating-point multipliers

\[
\text{Table 1: Synthesis results for floating-point multipliers}
\]

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
\text{constant} & \text{FloPoCo linear CSD} & \text{FloPoCo DAG CSD} & \text{Lefèvre/Rigo} \\
\hline
\text{X on 24 bits, π/2 on 50 bits} & 19 & 435 & 30 ns & 15 & 467 & 14 ns & 12 & 645 & 16 ns \\
\text{X on 53 bits, π/2 on 107 bits} & 38 & 2018 & 68 ns & 26 & 1628 & 21 ns & 22 & 1508 & 18 ns \\
\hline
\end{array}
\]

Figure 3: Multiplier by an FP constant

4.1 Existence of an X such that \(o(C_kX) \neq o(CX) \)

The FP multiplier guarantees the correct rounding of the result of the multiplication by \(C_k \), that is to say,

\[
\forall X \in \mathcal{F}(w_{E_X}, w_{F_X}), \quad |R_k - C_kX| \leq \frac{1}{2} \text{ulp}(C_kX) \leq \frac{1}{2} \text{ulp}(R_k),
\]

in which “ulp(t)” (unit in the last place) is the weight of the least significant bit of \(t \).

Moreover, \(C_k \) is also the rounded-to-nearest value of \(C \). Let \(\varepsilon_a = |C_k - C| \), we have

\[
\forall X \in \mathcal{F}(w_{E_X}, w_{F_X}), \quad |R_k - CX| \leq \frac{1}{2} \text{ulp}(R_k) + X \cdot \varepsilon_a.
\]

We may assume, without any loss of generality, that \(X \) and \(C \) belong to \([1, 2]\), i.e. \(E_X = E_C = 0 \). Then we have

\[
\forall X \in \mathcal{F}(w_{E_X}, w_{F_X}), 1 \leq X < 2,
\]

\[
|R_k - CX| < \frac{1}{2} \text{ulp}(R_k) + 2\varepsilon_a \tag{1}
\]

If we can prove that for all \(X, |R_k - CX| \leq \frac{1}{2} \text{ulp}(R_k) \), then \(R_k \) will always be the closest FP number to \(CX \), which is the required property. As shown in Figure 4.1, if \(CX \) satisfies to (1) and is at a distance greater than \(\frac{1}{2} \text{ulp}(R_k) \) from \(R_k \), it is necessarily at a distance lesser than \(2\varepsilon_a \) from the middle of two consecutive FP numbers. Such a point is a rational number of the form \((2A + 1)/(2q)\), with \(2^{w_{FR}} \leq A \leq 2^{w_{FR}} + 1 \) and \(q = 2^{w_{FR} + t} \), where \(t \) is equal to 1 if \(CX \) has the same exponent as \(X \) (if \(F_X \leq F_{cut} \)), and is equal to 0 otherwise.

Therefore, to determine if an input \(X \) is such that \(R_k \) is not the correct rounding of \(CX \), one can check first if there exists an approximation to \(CX \) by a rational number of the form \((2A + 1)/(2q)\), such that \(|CX - (2A + 1)/(2q)| \leq 2\varepsilon_a \).

The mathematical tool for solving this kind of rational approximation issues is continued fractions [11]. Using them, one can design several methods [2] that make it possible either to guarantee that \(CX \) will not be at a distance lesser than \(2\varepsilon_a \) from the middle of two consecutive FP numbers (hence one can guarantee that the correct rounding of \(CX \) is always returned) or to compute all counter-examples, that is to say values of \(X \) such that
$C_k X$ rounded to nearest is not the correct rounding of CX. In the latter case, one can derive from each counter-example the value by which we should increment k in order to get a correct rounding.

4.2 A predicate for k

We assume in the sequel that $F_X < F_{cut}$ (the case $F_X > F_{cut}$ is similar). We then have $CX \in [1, 2)$. Let M_X be the integer mantissa of X, i.e. $M_X = 2^{w_{FX}} X$. We search for the integers $M_X \in \mathbb{Z}$ such that

$$\left| \frac{M_X}{2^{w_{FX}}} C - \frac{2A + 1}{2^{w_{FR} + 1}} \right| \leq 2 \varepsilon_a.$$

Depending on the relative values of w_{FR} and w_{FX}, we face two situations:

4.2.1 Case where $w_{FR} + 1 \geq w_{FX}$

We assume in this case that $k = w_{FR} + w_{FX} + 3$. We search for the integers $M_X \in \mathbb{Z}$ such that

$$\left| M_X 2^{w_{FR} - w_{FX} + 1} C - 2A - 1 \right| \leq 2^{w_{FR} + w_{FX}} \varepsilon_a.$$

Since $\varepsilon_a = |C_k - C| \leq 2^{-k-1}$, we have

$$\left| M_X 2^{w_{FR} - w_{FX} + 1} C - 2A - 1 \right| \leq 2^{w_{FR} + k+1}.$$

Note that $2^{w_{FR} - k+1} < 1/(2M_X)$ iff $2^{w_{FR} - k+2} M_X < 1$. As $M_X < 2^{w_{FX} + 1}$ and $2^{w_{FR} + w_{FX} - k + 3} \leq 1$ since we assumed $w_{FR} + w_{FX} + 3 = k$, we have $2^{w_{FR} - k+1} = 1/(2M_X)$ for all $X \in [1, 2]$; we compute the continued fraction expansion of $2^{w_{FR} - w_{FX} + 1} C$ that yields (all the) candidate values X that may possibly satisfy $o(CX) \neq o(C_k X)$. For all such input X, we first check exhaustively if those rounded values actually differ and we collect all such X in a list L. Then, we compute the minimal value η of $\left| \frac{M_X}{2^{w_{FX}}} C - \frac{2A + 1}{2^{w_{FR} + 1}} \right|$ when X ranges the list of all counter-examples and we set $k = \max(w_{FR} + w_{FX} + 3, [\log_2(\eta)] + 1)$. The inequality $k \geq \log_2(\eta) + 1$ implies $k > \log_2(\eta)$ that yields $2 \varepsilon_a \leq 2^{-k} < \eta$, which guarantees that all inputs X will satisfy $o(CX) = o(C_k X)$.

4.2.2 Case where $w_{FR} + 2 \leq w_{FX}$

We assume in this case that $k = 2w_{FX} + 2$. We search for the integers $M_X \in \mathbb{Z}$ such that

$$\left| M_X C - (2A + 1)2^{w_{FX} - w_{FR} - 1} \right| \leq 2^{1+w_{FX}} \varepsilon_a.$$

Here, again, we use $\varepsilon_a = |C_k - C| \leq 2^{-k-1}$ to infer

$$\left| M_X C - (2A + 1)2^{w_{FX} - w_{FR} - 1} \right| \leq 2^{w_{FX} - k}.$$

5 Conclusion and perspectives

One may argue that floating-point multiplication is too anecdotical to justify so much effort. Yet it illustrates what we believe is the future of floating-point on FPGAs: thanks to their flexibility, they may accommodate non-standard optimised operators, for example a correctly rounded multiplication by an irrational constant. It also makes a good case study for the implementation of such non-standard operators: they cannot be offered as off-the-shelf libraries, they have to be optimised for each application-specific context. This is the object of the FloPoCo project. Near-term future work will focus on automatically pipelining these operators for a given target frequency. Our results also suggest that there is much room for improvement in the optimisation of integer multiplication: we have defined a pertinent design space, but the exploration of this space is yet to implement.

References

<table>
<thead>
<tr>
<th>mult. by $\pi/2$, w_{FX} = 53</th>
<th>+</th>
<th>LUTs</th>
<th>delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>standard ($w_{FC} = 53$)</td>
<td>16</td>
<td>866</td>
<td>20 ns</td>
</tr>
<tr>
<td>correct rounding ($w_{FC} = 107$)</td>
<td>26</td>
<td>1628</td>
<td>21 ns</td>
</tr>
</tbody>
</table>

Table 2: The price of correct rounding

