Master equation for spin-spin correlation functions of the XXZ chain

Abstract : We derive a new representation for spin-spin correlation functions of the finite XXZ spin-1/2 Heisenberg chain in terms of a single multiple integral, that we call the master equation. Evaluation of this master equation gives rise on the one hand to the previously obtained multiple integral formulas for the spin-spin correlation functions and on the other hand to their expansion in terms of the form factors of the local spin operators. Hence, it provides a direct analytic link between these two representations of the correlation functions and a complete re-summation of the corresponding series. The master equation method also allows one to obtain multiple integral representations for dynamical correlation functions.
Liste complète des métadonnées
Contributeur : Jean Michel Maillet <>
Soumis le : lundi 24 mars 2008 - 22:43:23
Dernière modification le : vendredi 7 décembre 2018 - 12:00:03

Lien texte intégral



N. Kitanine, Jean Michel Maillet, N. A. Slavnov, Véronique Terras. Master equation for spin-spin correlation functions of the XXZ chain. Nuclear Physics B, Elsevier, 2005, 712 (3), pp.600-622. 〈10.1016/j.nuclphysb.2005.01.050〉. 〈ensl-00266563〉



Consultations de la notice