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Experimental evidence of non-Gaussian fluctuations near a critical point.
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The orientation fluctuations of the director of a liquid crystal are measured, by a sensitive po-
larization interferometer, close to the Fréedericksz transition, which is a second order transition
driven by an electric field. We show that near the critical value of the field the spatially averaged
order parameter has a generalized Gumbel distribution instead of a Gaussian one. The latter is
recovered away from the critical point. The relevance of slow modes is pointed out. The parameter
of generalized Gumbel is related to the effective number of degrees of freedom.

PACS numbers: 05.40.-a, 05.70.Jk, 02.50.-r, 64.60.-i

The fluctuations of global quantities of a system
formed by many degrees of freedom have very often a
Gaussian probability density function (PDF). This re-
sult is a consequence of the central limit theorem, which
is based on the hypothesis that the system under con-
sideration may be decomposed into many uncorrelated
domains. However if this hypothesis is not satisfied then
the PDF of global quantities may take a different form.
A few years ago it has been proposed [1, 2, 3, 4, 5, 6]
that in spatially extended systems, where the correlation
lengths are of the order of the system size, the PDF of
a global quantity χ takes under certain conditions [6] a
form which is very well approximated by :

Pa(χ) = Ka exp{−a [ba(χ−sa)−exp(−ba(χ−sa))]}. (1)

The only free parameter of Pa(χ) is a because Ka is fixed
by the normalization and ba and sa by the mean 〈χ〉 and
the variance σ2

χ of χ :

ba =
1

σχ

√

d2 ln Γ(a)

da2
, sa = 〈χ〉 +

1

ba

(

ln a − d ln Γ(a)

da

)

(2)
where Γ(a) is the Gamma function. This distribution
Pa(χ), named the generalized Gumbel distribution (GG),
is for a integer the PDF of the fluctuations of the ath

largest value ensembles of N random and identically dis-
tributed numbers. Instead the interpretation of a non
integer is less clear and has been discussed in ref. [7].
For a = π/2, the distribution Pa is approximately the
BHP distribution (from Bramwell, Holdsworth, Pinton).
It has been shown in ref. [5, 7] that the GG appears in
many different physical systems where finite size effects
are important. An example of these non Gaussian fluc-
tuations is the magnetization of the two dimensional XY
model which presents a Kosterlitz-Thouless transition as
a function of temperature. When the control parame-
ter is close to the critical value, the correlation length
of the system diverges and when it becomes of the order
of the system size, then the PDF of the fluctuations of
the magnetization has a GG form instead of the Gaus-
sian one [1]. Several other examples where the GG gives

excellent fits of the PDF of the fluctuations of global pa-
rameters are : the magnetization in Ising model close
to the critical temperature, the energy dissipated in the
forest fire model, the density of relaxing sites in granular
media models and the power injected in a turbulent flow
and in electroconvection [1, 2, 3, 4, 5, 6, 7, 8]. Except for
the two last examples which use experimental data all of
the other mentioned results are obtained on theoretical
models. Therefore it is of paramount importance to check
whether the above mentioned theoretical predictions on
GG can be observed experimentally in other phase tran-
sitions. We report in this letter the first experimental
evidence that close to the critical point of a second or-
der phase transition, the PDF of a spatially averaged
order parameter takes the GG form when the correlation
length is comparable to the size of the measuring region.
The Gaussian distribution is recovered when the system
is driven away from the critical point. We also stress that
the deviation to the Gaussian PDF are produced by very
slow frequencies.

In our experiment, these properties of global variables
have been studied using the Fréedericksz transition of a
liquid crystal (LC) submitted to an electric field ~E [9, 10].
In this system the measured global variable χ is the spa-
tially averaged alignment of the LC molecules, whose
local direction of alignment is defined by the unit vec-
tor ~n. Let us first recall the general properties of the
Fréedericksz transition. The system under consideration
is a LC confined between two parallel glass plates at a
distance L (see fig. 1). The inner surfaces of the confining
plates have transparent ITO electrodes, used to apply the
electric field. Furthermore the plate surfaces, are coated
by a thin layer of polymers (PVA), which is mechani-
cally rubbed in one direction. This surface treatment
causes the alignment of the LC molecules in a unique di-
rection parallel to the surface (planar alignment),i.e. all
the molecules have the same director parallel to x-axis
and ~n = (1, 0, 0) (see fig. 1). The LC is submitted to
an electric field perpendicular to the plates. To avoid
the electrical polarization of the LC, the electric field has
a zero mean value which is obtained by applying a sinu-
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FIG. 1: a) The geometry of Fréedericksz transition : director
configuration for V0 < Vc and director configuration for V0 >
Vc. b) Definition of angular displacement θ of one nematic ~n.
c) Experimental setup. A phase shift Φ is induced by the LC
placed at the focal point of a telescope. Φ is measured using
a polarization interferometer [16].

soidal voltage V at a frequency of 1 kHz between the ITO
electrodes, i.e. V =

√
2V0 cos(2π · 1000 · t) [9, 10]. When

V0 exceeds a critical value Vc the planar state becomes
unstable and the LC molecules, except those anchored to
the glass surfaces, try to align parallel to the field, i.e.
the director, away from the confining plates, acquires a
component parallel to the applied electric field (z-axis)
(see fig.1a)). This is the Fréedericksz transition which is
second order [9, 10]. For V0 close to Vc the motion of
the director is characterized by its angular displacement θ
in xz-plane (fig. 1b)), whose space-time dependence has
the following form : θ = θ0(x, y, t) sin

(

πz
L

)

[9, 10, 11].
If θ0 remains small then its dynamics is described by a
Ginzburg-Landau equation and one expects a mean-field
critical phenomenon [9, 10, 11], in which θ0 is the order

parameter and ǫ =
V 2

0

V 2
c
− 1 is the reduced control param-

eter. The global variable of interest is the spatially aver-

aged alignment of the molecules, precisely χ = 4

L

∫ L

0
<

(1 − nx) >xy dz ≃
∫∫

A θ2
0dxdy/A, where A = πD2/4 is

the area of the measuring region of diameter D in the
(x, y) plane and < . >xy stands for mean on A. As χ is
a global variable of this system, its fluctuations, induced
by the thermal fluctuations of θ0, depend on the ratio
between D and the correlation length ξ of θ0. The an-
gle θ0 is a fluctuating quantity whose correlation length
and correlation time are respectively: ξ = L(π

√
ǫ)−1

and τ = τ0/ǫ where τ0 is a characteristic time which
depends on the LC properties and L2 [9, 10, 11]. Many
aspects of the director fluctuations, such as power spectra
and correlation lengths, at Fréedericksz transition have
been widely studied both theoretically [9, 10, 11] and
experimentally [12, 13, 14, 15]. However the statisti-

cal properties of the spatially averaged director fluctua-
tions have never been characterized as a function of the
ratio Neff = D/ξ. As this ratio is the key parameter
of our study, we have performed the experiment in cells
with three different thickness L = 25µm, L = 20µm and
L = 6.7µm. The results reported here are mainly those
of the thinner cell and a detailed comparison with those
of the others will be the aim of a longer paper. The cells
are filled by a LC having a positive dielectric anisotropy
ǫa (p-pentyl-cyanobiphenyl, 5CB, produced by Merck).
For this LC Vc = 0.720 V and τo = 55 ms in the cell with
L = 6.7 µm.

Let us describe now how χ has been measured. The
deformation of the director field produces an anisotropy
of the refractive index of the LC cell. This optical
anisotropy can be precisely estimated by measuring the
optical path difference Φ between a light beam crossing
the cell linearly polarized along x-axis (ordinary ray) and
another beam crossing the cell polarized along the y-axis
(extraordinary ray). The experimental set-up employed
is schematically shown in fig. 1c). The beam is pro-
duced by a stabilized He-Ne laser (λ = 632.8 nm) and
focused onto the liquid crystal cell by a converging lens
(focal length f = 160 mm). A second lens with same
focal length is placed after the cell to have a confocal op-
tical system, which insures that inside the cell the laser
beam is parallel and has a diameter D of about 125 µm.
The beam is normal to the cell and linearly polarized at
45◦ from the x-axis, i.e., can be decomposed in an ex-
traordinary beam and in an ordinary one. The optical
path difference, between the ordinary and extraordinary
beams, is measured by a very sensitive polarisation in-
terferometer [16]. After some algebra the phase shift Φ
is given by :

Φ =

〈

2π

λ

∫ L

0

(

none
√

n2
0
cos(θ)2 + n2

e sin(θ)2
− n0

)

dz

〉

xy

(3)
with (no, ne) the two anistotropic refractive indices [9,
10]. In term of χ, we get :

Φ = Φ0

(

1 − ne(ne + no)

4n2
o

χ

)

Φ0 ≡ 2π

λ
(ne − no)L (4)

The phase Φ, measured by the interferometer, is acquired
with a resolution of 24 bits at a sampling rate of 1024
Hz. The instrumental noise of the apparatus [16] is three
orders of magnitude smaller than the amplitude δΦ of
the fluctuations of Φ induced by the thermal fluctuations
of χ.

We first check the accuracy of our experimental setup
by measuring the time-average 〈χ〉 of the global vari-
able χ and compare it to the results of a mean-field the-
ory. In figure 2, we plot the measured 〈χ〉 versus the
control parameter ǫ. 〈χ〉 vanishes for ǫ < 0 and in-
creases for ǫ > 0. The experimental results are in very
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FIG. 2: a) Average value of the the global variable χ as a
function of ǫ (◦). Continuous line is a theoretical prediction
based on the Ginzburg-Landau equation for θ0 using the val-
ues of this LC, with no adjustable parameters. b) Power spec-
trum Sχ and the Lorentzian fit (continuous line) measured at
ǫ = 2 · 10−3 (◦) and at ǫ = 0.16 (�).

good agreement with theoretical predictions based on the
Ginzburg-Landau equation using the physical properties
of this LC without adjustable parameters. We observe
that the model is valid even for large values of ǫ.

To shed some light on the dynamics of the fluctuations,
we first measure the power spectral density Sχ of χ. As
the slow thermal drift of the interferometer may perturb
the statistics of the acquired signals, χ is high-pass fil-
tered at 2 mHz. The power spectrum Sχ, measured at
ǫ = 0.16 and ǫ = 0.002, are plotted in figure 2. They can
be fitted by a Lorentzian for ǫ > 0 :

Sχ =
S0(ǫ)

1 + (f/fc(ǫ))2
(5)

S0(ǫ) represents the amplitude of fluctuations and fc(ǫ)
is proportional to the inverse of the relaxation time τ(ǫ)
of θ0 (fc = (πτ)−1). This form is the same found by
Galatola for light-scattering measurements [13, 14] but
we have increased the resolution at low frequencies of
about three orders of magnitude. The values of S0 and
fc are obviously dependent on ǫ and its sign. For ǫ < 0,
Sχ is the sum of two Lorentzian functions with two cut-off
frequencies. Each frequency corresponds to a relaxation
of the director of the LC in two different directions. The
lowest frequency, which corresponds to θ, depends on ǫ
contrary to the other frequency. The cut-off frequency
fc decreases with ǫ with a linear behavior as predicted
by the Ginzburg-Landau model, i.e. 1/τ = ǫ/τo, where

FIG. 3: a),b),c),d) PDF of y = χ−〈χ〉
σ

at ǫ ∼ 0.16, 8 ·10−3, 4 ·

10−3, and 2 · 10−3 respectively. Dashed line is a Gaussian fit.
In b), c) and d) the continuous lines are the GG distributions
with a = 23.5, 6.6, and 2.95 respectively.

the value of τ0 agrees with that obtained from the LC
parameters. The amplitude S0 has a complex dependence
on ǫ. This dependence, which can be understood on the
basis of the Ginzburg-Landau model, is not relevant for
the results presented in this letter and will be discussed
in a longer report.

We now turn to the main point of this letter that is
the statistical description of the fluctuations of χ. We

consider the normalized order parameter : y = χ−〈χ〉
σ

where σ2 is the variance of χ. The probability density
functions of y are plotted in Fig. 3 for three different
values of ǫ. We find that far from the critical value (ǫ =
0.16) the distribution is Gaussian (Fig. 3a)). In contrast,
for a value of ǫ closer to 0, typically ǫ ∼ 2 · 10−3, the
PDF of fluctuations of χ are not Gaussian as it is clear
in fig.3 d). In figure 3b) and c), we plot the distribution
of χ for two intermediate values of ǫ. The exponential
tail becomes more important when ǫ decreases. We want
now to compare this distribution to a GG (eq. (1)). The
value of the free parameter a is given by the skewness of
the fluctuations [4] :

γ = 〈y3〉 = −(
d3 ln Γ(a)

da3
)/(

d4 ln Γ(a)

da4
)3/2 ∼ −1/

√
a (6)

We obtain a = 2.95 at ǫ ∼ 2 ·10−3, a = 6.6 at ǫ ∼ 4 ·10−3

and a = 23.5 at ǫ ∼ 8 · 10−3. Using these values in
eq. (1), we get the PDFs plotted in fig 3 as continuous
lines which agree quite well with the experimental dis-
tributions. The observation of the GG for ǫ very close
to 0 is the main result of this letter. One may won-
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FIG. 4: a) The skewness γ of the fluctuations at ǫ = 2 · 10−3

is plotted as a function of the cutoff frequency fHP of a high
passed filter we apply to the acquired time serie. fc represents
the inverse of the relaxation time of the signal. γ−1 is linear
in fHP/fc. b) γ is plotted as a function of ǫ. γ−1 is linear in
ǫ.

der why the GG is observed in our experiment and not
in other experiments on phase transitions. To answer
to this question, let us first consider the slow modes of χ
whose relevance for the GG distribution has been pointed
in ref. [5]. To confirm this point the time evolution of χ
acquired at ǫ = 2 · 10−3 is high-passed filtered at various
cut-off frequencies fHP. The skewness γ of the filtered
signal is plotted as a function of fHP (figure 4a)). When
fHP is increased, we see that the skewness decreases (γ−1

is linear in fHP). A Gaussian behavior is retrieved for
fHP > 10fc ≃ 0.1 Hz.These experimental results indi-
cate that the slow modes, with frequency lower than fc,
are responsible for the non-gaussian PDF of this global
parameter. Previous experiments on Fréedericksz tran-
sition had no sufficient resolution at low frequencies and
they erased this effect. Let us now consider the correla-
tion length ξ of θ0 in the plane (x, y). This correlation
length has to be compared with the diameter of the mea-
suring volume, that, in our experiment, is determined by
the laser beam diameter D inside the cell. At ǫ = 0.002,
we find ξ = 47 µm, that is ξ ∼ D/3. In other words
the laser detects the fluctuations of only a few coherent
domains and, in agreement with the theoretical predic-
tions, these fluctuations have the GG distribution. The
effective number of degrees of freedom of the system is
related to the ratio Neff = D/ξ ∝ √

ǫ. In figure 4b),
we plot the values of the skewness as a function of ǫ. We
observe that γ goes to zero for increasing ǫ and the Gaus-

sian behavior is retrieved for ǫ > 0.03. The inverse of γ is
linear in ǫ, that is γ−1 = −√

a = p + qǫ = p + q̃N2

eff
. We

measure p = −0.51 and q = −521. Thus the free param-
eter a of the GG is a measure of the effective number of
degrees of freedom as underlined in ref. [4, 17]. For the
magnetization of the two dimensional XY model it has

been found that: γ−1 ∼ −√
a ∼ −

√

2

π

[

1 + 1

2

(

Neff

2π

)2
]

.

The dependence of
√

a on Neff is the same than in our
experiment but the coefficients depend on the system.
As the ξ is proportional to the cell thickness, we have
verified that for cells having larger L, the GG is obtained
for larger values of ǫ. This is indeed the case and the
detailed description of the results of the other cells will
be the subject of a long article.

In conclusion, we have experimentally shown, using the
Fréedericksz transition of a LC, that in a second order
phase transition the fluctuations of a spatially extended
quantity have a GG distribution if the coherence length
is of the order of size of the measuring area. The slow
modes, corresponding to large scales, are responsible for
this non-Gaussian behavior. This observation confirms
several theoretical predictions on GG, which have never
been observed before in an experiment on a phase tran-
sition.
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