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Abstract

Suppose the polynomials f and g in K[x1, . . . , xr] over the field K are determinants of
non-singular m×m and n×n matrices, respectively, whose entries are in K∪{x1, . . . , xr}.
Furthermore, suppose h = f/g is a polynomial in K[x1, . . . , xr]. We construct an s × s
matrix C whose entries are in K∪{x1, . . . , xr}, such that h = det(C) and s = γ(m+n)6,
where γ = O(1) if K is an infinite field or if for the finite field K = Fq with q elements
we have m = O(q), and where γ = (logq m)1+o(1) if q = o(m). Our construction utilizes
the notion of skew circuits by Toda and weakly-skew circuits by Malod and Portier.
Our problem was motivated by resultant formulas derived from Chow forms.

Additionally, we show that divisions can be removed from formulas that compute
polynomials in the input variables over a sufficiently large field within polynomial for-
mula size growth.

1. Introduction

1.1. Motivation

Our investigated problem was motivated by the question of resultant formulas without divi-
sion. Originally, the resultant of a set of t homogeneous polynomial equations f1 = · · · = ft =
0 in t variables has been expressed as a GCD of determinants, whose matrices have the coeffi-
cients of the polynomials as entries. Macaulay [1916] gave a formula of a quotient of two such
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determinants. In special cases, one can remove the division and construct a single determinant
that is the resultant [Khetan 2002; Eisenbud et al. 2003; Khetan et al. 2004]. Those construc-
tions use properties of exact sequences of exterior algebras. However, an algebraic complexity
theoretic approach can remove the division in the general case in an entirely different manner.
Take Macaulay’s formula resultant(f1, . . . , ft) = det(A)/ det(B), where the larger matrix A
has dimensions m × m. One converts the determinants to straight-line programs, removes
the division by Strassen’s [1973] method, or computes their GCD [Kaltofen 1988], paral-
lelizes the straight-line program to O((log m)2) depth [Valiant et al. 1983; Miller et al. 1988],
converts the resulting division-free straight-line program to a formula of quasi-polynomial
size mO(log m), and finally writes the resultant formula as the projection of a determinant
of a matrix C of dimensions k × k where k = mO(log m) [Valiant 1979]. Note that C with
det(C) = det(A)/ det(B) has as entries the coefficients of the original polynomials or con-
stants. Here we shall show that there is a matrix C̄ of dimensions O(m6) whose entries are
the coefficients of the original polynomials or constants with det(C̄) = det(A)/ det(B).

1.2. Results and Used Approach

Our main result is the following theorem.

Theorem 1. Let f, g, h ∈ K[x1, . . . , xr] \ {0}, where K is a field, such that f/g = h and f is
a projection à la Valiant [1979] of an m × m determinant and g is a projection of an n × n
determinant (n ≤ m or n > m), meaning that there are matrices A ∈ K[x1, . . . , xr]

m×m and
B ∈ K[x1, . . . , xr]

n×n, whose entries are in K∪{x1, . . . , xr} with f = det(A) and g = det(B).
Then there exists an s×s matrix C whose entries are in K∪{x1, . . . , xr} such that h = f/g =
det(C) and s is polynomial in m + n, that is, the exact quotient of f and g is a projection of
a determinant of polynomial dimension. More precisely,

(i) if K is infinite or if m = O(|K|) we can take s = O((m + n)6);

(ii) if K is a small finite field, we can take s = O((m + n)6 · M(log|K| m)), where M(l) =
l · (log l) · (loglog l).

We prove our result via the notion of weakly-skew division-free arithmetic circuits by
Malod and Portier [2007]. We consider division-free arithmetic circuits (straight-line pro-
grams), which are directed acyclic graphs (DAGs) whose nodes have fan-in at most two and
which perform addition, subtraction and multiplication. The operands are the values in
previous nodes, constant scalars or input variables. The values of designated output nodes
are multivariate polynomials in the input variables. The size of the graph is the number of
arithmetic operations (sequential complexity) performed. This definition of size is consistent
with [Valiant 1979], for instance. Malod and Portier [2007] work with a slightly different
definition of size, in which input nodes (variables or constants) are counted along with arith-
metic nodes. To avoid any confusion, we will call this second notion fat size. The fat size
of a circuit is therefore equal to the sum of its size and of the number of input nodes. It is
bounded by 3 times the size since the number of input nodes is equal to at most twice the
number of arithmetic nodes.
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Toda [1992] introduces skew division-free arithmetic circuits, which have the property
that at least one of the two operands in each multiplication node is either a scalar constant
or an input variable. Toda proves that the determinant polynomial of an m×m matrix can
be computed by a skew circuit of size O(m20). In weakly-skew circuits at least one of the two
operands to a multiplication node must be computed by a separate circuit. Figure 1 shows an
example of a weakly-skew circuits. The separate circuits for the operands of multiplication
nodes are marked by dashed boxes.
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Figure 1: A weakly-skew circuit [Malod and Portier 2007, Fig. 4]

Valiant [1979] proves that every formula of size s is the projection of an (s + 2)× (s + 2)
determinant. In formulas, both operands to all nodes are computed by separate formu-
las. Valiant’s proof can be generalized to show that every polynomial that is computed
by a weakly-skew circuit of fat size s is the projection of an (s + 1) × (s + 1) determi-
nant [Malod and Portier 2007, Lemma 6], also using negated input variables. Furthermore,
the division-free parallel circuits by Berkowitz [1984] for the characteristic polynomial of an
m × m matrix can be converted to weakly-skew circuits of size O(m5) [Malod and Portier
2007, Proposition 5]. In Section 3 we apply Strassen’s [1973] technique for elimination of di-
visions directly to the characteristic polynomials derived from A and B in Theorem 1 above,
thus obtaining a division-free weakly-skew circuit for h = det(A)/ det(B), which then is the
projection of a determinant. Note that the technique in [Canny 1990], which is not directly
applicable, assumes that the diagonals of A and B hold a single separate variable, implying
also n < m. Along the way we show in Section 2 that weakly-skew circuits can be simulated
by skew circuits with an increase in size by a constant factor only; and that Toda’s O(m20)
bound can be reduced to O(m5).

Since weakly-skew circuits are projections of determinants, we have the following corollary
to Theorem 1 and our transformation results to skew circuits.

Corollary 1. Let f, g, h ∈ K[x1, . . . , xr] \ {0}, where K is a field with deg(g) = O(|K|) such
that f/g = h and f and g are computed by a weakly-skew circuit of size s with inputs
x1, . . . , xr. Then h can be computed by a skew circuit of size O(s6).

Suppose in the above corollary that f and g are computed by division-free formulas of
size ≤ s. Then h = f/g is a projection of a determinant of a matrix of dimension O(s6). In
Section 4 we show that there exists a division-free formula of size (s5) that computes h = f/g.
As a consequence of the latter result, we can show that a polynomial in K[x1, . . . , xr] that is
computed by a formula of size s with additions, subtractions, multiplications and divisions,
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where K is a sufficiently large field and x1, . . . , xr are input variables, can be computed by a
division-free formula of size sO(1) (see Theorem 3 on page 10).

2. From Weakly-skew to Skew Circuits

In this section we show that weakly-skew circuits can be efficiently simulated by skew circuits.
This fact will be used in the proof of Theorem 1, part (ii) given in Section 3.2.

Two algorithms for converting weakly-skew circuits into skew circuits are already de-
scribed by Malod and Portier [2007]. The polynomial computed by a weakly-skew circuit of
fat size m can be converted into a determinant of size m + 1 by [Malod and Portier 2007,
Lemma 6]. One can then apply Toda’s algorithm, which evaluates a determinant of an m×m
matrix by a skew circuit of size O(m20). It is observed in [Malod and Portier 2007, Section
5.2] that the role of the determinant in this first algorithm can be played by the polynomial
Fm = Trace(Xm). The method described below is even simpler, and more efficient. As a
byproduct, we obtain an improvement to O(m5) of Toda’s original O(m20) bound.

Remark 1. In the determinant constructed in [Malod and Portier 2007, Lemma 6], all input
variables are negated. This is not a problem for converting a weakly-skew circuit into a skew
circuit with the algorithm described in the paragraph above. However, the occurence of
negated input variables makes their construction unsuitable for the proof of Theorem 1. To
circumvent this difficulty, one can modify slightly Malod and Portier’s condition to obtain a
matrix of size m + 1 without negated variables. This can be done in two steps:

1. In their proof of Lemma 6 Malod and Portier first construct a matrix B of size m such
that det B = −f , where f is the polynomial computed by a weakly-skew circuit of
size m. In this matrix all variables are negated (and all diagonal entries are equal to 1
except the first, which is 0). Now let C = −B: we have det C = ±f , and there are no
negated variables in C.

2. If m is odd we have det C = −f . As Malod and Portier, we can add one last row and
one last column full of 0’s (except for an entry equal to −1 in the bottom right corner)
to obtain a matrix of size m + 1 whose determinant is equal to f .

We shall work with acyclic edge-weighted directed graphs. We recall that the weight of a
path in such a graph is defined as the product of the weights of the edges appearing in the
path. If s and t are two vertices of G, the weight of (s, t) in G is defined as the sum of the
weights of all paths from s to t.

Lemma 1. Let W be a weakly-skew circuit of fat size m. There exists an acyclic directed
graph G, with two distinguished vertices s and t such that:

(i) The weight of (s, t) in G is the polynomial computed by W , and G is of size at most
m + 1.

(ii) Every vertex in G other than s has either a single incoming edge, of weight equal to an
input of W or to the constant 2, or two incoming edges, each of weight 1.
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This is essentially Lemma 5 of Malod and Portier [2007]. In that lemma the authors prove
the existence of a graph G satisfying (i). An inspection of their proof shows that the graph
that they construct also satisfies the second property.

Proposition 1. Let W be a weakly-skew circuit of fat size m. There exists a skew circuit
W ′ which is equivalent to W (i.e., computes the same polynomial), has the same number of
input nodes as W , and has at most m arithmetic nodes (W ′ is therefore of fat size at most
2m).

The algorithmic idea behind this result is quite simple: for each vertex v in the graph G
of Lemma 1 we compute the weight ω(v) of the pair (s, v). If v has a single incoming edge
of weight x connecting s to v then of course ω(v) = x. If v has a single incoming edge of
weight x connecting a vertex v′ 6= s to v, we can apply the formula ω(v) = x × ω(v′) if x
is an input of W . If x is the constant 2, we apply the formula ω(v) = ω(v′) + ω(v′) (one
could of course use the the formula ω(v) = 2 × ω(v′) instead, at the cost of introducing one
additional constant input in W ′). Finally, if v has two incoming edges of weight 1, connecting
the vertices v1 and v2 to v, we have ω(v) = ω(v1) + ω(v2). The resulting circuit satisfies the
requirements of Proposition 1.

Corollary 2. The determinant of a m×m matrix can be computed by a skew circuit of size
O(m5).

This is a significant improvement over the O(m20) bound given by Toda [1992]. Corol-
lary 2 is an immediate consequence of Proposition 1 since, as pointed out in section 1, the
determinant of a m × m matrix can be computed by a weakly-skew circuit of size O(m5).

Skew circuits will be useful in Section 3.2 due to the following proposition and the sub-
sequent remarks.

Proposition 2. Let K be a field and let L = K(θ) be an algebraic extension of K of degree
d = [L : K]. Let f ∈ L[x1, . . . , xr] be a polynomial computed by a skew circuit WL of size m,
with input nodes labeled by variables from {x1, . . . , xr} or constants from L. Let us expand f
according to the powers of θ: one can write f =

∑d−1
j=0 θjfj, where fj ∈ K[x1, . . . , xr].

There exists a skew circuit WK of size O(d2m) with at most d output nodes which computes
simultaneously all the polynomials fj. Moreover, WK uses only constants from K.

Proof. Let α be a node of WL computing a polynomial fα ∈ L[x1, . . . , xr]. We use a standard
technique: in WK, fα will be represented by d nodes computing polynomials f0,α, . . . , fd−1,α ∈

K[x1, . . . , xr] such that fα =
∑d−1

j=0 θjfj,α. If α is an input node labeled by some variable xi

we can take (f0,α, . . . , fd−1,α) = (xi, 0, . . . , 0); if α is labeled by the constant
∑d−1

j=0 ajθ
j we

can take (f0,α, . . . , fd−1,α) = (a0, a1, . . . , ad−1). Assume now that α is an addition node with
inputs coming from nodes β and γ. In this case we simply perform componentwise additions
since fj,α = fj,β + fj,γ.

Finally, the case where α is a multiplication node can be split in two subcases since WL

is skew: multiplication by a variable xi, or multiplication by a constant from L. In the
first subcase, assume that α multiplies the output of node β by xi. We have fj,α = xifj,β.
Observe that the d resulting multiplications are skew. In the second subcase, assume that α
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multiplies the output of node β by a constant η ∈ L. Multiplication by a constant is a K-
linear operation. The tuple (f0,α, . . . , fd−1,α) can therefore be obtained from (f0,β, . . . , fd−1,β)
by multiplication by an appropriate d × d matrix Aη with entries in K. The corresponding
matrix-vector product can be computed in O(d2) arithmetic operations, and once again the
resulting multiplications are all skew. �

Remark 2. We will apply this result in Section 3.2 in a situation where we know that the
output of WL lies in fact in K[x1, . . . , xr]. In this case, the subcircuit associated to the first
output node of WK computes the same polynomial as WL.

Remark 3. Proposition 2 also applies to weakly-skew rather than skew circuits. First one
converts the weakly-skew circuit into a skew circuit using Proposition 1. One can then apply
Proposition 2 to the skew circuit.

Remark 4. The size of WK in Proposition 2 can be reduced to O(md (log d) loglog d) by
fast polynomial multiplication algorithms [Cantor and Kaltofen 1991] and fast division with
remainder algorithms [von zur Gathen and Gerhard 1999, Section 9.1].

3. Elimination of Divisions

3.1. Large Coefficient Fields

Our symbolic determinants live in a multivariate polynomial domain K[x1, . . . , xr], where K

is a sufficiently large field. Consider we have non-singular matrices

A(x1, . . . , xr) ∈ K[x1, . . . , xr]
m×m and B(x1, . . . , xr) ∈ K[x1, . . . , xr]

n×n,

whose entries are either variables or constants, i.e.,

∀i, j, k, l with 1 ≤ i, j ≤ m, 1 ≤ k, l ≤ n : (A)i,j, (B)k,l ∈ K ∪ {x1, . . . , xr}.

Here (M)i,j denotes the element in row i and column j in the matrix M .
We suppose now that det(A)/ det(B) ∈ K[x1, . . . , xr], that is the polynomial division

by det(B) is exact. We construct a division-free weakly-skew arithmetic circuit W of size
O((m + n)6), i.e, polynomial in the dimensions of A and B, that computes the polynomial
det(A)/ det(B).

The construction follows Strassen’s [1973], using Berkowitz’s [1984]‡ and Chistov’s [1985]
weakly-skew arithmetic circuits for the characteristic polynomial. Let u1, . . . , ur ∈ K be such
that both UA = A(u1, . . . , ur) and UB = B(u1, . . . , ur) are non-singular. Such values always
exist if |K| > m ≥ deg(det(A)) [Schwartz 1980; Zippel 1979].

‡Sasaki and Murao [1982] compute the characteristic polynomial of an n × n matrix with entries in a
commutative ring in nω+1+o(1) ring operations, and Berkowitz [1984, Section 4] conjectures that there exists
a division-free arithmetic circuits of size O(nω) for the characteristic polynomial, given that n × n matrices
can be multiplied with O(nω) operations. We can set ω = 2.375477 [Coppersmith and Winograd 1990]. The
Sasaki&Murao/Berkowitz problem remains open. The best division-free complexity for the characteristic
polynomial is O(n2.697263) [Kaltofen and Villard 2004].
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Now consider

det(UB − λ(UB − B)) = det(UB) · det(In − U−1
B λ(UB − B)
︸ ︷︷ ︸

λB̄

) ∈ K[x1, . . . , xr][λ], (1)

where In denotes an n-dimensional identity matrix. Now the coefficient of λi in (1) is the
homogeneous part, homT (det(B), i), of total degree i of det(B) represented in the term basis

T = {(u1 − x1)
d1 · · · (ur − xr)

dr | dj ≥ 0}, (2)

namely

det(B) =
n∑

i=0

∑

d1+···+dr=i

cd1,...,dr
(u1 − x1)

d1 · · · (ur − xr)
dr

︸ ︷︷ ︸

homT (det(B), i)

where cd1,...,dr
∈ K.

Note that evaluation (1) at λ = 1 gives det(B). We compute 1/ det(UB − λ(UB − B)) as a
truncated power series in K(u1 − x1, . . . , ur − xr)[[λ]]. Because the constant coefficient of (1)
as a polynomial in λ is in K, the coefficients of λi in the power series for the reciprocal are
homogeneous polynomials of degree i in the basis (2). We present a weakly-skew circuit for
the coefficients of λi.

Let M1...l,1...l denote the top left l × l principal submatrix of a matrix M . Chistov’s
algorithm is based on the identities

1

det(In − λB̄)
=

n∏

j=1

det(Ij−1 − λM1...j−1,1...j−1)

det(Ij − λM1...j,1...j)

=
n∏

l=1

(
(Il − λB̄1...l,1...l)

−1
)

l, l

=
n∏

l=1

(
∞∑

k=0

λkB̄k
1...l,1...l

)

l, l

≡

n∏

l=1

(
m∑

k=0

(B̄k
1...l,1...l)l, lλ

k

)

(mod λm+1) (3)

≡ 1 + q1λ + · · · + qmλm (mod λm+1). (4)

We use weakly-skew circuits to compute the coefficients qk. Each (B̄k
1...l,1...l)l, l in (3) is com-

puted as

(

B̄1...l,1...l · (B̄1...l,1...l · (· · · (B̄1...l,1...l






0
...
0
1




) . . .))

)

l

by weakly-skew circuits of size O(mn2). The weakly-skew circuits for carrying out the
modular product (4) require no more than m + 1 copies of the circuits for each coefficient
(B̄k

1...l,1...l)l, l. Thus a weakly-skew circuit W1 of size O(m2n3) computes all qk in (4).
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Malod and Portier [2007, Proposition 5] compute the coefficients of

1 + p1λ + · · · + pmλm = det(Im − U−1
A λ(UA − A))

via a weakly-skew circuit W2 of size O(m5) by Berkowitz’s algorithm. Alternatively and less
efficiently, one could as above compute

1

det(Im − U−1
A λ(UA − A))

≡ 1 + p̄1λ + · · · + p̄mλm (mod λm+1),

and compute the truncated power series of the reciprocal as

1

1 + p̄1λ + · · · + p̄mλm
≡

m∑

l=0

(−p̄1λ − · · · − p̄mλm)l (mod λm+1) (5)

≡ 1 + p1λ + · · · + pmλm (mod λm+1),

again repeating the circuits which compute the coefficients p̄i in the truncated polynomial
powers.

A weakly-skew circuit then carries out the multiplication

det(UA − λ(UA − A))

det(UB − λ(UB − B))
≡

det(UA)

det(UB)
(1 + p1λ + · · · + pmλm)

· (1 + q1λ + · · · + qmλm) (mod λm+1) (6)

≡ ̺0 + ̺1λ + · · · + ̺mλm (mod λm+1).

Here and before, the truncation could be performed at deg(det(A)/ det(B)) + 1 ≤ m + 1.
Again, we need no more than m + 1 copies of the circuit W1 for the coefficients qk or of W2

for pk. Because h = det(A)/ det(B) has total degree ≤ det(A) ≤ m and ρi = homT (h, i), we
can compute

det(A)

det(B)
= ̺0 + ̺1 + · · · + ̺m

by a division-free weakly-skew arithmetic circuit of size O(min{m3n3 + m5,m2n3 + m6}).

Remark 5. The above techniques also yield a single determinant of a matrix of polynomially-
sized dimensions for a fraction of products of determinants (

∏

i A
[i])
/
(
∏

j B[j]) ∈ K[x1, . . . , xr],
with and without using block diagonal matrices. Such fractions occur when computing the
resultant via Koszul complexes§.

3.2. Small Coefficient Fields

When the coefficient field K has few elements, divisions by zero may occur at all values
u1, . . . , ur ∈ K and there is no no-singular UB in Section 3. We can nonetheless obtain the
bound of Theorem 1.(ii) using a field extension.

Indeed, from Section 3 we know that the quotient h = f/g can be computed by a pol-
ynomial size weakly-skew circuit WL with constants from L if L is an extension of K with

§Ágnes Szántó has pointed this application out to us.
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at least m + 1 elements. We can therefore work with an extension of degree O(log|K|(m)).
Since h is actually a polynomial with coefficients in K, by applying Proposition 2 and the two
subsequent remarks to WL we obtain a skew circuit WK which computes h using constants
from K only. Finally, WK can be transformed into a determinant by [Malod and Portier 2007,
Lemma 6] as in the proof of Theorem 1(i).

4. Formulas With Divisions

We shall prove the following theorem.

Theorem 2. Let f, g, h ∈ K[x1, . . . , xr]\{0}, where K is a field with |K| > deg(f)+deg(g)×
deg(h), such that f/g = h and f is computed by a division-free formula of size sf and g is
computed by a division-free formula of size sg with inputs x1, . . . , xr. Then h can be computed
by division-free formula of size O((sf + sg)

5).

The proof uses interpolation (cf. [Kaltofen 1988, Section 5]). Denote by the total degrees
δf = deg(f), δg = deg(g) and δh = deg(h). Note that δf ≤ sf and δg ≤ sg. As in Section 3,
let u1, . . . , ur ∈ K such that g0 = g(u1, . . . , ur) 6= 0. Again as in (5) and (6) using the term
basis (2), we compute

δh∑

i=0

homT (h, i)λi ≡
( δf∑

i=0

homT (f, i)λi
)/( δg∑

i=0

homT (g, i)λi
)

(mod λδh+1)

≡
1

g0

( δf∑

i=0

homT (f, i)λi
)

·

δh∑

l=0

(
−

1

g0

)l
( δg∑

i=1

homT (g, i)λi
)l

︸ ︷︷ ︸

H(x1, . . . , xr, λ)

(mod λδh+1). (7)

We compute the polynomial H in (7) of degree in λ of no more than D = δf + δgδh by
interpolation at λ = v0, . . ., vD ∈ K as an exact polynomial before truncating modulo λδh+1.
Note that for all j we have

δf∑

i=0

homT (f, i)vi
j = f(u1 − vj(u1 − x1), . . . , ur − vj(u1 − xr))

and
δg∑

i=1

homT (g, i)vi
j = g(u1 − vj(u1 − x1), . . . , ur − vj(u1 − xr)) − g0, (8)

and therefore can obtain the values in the inputs x1, . . . , xr by formulas. We have formulas for
each H(x1, . . . , xr, vj) by repeating the formulas (8) no more than δh(δh + 1)/2 many times.
Interpolation is a matrix times vector product and again is done by repeating the formulas
for H(x1, . . . , xr, vj) no more than D +1 times. Finally, we add the thus obtained first δh +1
coefficients in λ of H. Note that all divisions are by scalars independent on x1, . . . , xr.

Theorem 2 together with the well-known parallel circuits for formula evaluation allows
the removal of divisions in formulas altogether. When there are division nodes in formulas
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with inputs x1, . . . , xr, it is assumed that all rational functions in K(x1, . . . , xr) by which is
divided are non-zero. Formulas with a divisions by a generic 0 are naturally excluded. For
certain values in K for the inputs x1, . . . , xr a zero division can occur.

Theorem 3. There exists a real constant γ > 0 with the following properties. Let h ∈ K[x1,
. . ., xr] be computed by a formula (with divisions) of size s with inputs x1, . . . , xr. Assume K

is a field with |K| > sγ. Then h can be computed by division-free formula of size O(sγ).

In the following proof γ1, γ2 and γ3 are fixed positive real constants. The proof observes
that h is computed by a circuit V1 of fan-in at most 2 with divisions of depth ≤ γ1 log(s)
([Kosaraju and Delcher 1988] and the references there). By computing unreduced numerator
and denominator polynomials for each node separately, we have two division-free circuits
V2 and V3 of depth ≤ γ2 log(s) that compute polynomials f and g such that f/g = h.
We can convert V2 and V3 into division-free formulas of depth ≤ γ2 log(s), hence of size
< 2γ2 log(s)+1 = O(sγ3), which also bounds the degrees of f and g. Applying Theorem 2 to
both formulas yields Theorem 3.
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