Expressing a Fraction of Two Determinants as a Determinant.

Abstract : Suppose the multivariate polynomials f and g are determinants of non-singular matrices A and B whose entries are variables or field elements. Furthermore, suppose that the quotient h = f/g is also a polyonmial. We construct a matrix C such that h=det(C). The entries of C are variables or field elements, and its size is polynomial in size(A)+size(B). Our construction utilizes the notion of skew circuits by Toda and weakly circuits by Malod and Portier. Our problem was motivated by resultant formulas derived from Chow forms. Additionally, we show that divisions can be removed from formulas that compute polynomials in the input variables over a sufficiently large field within polynomial formula size growth.
Type de document :
Pré-publication, Document de travail
11 pages. 2008
Liste complète des métadonnées

Littérature citée [22 références]  Voir  Masquer  Télécharger
Contributeur : Pascal Koiran <>
Soumis le : vendredi 1 février 2008 - 13:02:28
Dernière modification le : jeudi 8 février 2018 - 11:09:25
Document(s) archivé(s) le : jeudi 27 septembre 2012 - 17:47:57


Fichiers produits par l'(les) auteur(s)


  • HAL Id : ensl-00232169, version 1



Pascal Koiran, Erich Kaltofen. Expressing a Fraction of Two Determinants as a Determinant.. 11 pages. 2008. 〈ensl-00232169〉



Consultations de la notice


Téléchargements de fichiers