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Abstract

Deformations of maximal supergravity theories induced by gauging non-abelian
subgroups of the duality group reveal the presence of charged M-theory degrees of
freedom that are not necessarily contained in supergravity. The relation with M-
theory degrees of freedom is confirmed by the representation assignments under
the duality group of the gauge charges and the ensuing vector and tensor gauge
fields. The underlying hierarchy of these gauge fields is required for consistency
of general gaugings. As an example gauged maximal supergravity in three space-

time dimensions is presented in a version where all possible tensor fields appear.



1 Introduction

In recent years a wealth of information has become available about general gaugings of su-
pergravity. In particular, it has become clear that these theories may play an essential role in
probing and exploring M-theory beyond the supergravity approximations considered so far.
The key ingredient in these developments is the so-called embedding tensor, which defines
the embedding of the gauge group generators (up to possible central extensions) in the rigid
symmetry group, which for the maximal supergravities is the duality group that arises upon
dimensional reduction of eleven-dimensional or ten-dimensional (IIB) supergravity. With the
embedding tensor at hand, all gauged supergravities in various space-time dimensions can
now be classified.

The first maximal gauged supergravity, N = 8 supergravity in four space-time dimensions
with compact gauge group SO(8), was constructed in [1], soon followed by similar gaugings
in maximal supergravity in D = 5 [2] and D = 7 [3] dimensions. Also D = 4 gaugings with
non-compact versions of SO(8) and contractions thereof were found to exist [4]. Although
these results eluded a more systematic understanding for a long time, there were hints of a
deeper group-theoretical structure underlying these constructions, and linking the existence
of gauged supergravities to certain higher-dimensional representations of the duality groups
E,m): it was known already in 1984 that the so-called T-tensor of N = 8 supergravity
(essentially a ‘dressed’ version of the embedding tensor) belongs to the 912 representation
of E7(7) [5]. The latter group is the invariance group of (ungauged) maximal supergravity in
D = 4 dimensions [6].

The more recent developments allowing for a much more systematic exploration of gauged
supergravities go back to the discovery of maximal gauged supergravities in three space-time
dimensions [7, 8, 9], and it was in this context that the notion of embedding tensor was first
introduced. The case of three space-time dimensions is special because all higher-rank tensor
fields present in higher dimensions have been dualized away in the dimensional reduction of
D = 11 supergravity [10] to three dimensions, such that all propagating degrees of freedom
can be described by scalar fields. An immediate puzzle then (and the reason why these
theories had not been found earlier) was the question how to gauge a theory that apparently
does not have any vector fields left from the dimensional reduction. This puzzle was finally
resolved in [7, 8] by introducing a set of 248 ‘redundant’ vector fields transforming in the
adjoint representation of Fg); rather than through the standard Yang-Mills kinetic term,
these gauge fields appear with a Chern-Simons term in the Lagrangian, ensuring that the
number of physical degrees of freedom in the theory remains the same as before.

The systematic investigation of gauged supergravities in dimensions D > 4 by means
of the embedding tensor was initiated in refs. [11, 12|, following the discovery of a new
maximal gauged supergravity in [13] based on Scherk—Schwarz compactification [14] of D =5
supergravity. This systematic analysis has meanwhile lead to a complete classification of
gauged maximal supergravities in D = 5 [15], D = 7 [16], and, finally, D = 4 [17] and

D = 6 [18] (the situation in an even number of dimensions is more complicated because the



duality group is only a symmetry of the equations of motion, but not of the Lagrangian). In
particular, it can be shown that the known examples of gauged supergravities (including more
recent constructions such as [19, 20, 21, 22, 23, 24, 25, 26, 27, 28]) can all be accommodated
within the systematic approach based on the embedding tensor. Most recently, gaugings
of maximal supergravity in D = 2 were constructed in [29] — this case being more exotic
because the relevant duality group Fg is infinite dimensional.

The appearance of ‘redundant’ vector fields in D = 3 gauged supergravities and the
(long known) fact that the consistent gauging of maximal supergravity in D = 5 [2] requires
the simultaneous use of vector fields and 2-form potentials, has led to the conclusion that
a systematic understanding of gauged supergravities makes the consideration of higher-rank
tensor fields unavoidable [30]. As pointed out there, and as will be analyzed in further detail in
the present paper, gauged supergravities can be consistently and systematically formulated
by introducing a hierarchy of anti-symmetric tensor fields. The analysis at this point is
independent of the number of space-time dimensions, and the hierarchy contains in principle
an infinite number of anti-symmetric tensors of any rank. Of course, once the space-time
dimension is fixed to some integer D, the maximal rank is also fixed to D. Maintaining the
correct number of propagating degrees of freedom in the presence of these extra fields requires
a subtle interplay of ordinary gauge invariance and higher-rank tensor gauge transformations.
For non-zero gauge coupling the physical degrees of freedom reside in a finite number of the
tensor fields and it is the embedding tensor that determines how these degrees of freedom are
distributed over the various tensor fields. Here it is important to note that, in the presence
of gauge interactions, the possibility for converting rank-p to rank-(D —p — 2) tensors fields is
severely restricted. When the gauge coupling constant vanishes the hierarchy can in general
be truncated.

In an important and independent development [31, 32, 33] it has been shown that the
relevant representations of all higher-rank tensors fields can also be obtained via a level
decomposition of the indefinite Kac-Moody algebra Eq; (if one omits the D-forms, these
representations can be equivalently derived from the hyperbolic Kac-Moody algebra Eqg).
In order to arrive at this decomposition, one first selects a ‘disabled’ node in the Dynkin
diagram, and then decomposes the algebra in representations of the remaining finite dimen-
sional subgroups of E;1, all of which are direct products SL(D) x E11_p where D > 3 denotes
the number of uncompactified space-time coordinates. Remarkably, it turns out that the
low-lying representations in that analysis coincide with the representations found here by a
completely different route. However, one should keep in mind that ‘higher up’ in the level
decompositions of Eqp and Ej; there opens up a terra incognita of an exponentially growing
spectrum of representations of ever increasing size and complexity, whose ultimate role and
significance remain to be understood.

What is the physical significance of these results? As we will argue here, the existence
of these gauged supergravities constitutes direct evidence for new M-theoretic degrees of
freedom beyond the known maximal supergravities in space-time dimensions D < 11 (and

possibly also beyond string theory as presently understood). This feature is most evident



for D = 3 gauged supergravities with semi-simple gauge groups: none of these theories can
be obtained from higher-dimensional supergravity by conventional (Kaluza—Klein or Scherk—
Schwarz) compactification. Our claim is supported by the fact that several of the ‘exotic’
representations of the duality groups exhibited here have also been found to occur in toroidally
compactified matrix theory [34, 35], as well as in the context of del Pezzo surfaces and com-
pactified M-theory [36]. The process of gauging a given maximal supergravity can thus be
interpreted as the process of ‘switching on’ such new degrees of freedom, which are here en-
coded into the embedding tensor. A special role is played by the (D—1)- and D-forms: we
will set up a Lagrangian formulation of three-dimensional maximal supergravity containing
all higher-rank antisymmetric tensor fields with an initially space-time dependent embedding
tensor O(x), in such a way that the (D—1)- and D-forms, respectively, impose the constancy
of ©®, and the closure of the corresponding gauge group. Alternatively, one can eliminate
the field © which appears at most quadratically in the Lagrangian by means of its equations
of motion, thereby arriving at a Lagrangian that contains the higher-rank tensor fields in
a non-polynomial fashion. Gauging would then be realized as a kind of spontaneous sym-
metry breaking,! and equivalent to the process of certain D-form field strengths acquiring
vacuum expectation values. In this way, the different maximal gauged supergravities can be
interpreted as different ‘phases’ of one and the same Lagrangian theory.

Finally, we should stress that we consider the deformations mainly from the point of view
of setting up a consistent gauging. On the other hand, additional deformations are some-
times possible, generated by singlet components in the ‘descendants’ of the embedding tensor
(which, presumably, could induce additional non-singlet terms higher up in the hierarchy).
The embedding tensor by definition specifies how the gauge group is embedded in the duality
group, but it also encodes many of the interactions of the tensor fields. At the level of these
tensor interactions the embedding tensor may be able to accomodate additional components
which will still fit into the hierarchy. A well-known example of this phenomenon is the Ro-
mans massive deformation of ten-dimensional ITA supergravity [37], which is induced by a
nine-form potential. We will comment on this in due course.

This paper is organized as follows. In section 2 we discuss the hierarchy of tensor gauge
fields in a general context. In section 3 we discuss the relation with M-theory degrees of
freedom. In section 4 we determine the duality representations of the tensor fields in three
space-time dimensions. The corresponding supersymmetry algebra is discussed in section 5
and the general Lagrangian for gauged three-dimensional maximal supergravity in section 6.
Results of the present investigation have already been announced and discussed by us in

several talks 2.

I This terminology clearly differs from the usual one, and should thus be understood cum grano salis.
2See, for instance: http://ggi-www.fi.infn.it/activities/workshops/stringM /talks/dewit.pdf;

http://maths.dur.ac.uk/events/Meetings/LMS /2007 /TSAS/Talks/dewit.pdf



2 A hierarchy of vector and tensor gauge fields

Maximal supergravities in various space-time dimensions can be constructed by dimensional
reduction on a torus of supergravity in eleven and/or ten space-time dimensions. In general
these theories contain abelian vector fields and antisymmetric tensor fields of various ranks.
Their field content is not unique as p-rank tensor gauge fields can be dualized to tensor fields
of rank D — p — 2, where D denotes the dimension of space-time of the reduced theory.
However, there always exists an optimal choice of the field configuration that most clearly
exhibits the invariance under a duality group G. This group is listed for space-time dimensions
D = 3,...,7 in the second column of table 1. The symmetry under the G-transformations
is realized non-linearly in view of the fact that the scalar fields parametrize a G/H coset
space, where H is the R-symmetry group of the corrresponding supersymmetry algebra.
This group equals the maximal compact subgroup of G and it is also listed in table 1. In
general the vector and antisymmetric gauge fields transform in specific representations of
G.3 The vector fields, which we denote by AMM, transform in the fundamental or in a
spinor representation of G. These representations are (implicitly) listed in table 1, as we
will explain below. The generators in these representations are denoted by (t4) MV, so
that 5AMM = —A%(ty)AaM AMN . Structure constants f,g” of the duality group are defined
according to [ta,t5] = fap” ty-

Deformations of these maximal supergravities can be constructed by introducing a non-
abelian gauge group, which must be a subgroup of the duality group. The dimension of this
gauge group is obviously restricted by the number of vector fields in the theory. The discussion
in this section will remain rather general and will neither depend on the actual duality group
nor on the space-time dimension (we recall, however, that there may be subtleties in even
space-time dimensions related to selfduality of vector or tensor gauge fields). We refer to
[15, 16, 17] where a number of results were described for maximal supergravity in various
dimensions.

The gauge group generators X\, which will couple to the gauge fields A“M in the usual

fashion, are obviously decomposed in terms of the independent G generators t,, i.e.,
Xm=0p0 %y . (2.1)

The gauging is thus encoded in a real embedding tensor © py* belonging to the product of
the representation conjugate to the representation in which the gauge fields transform and
the adjoint representation of G. This product representation is reducible and decomposes
into a number of irreducible representations as is indicated for the cases of interest in the
last column of table 1. However, as is also shown in the table, supersymmetry requires most
of these irreducible representations to be absent: only the underlined representations in the
table are compatible with local supersymmetry. Actually, for non-supersymmetric theories

one may have to impose similar constraints (see, e.g. [38]). This constraint on the embedding

3In even space-time dimensions this assignment may fail and complete G representations may require the

presence of magnetic duals. For four space-time dimensions, this has been demonstrated in [38].



D G H S)

7 SL(5) USp(4) 10 x 24 =10 + 15 + 40 + 175

6 SO(5,5) USp(4) x USp(4) 16 x 45 = 16 + 144 + 560

5  Eg USp(8) 27 x 78 =27+ 351 + 1728

4 B SU(8) 56 x 133 = 56 + 912 + 6480

3 By SO(16) 248 x 248 = 1 + 248 + 3875 + 27000 + 30380

Table 1: Decomposition of the embedding tensor © for maximal supergravities in various space-time
dimensions in terms of irreducible G representations [11, 30]. Only the underlined representations are

allowed by supersymmetry. The R-symmetry group H is the maximal compact subgroup of G.

tensor is known as the representation constraint. Here we treat the embedding tensor as a
spurionic object, which we allow to transform under the duality group so that the Lagrangian
and transformation rules remain formally invariant under G. At the end we will freeze the
embedding tensor to a constant, so that the duality invariance will be broken. Later in this
paper we see that this last step can also be described in terms of a new action in which the
freezing of © ,4* will be the result of a more dynamical process.

The embedding tensor must satisfy a second constraint, the so-called closure constraint,
which is quadratic in © \(“ and more generic. This constraint ensures that the gauge trans-
formations form a group so that the generators (2.1) will close under commutation. Any
embedding tensor that satisfies the closure constraint, together with the representation con-
straint mentioned earlier, defines a consistent gauged supergravity theory that is both super-
symmetric and gauge invariant. To spell out the closure constraint in more detail let us write
out (2.1) once more, but now with representation indices in the G-representation pertaining

to the gauge fields written out explicitly, viz.

Xpun” = O (ta) ™ = Xpnmn” + 27 mn (2.2)

where we will use the notation
ZF v = Xoun” (2.3)

for the symmetric part throughout this paper. The closure constraint is a consequence of the

invariance of the embedding tensor under the gauge group it generates, that is
5pOM* = Ot N ON + O1° f5, 2O 7 = 0. (2.4)
Contracting this result with ¢, we obtain
(X Xn] = = X" Xp = —Xpuny” Xp (2.5)

Hence, the gauge invariance of the embedding tensor is equivalent to the closure of the gauge
algebra. It is noteworthy here that the generator X n” and the structure constants of the
gauge group are thus related, but do not have to be identical. In particular X" is in

general not antisymmetric in [MN], as is evident from (2.2). The embedding tensor acts



as a projector, and only in the projected subspace the matrix Xy nF is antisymmetric in
[MAN] and the Jacobi identity will be satisfied. Therefore (2.5) implies in particular that
X(Mm N)P must vanish when contracted with the embedding tensor. In terms of the notation

introduced above, this condition reads
Op* ZF pyn =0. (2.6)

The gauge invariant tensor Z7 5y transforms in the same representation as © (%, except
when the embedding tensor transforms reducibly so that Z% vz may depend on a smaller
representation. As may be expected the tensor ZF y .y characterizes the lack of closure of
the generators X 4. This can be seen, for instance, by calculating the direct analogue of the
Jacobi identity,

Xinp* Xgr™M = 32Mr v Xpg ™ (2.7)

We emphasize that seemingly strange features, such as the appearance of a symmetric
contribution in X", or the apparent violation of the Jacobi identity in (2.7), are entirely
due to the redundancy in the description: although the actual gauge group is usually smaller
than G, we nevertheless continue to label all matrices by G indices M, such that the number of
matrices X o in general will exceed the dimension of the gauge group. The main advantage
of this parametrization (and nomenclature) is its universality, which allows us to treat all
gaugings (and gauge groups) on the same footing.

Now we return to the field theoretic description. The gauging requires the replacement

of ordinary space-time derivatives by covariant ones for all fields except the gauge fields,
8u—’Du:3u_9AuMXM’ (2.8)

where the generator X ¢ must be taken in the appropriate representation. To write down
invariant kinetic terms for the gauge fields one needs a suitable covariant field strength tensor.
This is an issue because the Jacobi identity is not satisfied. The standard field strength, which
follows from the Ricci identity, [D,, D,] = —gfu,,M X\, reads,

quM — a#AVM — &,AuM + gX[_/\/"P]M A/,LNAZ/P 5 (29)

and is not fully covariant. The lack of covariance can be readily checked by observing that

]:HI,M does not satisfy the Palatini identity 4; rather, we have
§Fu™ =2Dy,6 A, M — 29 XM poy AT 64,°, (2.10)
under arbitrary variations 5A#M. Assuming the standard gauge transformation,
SAM = D, AM = 9,AM 4 gAN Xpp™MAT (2.11)
it follows that ]-'WM transforms under gauge transformations as

5fy,uM = gAPXNPM fMVN —2g ZMPQ A[up (5‘411}9 ) (212)

4That is, the standard relation 5]-'WM = 2D[#5AV]M.



which is not covariant — not only because of the presence of the second term on the right-hand
side, but also because the lack of antisymmetry of the structure constants Xyp™ prevents
us from getting the correct result (cf. (2.20) below) by simply inverting the order of indices
NP in the first term on the right-hand side

In order to remedy this lack of covariance we now follow the strategy of [15, 30]. Since
we know that closure is ensured on the subspace projected by the embedding tensor, we
introduce additional gauge transformations in the orthogonal complement so that all diffi-
culties associated with the lack of closure can be compensated for by performing these new

transformations. For the gauge fields, this leads to the following transformation rule,
§AM = D AM — g ZMyp 2, NP (2.13)

NP enable one to gauge away those vector fields

where the transformations proportional to Z,,
that are in the sector of the gauge generators Xy v* where the Jacobi identity is not satisfied
(this sector is perpendicular to the embedding tensor by (2.6)). Note that the parameter
EHN P in (2.13) appears contracted with the constant tensor Z-p defined in (2.3) as a
linear function of the embedding tensor. It is important, that this tensor generically does
not map onto the full symmetric tensor product (NP) in its lower indices but rather only on
a restricted subrepresentation. In other words, there is a non-trivial G-invariant projector P
such that

ZMyp = ZMRsPRO\p | (2.14)

for any choice of the embedding tensor. The precise representation content of P can be
determined for any given theory by carefully inspecting (2.3) and we give examples of this
in the later sections (see also [30]). In order not to overburden the formulas with explicit
projectors, we denote the projection corresponding to (2.14) by the special brackets [NP],

i.e. we use the notation
AMANT = pMN 6 ARAS | ete. (2.15)

Similar notation will be used for other index combination that we will encounter shortly.
The combined gauge transformations (2.13) generate a group on the vector fields, as

follows from the commutation relations,

[0(A1),0(A2)] = 0(A3) +d(Z3), (2.16)
where
AsM = g Xpep M AYAT
_ My N My (N
S5, MY = AMD AT - AMD A (2.17)

Here it is crucial that §(A) and §(Z) commute on the vector fields. However, these commu-
tators are subject to change when more fields will be introduced. We return to this issue in

due course.



Under the combined gauge transformations ]—"WM changes as follows,
§Fuw™ = g AP Xpp™M FuN — 29 2Mpo (DRELTC + ALT 64,9) (2.18)

which is still not covariant. The standard strategy [15, 30] is therefore to define modified
field strengths,
H;WM = fuuM +g ZMN’P B;WNP s (2'19)

where we introduce tensor fields BWN P transforming under G in the restricted representa-
tion (2.14) i.e. BWN P — BW[N Pl Actually the restricted index pair [MAN/| will play the role
of a new index belonging to a specific representation, and Z™-p is an intertwining tensor
between the representations of the vectors and the two-forms. The gauge transformation
rules of BWMN will be chosen such that the field strengths HWM will transform covariantly

under gauge transformations, i.e.,
™M = —g AP Xpp ™M H, N (2.20)

To do this in a systematic manner we first define generic covariant variations of the tensor
fields,
AB,,MN =B, MV — 2.4, M5, N (2.21)

so that generic variations of HWM take the form

SH,uw™ = 2Dy, 6 A M + g ZM np ABLNT (2.22)
For a combined gauge transformation we choose for ABWMN ,
AB,, MV = 2D E MY — 2 AMy, M (2.23)
gauge

where the unspecified contributions vanish when ABWMN is contracted with Z7 y(u, so that
they remain as yet undetermined. Substituting this expression and (2.13) into (2.22) leads
indeed to the required result (2.20).5

Here it is worth pointing out that the expected gauge transformation on BWMN

equal
to
0B = —gA” XpirsMVIB,, RS (2:24)

where the generator X'P['RSJ[MN I = (Xp)[st[MN I"acts in the restricted representation to
which 5BWMN belongs, is already contained in the second term in (2.23), up to an additional
gauge transformation associated with a three-rank tensor field, that we will introduce shortly.

The above strategy forms the starting point for the construction of a hierarchy of anti-
symmetric tensor gauge fields [30]. To see how one proceeds, let us turn to the construction

of the covariant field strength for the tensor fields BW,MN 6

Fur ™ = 308 6 4 (0,4, + 59 Xipg14,74,9) (2.25)

SHere we note that the present formulae cannot be compared directly to the ones in [30], as those are
derived in a different basis, but they can be compared to later work along the same lines, starting with [16].
SWe use the same letters F for the field strengths of vectors and higher p-forms. From the number of

space-time indices it is always clear to which forms the F belong.



where the first two coefficients follow from (2.23) and the terms cubic in the vector gauge

fields are such that generic variations of ]:WPM/\/ read as follows,

§Fuwpy™N = 3Dy, AB, MV 461, M AN
— gYMN s (3B, 64,7 +24,7A,R64,5), (2.26)
where
YMN ers = 20pM ZMgs — Xprrs MV (2.27)

Note that this definition can be rewritten as
Y MY oy =2 (57>W 7N ps — XP[RW5SJNJ) : (2.28)

Just as before we introduce an extra gauge invariance to eventually deal with the non-
covariant variations in the last term of (2.26), which will then provide the missing variations
in (2.23),

A BWMN’ e =92 D[MEV]MN _9 A[MHWNJ —g YMNP[RSJ(I)WP[RSJ ’ (2.29)

where @MVP[RSJ is the new gauge parameter. Secondly we introduce a corresponding three-
form gauge field C#,,ppm‘s], and define the field strength HWPMN ,

HWPMN _ ]_—MMN tg YMN’P[RSJ CWPP[RSJ. (2.30)
such that it transforms covariantly, i.e.

6HMVpMN = _gAPXP[RSJ[MNJ HMV/JRS s (231)

in complete analogy with (2.20). As before, the tensor yMN P[rs| does not map onto the full
tensor product P[RS] in its lower indices but only on a restricted subrepresentation inside,

i.e.,

YMNP[RSJ = YMNQ[ICEJ PQ[’CMP[RSJ7 (2.32)

for a non-trivial projector P independent of the embedding tensor. In principle, this projector
can be worked out from (2.27), but deriving more explicit expressions requires a case-by-case
consideration for each duality group G. As in (2.15) we will denote the corresponding pro-
jection by special brackets [P[RS]|. The tensor yMN P[Rs| thus represents an intertwining

tensor between the two- and the three-forms. It satisfies the properties

Zoun YW pirs) = 0, (2.33)
Z8po YN irs) = 22Mpg 2V gs. (2.34)

which are both consequences of the quadratic constraint (2.5). The first identity represents
the analogue of (2.6). Another identity follows directly from (2.28),

yMN -0 2.35
PIRSI| pes) , (2.35)



Generic variations of the covariant field strength (2.6) can be written as
SH,uwp™N = 3Dy AB, MV + 61, M oAN + g VMR 6 ACL,TIRSE (2.36)
where
AC,,, TR = 5C,,"TRS) — 354,17 B, RSV — 24,17 4,R54,51. (2.37)

Now we consider again a combined gauge transformation. Requiring that HWPMN transforms

covariantly, it follows that we must choose

AC’/U/pPrRSJ — 3 D[#(byp]’Pl-RSJ + 3le[73 EPRSJ + A[PHuupRSJ + e (238)

gauge

where the unspecified contributions vanish upon contracting ACW,)P[RSJ with YMV P[RS

so that they remain as yet undetermined. Here we made use of the Bianchi identity,
D[,uHVp]M = %g ZM./\/P /H,ul/pj\/‘7> . (2.39)

Note that the standard Bianchi is obtained upon contraction with the embedding tensor.
At this point we must verify that the algebra of the various gauge transformations defined

so far, will close under commutation. Let us first summarize the various transformation rules,

SAM = DA —g2MypE NP
0BV = 2D, 2, —2AMp, N o0 4 M4, N
) YMN’P[RSJ q)uup[RSJ y
8Cuw, 1R8N = 3D,@,,71R) + 31,17 2,75+ AP, RS+ 364,17 B, 75
+2A,,PA4,RsA50 4 (2.40)

These tranformations indeed yield a closed algebra,

[6(A1),0(A2)] = 6(A3) +0(E3) +(P3),
[0(A),6(2)] = 6(P4),
[0(21),0(22)] = 6(®s5),
[0(A),6(@)] = ;
[0(2),6(®)] = ;
[6(®1),0(P2)] = O, (2.41)

where we will comment on the two unspecified commutators in a sequal. The transformation

parameters appearing on the right-hand side of (2.41) take the following form,

AsM = g Xpep M AYAT,
25, MV = AMp A - AMp A
By, PN = 3y, TM (AQNJ AL AN A2P1> 7
By PN = 9Dy AIPE, MAT
(I)Ewup[MNJ = —gZPxs <51[HMNJE2V]RS - 52[HMNJ51V]RS) ) (2.42)

10



where the first two equations were already given in (2.17).
Continuing this pattern one can derive the full hierarchy of p-forms by iteration. For

instance, the transformation rule for CWPP[RSJ contains the expected gauge transformation

8Cup RS = —gAC X gpicp ppng TR €M (2.43)

(where again, XQ[;C[LM”[P[RS” = (XQ)[]C[ﬁMJJ[P[RSJJ) up to a term

5 prpmgj — _gYPIRS] QPRSI (2.44)

QIP[RS|| Ppvp

which characterizes a new gauge transformation with parameter ® WPQ[P[R‘S“, associated with
a new four-rank tensor field which will again belong to some restricted subrepresentation.
It turns out that the two unspecified commutators in (2.41) are precisely given by these
transformations. The tensor YP[RSJQ[P[RS“ acts as an intertwiner between the three- and

four-rank tensor fields, and can easily be written down explicitly,

yKIMN] - 555 yMN] [KIMN]

PIQIRS]] —
= -2 (6565‘[9/” XPRNJJ + (553’C5[QM XSRN“)

+2 (5555‘[3/” Xor ™MV + ol 6iM xp o™ “) . (2.45)

o[Rs| ~ XPIQIRS]]

To derive the second formula we made use of (2.35). Observe that on the r.h.s we must
apply the projector (2.32) in order to obtain the restricted representations in the index
triples [K[MN]| and [Q[RS]], respectively; the result is then automatically projected onto
a restricted representation in the indices P[Q[RS]]. In other words, our recursive procedure
‘knows about’ the new restricted representations occurring at the next step.

At this point one recognizes that there exists a whole hierarchy of such tensors.” They
are defined by (p > 3)

YM1[M2[---MPJ--J - %1 YMQ[MPJJ

No[Mi[-Npl-| = Ni[No[-+ Ny -]

— X N[N A o TV ML (9 46)

where, as before, we employ the notation,

MMl Mol-] — (X ) [Maf Ml Mp)-] (2.47)

X NN N[+ Ny )] [N N -]

All these tensors are gauge invariant and they are formed from the embedding tensor multi-
plied by invariant tensors of the duality group G, so that they all transform in (a subset of)
the same representations as the embedding tensor. By induction, one can prove their mutual

orthogonality,

YRalRelKold o or gy g YVOIMEEMold e =0 (2.48)

"From this point we denote the intertwining tensors and p-forms by Y and C, respectively, and the corre-

sponding gauge transformation parameters by ®. Their rank will be obvious from the index structure.
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To see this, one substitutes the expression (2.46) for the second Y-tensor and uses the gauge

invariance of the first Y-tensor to obtain the expression,

(2‘48) = — Y’C2[K3["'KPJ"J YMQ[M3[~~~MPJ~~J

No[Ma[--Mp]-] Ni[Naf-=Np|-]

_ yMalMs[-Mp]-] [l Kal-Kpl-1 —(2.49)

NN Np -] KNI Mo M3 My )]

This result vanishes upon expressing the generator X on the right-hand side in terms of the
Y-tensors, using the definition (2.46), and subsequently using the orthogonality constraint
for a lower value of the rank p. The fact that symmetrization over the three last indices of
the restricted representation will vanish as a result of (2.35), implies that higher-rank tensors
will vanish as well under certain index symmetrizations.

The Y-tensors form an (infinite, in principle) hierarchy of intertwiners between successive
sets of restricted representations of tensor gauge fields. The restrictions on the representations
occurring at the (p+1)-th step of the iteration are determined inductively via formula (2.46),
where on the r.h.s. the projectors obtained at the previous p-th step of the iteration must be
applied to the p-tuples of indices M [ Mo --- M, |- -] and N1[No[ - - - N, |- -], respectively. We
emphasize that no other information is needed to determine the hierarchy. However, as we
pointed out already, working out more explicit expressions requires a case-by-case study, as we
will exemplify for D = 3 supergravity and duality group G = Eg(g) in section 4 of this paper.
Consequently, given the Y-tensors, and specifying the duality group G, the above results
enable a complete determination of the full hierarchy of the higher-rank p forms required
for the consistency of the gauging. In particular, we can exhibit some of the terms in the

variations of the p-form fields that follow rather directly from the previous discussion,

§Chuy..py MMMl = Mu[Ma[--Mp]-]

P Dy Py

F AMgg, L My p(SA[#l[Ml CMNV}LP][MQ...J..“

— g yMilMo[ My No[MAT-- NI

NofNTNp ] Pty

4o (2.50)

Although the number of space-time dimensions does not enter into this analysis (as we
said, the iteration procedure can in principle be continued indefinitely) there is, for the
maximal supergravities, a consistent correlation between the rank of the tensor fields and
the occurrence of conjugate G-representations that is precisely in accord with tensor-tensor
and vector-tensor (Hodge) duality ® corresponding to the space-time dimension where the
maximal supergravity with that particular duality group G lives. In the next section we
discuss some of the results of this analysis and their implications for M-theory degrees of

freedom.

8 As well as with the count of physical degrees of freedom.
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3 M-Theory degrees of freedom

The hierarchy of vector and tensor gauge fields that we presented in the previous section can
be considered in the context of the maximal gauged supergravities. In that case the gauge
group is embedded in the duality group G, which depends on the space-time dimension in
which the supergravity is defined. Once we specify the group G the representations can
be determined of the various p-form potentials. In principle the hierarchy allows a unique
determination of the higher p-forms, but in practice this determination tends to be somewhat
subtle. To see this, let us first briefly consider the possible representations for the two-
forms. For that we need the representations in the symmetric product of two representations

belonging to the vector fields (we will deal with the case D = 3 separately),

D=7 : 10 Xgm1l0 = 5450,

D=6 : 16ixsym 1& = 10+ ﬁc/ , (3.1)
D=5 : 27xqm27 = 27+351

D=4 56 Xy, 56 = 133 + 1463 .

Hence it seems that the two-forms can belong to two possible representations of the duality
group. To see which representation is allowed, we take its conjugate and consider once more
the product with the vector field representation, This product should contain the represen-
tation associated with the tensor ZMup. The latter is simply equal to the representation
of the embedding tensor. If this representation is contained in the product, then we are
dealing with an acceptable candidate representation. If this is not the case, then we must
conclude that ZM \rp cannot act as an intertwiner between the corresponding two-forms and
the one-form potentials.

Performing this test’ on each of the two representations in (3.1), it turns out that only
the first representation is allowed, leading to the entries for the two-forms presented in the
third column of table 2. For the case of D = 3 space-time dimensions the above approach
leads only to a partial determination of the representation assignment. Here the symmetric
product decomposes into six different representations and in section 4 we will proceed diffently
to deduce the correct assignment. The results for the two-forms in 4 < D < 7 dimensions were
originally derived in [30], where also the representations of the three-forms were determined
that are shown in the table.

As we stressed already the hierarchy leads to a unique determination of the representations
of the higher-rank tensor fields, but this has only partially been carried out. Already for
lower-rank tensors, table 2 shows remarkable features. We recall that the analysis described
in section 2 did not depend on the number of space-time dimensions. For instance, it is
possible to derive representation assignments for (D+1)-rank tensors, although these do not
live in a D-dimensional space-time. On the other hand, whenever there exists a (Hodge)
duality relation between fields of different rank at the appropriate value for D, then one finds

that their G representations turn out to be related by conjugation. This property is already

9We used the Lie package [39] for computing such decompositions.
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1 2 3 4 5 6

7 SL(5) 10 5 5 10 24 15 + 40

6 SO(5,5) 16, 10 16, 45 144, 10+1265+320
5 Eg) 27 27 78 351  27+1728

4 Eqem 56 133 912 13348645

3 Eg) 248 143875 3875+147250

Table 2: Duality representations of the vector and tensor gauge fields for gauged maximal supergrav-
ities in space-time dimensions 3 < D < 7. The first two columns list the space-time dimension and
the corresponding duality group. Note that the singlet two-form in three dimensions is not induced by

the hierarchy. Its presence follows from independent considerations, which are discussed in the text.

exhibited at the level of the lower-rank tensors and we have simply extrapolated this pattern
to higher-rank fields. Furthermore the diagonals pertaining to the (D —2)-, (D —1)- and
D-rank tensor fields refer to the adjoint representation and the representations conjugate to
those assigned to the embedding tensor and its quadratic constraint, respectively. While not
all of these features show up fully for the lower-rank tensors, the pattern is quite suggestive.
The underlying reasons for some of this will become apparent in the later sections, where we
establish that the (D—1)- and D-rank tensors play the special role of imposing the constancy
of the embedding tensor and the closure of the corresponding gauge group.

It is an obvious question whether these systematic features have a natural explanation
in terms of M-theory. Supergravity may contain some of the fields carrying charges that
could induce a gauging. For instance, in the toroidal compactification there are towers of
massive Kaluza-Klein states whose charges couple to the corresponding Kaluza-Klein gauge
fields emerging from the higher-dimensional metric. This is of direct relevance in the so-
called Scherk-Schwarz reductions [14]. However, these Kaluza-Klein states cannot generally
be assigned to representations of the duality group and therefore there must be extra degrees
of freedom whose origin cannot be understood within the context of a dimensional compact-
ification of supergravity.'® This phenomenon was discussed some time ago, for instance, in
[35, 40].

The general gaugings that have been constructed in recent years obviously extend beyond
gaugings whose charges are carried by supergravity degrees of freedom. The embedding
tensor can be regarded as a duality covariant tensor that, once it is fixed to some constant
value, selects a certain subsector of the available charge configurations carried by degrees of
freedom that will cover complete representations of the duality group. If this idea is correct
these degrees of freedom must exist in M-theory, and there are indeed indications that this
is the case. In this way the gauging acts as a probe of M-theory degrees of freedom.

Independent evidence that this relation with M-theory degrees of freedoms is indeed re-

Tn view of the fact that the Kaluza-Klein states are 1/2-BPS, also these extra degrees of freedom must
correspond to 1/2-BPS states.
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alized is provided by the work of [34] (see also, [35] and references quoted therein) where
matrix theory [41, 42] is considered in a toroidal compactification. These results are based on
the correspondence between N = 4 super-Yang-Mills theory on a (rectangular) spatial torus
T™ with radii sq, ..., s, and M-theory in the infinite-momentum frame on the dual torus 7"
with radii Ry, Ro, ..., R,, where s; = lg /R11R; and [, denotes the Planck length in eleven
dimensions. The conjecture then is that the latter should be invariant under permutations
of the radii R; and under T-duality of type-IIA string theory. The relevant T-duality trans-
formations follow from making two consecutive T-dualities on two different circles. When
combined with the permutation symmetry, T-duality can be represented by (i # j # k # i)
3 3 3

l6
Ri p R. P R p l3 P
TRiR YU RE YT RER D P RiRjRy

(3.2)

The above transformations generate a discrete group which coincides with the Weyl group
of E,; on the Yang-Mills side, the elementary Weyl reflections correspond to permutations
of the compactified coordinates (generating the Weyl group of SL(n)) and Montonen-Olive
duality get — 1/ger (corresponding to reflections with respect to the exceptional node of
the E,, Dynkin diagram). This Weyl group, which leaves the rectangular shape of the com-
pactification torus invariant, can be realized as a discrete subgroup of the compact subgroup
of E,(n), and consequently as a subgroup of the conjectured non-perturbative duality group
En(n) (Z) [43]. Representations of this symmetry can now be generated by mapping out the
Weyl orbits starting from certain states. For instance, one may start with Kaluza-Klein
states on 7", whose masses are proportional to M ~ 1/R;. The action of the Weyl group

then generates new states, such as the ones that can be identified with two-branes wrapped

3
p’

the non-perturbative states should combine into multiplets of E,,(,,)(Z); if the representation

around the torus, whose masses are of order M ~ R;R;/l>, and so on. According to [43],
has weights of different lengths, one needs several different Weyl orbits to recover all states
in the representation.

Following this procedure one obtains complete multiplets of the duality group (taking into
account that some states belonging to the representation will vanish under the Weyl group and
will therefore remain inaccessible by this construction). More specifically, using the relation
n = 11 — D, it turns out that the first two columns of table 2, respectively, correspond to the
so-called flux and momentum multiplets of [34]. However, as already pointed out above, the
conjecture of [43] is essential in that one may need extra states from different Weyl orbits in
order to get the full representation; for instance, there are only 2160 momentum states for
Eg(s), which must be supplemented by 8-brane states to obtain the full 3875 representation
of Egg).

The representations in the table were also found in [36], where a ‘mysterious duality’ was
exhibited between toroidal compactifications of M-theory and del Pezzo surfaces. Here the
M-theory dualities are related to global diffeomorphisms that perserve the canonical class of
the del Pezzo surface. Again the representations thus found are in good agreement with the

representations in table 2.
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For n > 9, the flux and momentum multiplets of [34] have infinitely many components.
Indeed, there are hints that the above considerations concerning new M-theoretic degrees
of freedom can be extended to infinite-dimensional duality groups: in particular, a recent
analysis of the indefinite Kac—Moody algebra Ei; has shown that the decomposition of its
adjoint representation at low levels under its finite-dimensional subalgebras SL(D) x E11_p
for D > 3 yields the same representations as in table 2 [31, 32, 33]. However, it is far from
clear what these (infinitely many) new degrees of freedom would correspond to, and how they
would be concretely realized. Concerning the physical interpretation of the new states, a first
step was taken in [44], where an infinite multiplet of BPS states is generated from the M2
brane and M5 brane solutions of D = 11 supergravity by the iterated action of certain Agl)
subgroups of the Eg Weyl group. In the context of gauged supergravities, the significance of
these states may become clearer with the exploration of maximal gauged supergravities in
two space-time dimensions [29], where the embedding tensor transforms in the so-called basic

representation of Eg (which is infinite dimensional).

4 Tensor field representations in three space-time dimensions

Here and in the following two sections we will illustrate the preceding discussion and consider
maximal supergravity in three space-time dimensions, where the full tensor hierarchy of
p-forms is short enough to obtain all relevant information from the explicit results given
in section 2. This example will show all the characteristic features that are generic for
gauged supergravities. In this section we will determine the representation assignments for
the tensor fields. The relevant duality group is equal to Egg), which is of dimension 248. Its
fundamental representation coincides with the adjoint representation, so that the generators

P = — fun?. Indices

in this representation are given by the Egg) structure constants, (tm)N
may be raised and lowered by means of the Cartan-Killing form nan. The vector fields
A#M transform in the 248 representation and the embedding tensor Oz is a symmetric
matrix belonging to the 3875 + 1 representation [7, 8]. Using these data, we may evaluate
the general formulas of section 2 for this particular theory.

The gauge group generators are obtained by contracting Eg(g) generators with the em-

bedding tensor X, = O pnr tN'. In the adjoint representation we thus have
Xn" = =0m2 fon” =Oma ¥ - (4.1)
The tensor Z7 yn defined in (2.3) is then given by
ZPun = Oom ¥ - (4.2)

Because this tensor is a group invariant contraction of the embedding tensor, its representa-
tion must overlap with some of the representations of the embedding tensor. Obviously, the
singlet component drops out so that we may conclude that (4.2) must belong to the 3875

representation.
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As discussed before (cf. (2.14)), the tensor Z* v\ generically does not map onto the full

symmetric tensor product (MN'), which decomposes according to
248 Xgym 248 = 1 + 3875 + 27000 , (4.3)

but only on a restricted representation. Since (4.2) represents an infinitesimal Eg(g) trans-
formation on the embedding tensor O,y which leaves the representation content invariant,
it follows the indices (MN) in (4.2) are restricted to the 3875 representation, so that the

(3875)

relevant projector is precisely P acting on the symmetric tensor product. This projector

can be written as [46]
RS
(PEETNRS = 7 55\4 5/\/) — g = f PR fon®) (4.4)

According to the general discussion, it follows that closure of the vector field gauge alge-
bra requires the introduction of two-forms in the 3875 representation. Hence the two-forms
transform in the same representation as the embedding tensor. As noted in the previous
section, this is a general pattern in gauged supergravities: the embedding tensor in D dimen-
sions transforms in the representation which is conjugate to the (D—1)-forms. More precisely,
the field strength of the (D —1)-forms is dual to the embedding tensor. We will discuss the
explicit relation in the next sections. In three dimensions there is a subtlety related to the
fact that the embedding tensor is not irreducible but contains an additional singlet 1 besides
the 3875. The associated two-form can be defined but does not yet show up in the tensor
hierarchy at this point. In order to keep the discussion as simple as possible, we will in the
following restrict to the gaugings induced by an embedding tensor in the irreducible 3875.
Continuing the tensor hierarchy according to the general pattern discussed above, the

next intertwining tensor Y MV k[P defined in (2.28), takes the form
S N S N

In view of the group-invariant contractions, the tensor Y MV Kpo] transforms again in the
3875 representation. It controls the appearance of three-forms in the gauge transformations
of two-forms and thereby determines the (minimal) field content of three-forms required for
consistency of the algebra. Again it does not map onto the full tensor product K[PQ| but
only onto a restricted subrepresentation, as in (2.14). To determine this subrepresentation,
we observe that the expression in parentheses in (4.5) is symmetric under exchange [RS] <
[MN], and thus transforms in

3875 Xgym 3875 = 14 3875+ 27000 + 147250 + 2450240 + 4881384 . (4.6)
On the other hand, by its index structure, the tensor product [P Q] is given by

248 x 3875 = 248 + 3875 + 30380 + 147250 + 779247 , (4.7)
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Comparing (4.6) and (4.7), it follows that the index combination [P Q] is indeed restricted to

certain irreducible representations so that the three-forms transform in the representation'!

Coup)MPel ~ 3875 + 147250 . (4.8)

In principle, the argument so far does not exclude the possibility that the image of yMN K[PQ|
is restricted to only one of the two irreducible representations in (4.8). To show that both
irreducible parts are present, one may e.g. compute and diagonalize the action of the Egg)
Casimir operator on Y MV K[PQJ-
At this point, it is instructive to have a closer look at the quadratic constraint. In three

dimensions, this constraint implies that the tensor

Quipa) = Oamn ZVpo = = Xaqp™ Ogpv (4.9)

must vanish. Let us determine, in which representation Qaqpg| transforms. As we have
seen above, the tensor ZV po in its indices PQ projects onto the 3875 representation. As
a consequence, Qpg| transforms in the tensor product 248 x 3875 given in (4.7). On
the other hand, as Qpo) is quadratic in © it transforms in the symmetric tensor product
3875 Xsym 3875 given in (4.6). Comparing (4.6) and (4.7), it follows that also Qpo)

transforms in the representation,
Cquad = 3875+ 147250, (4.10)

and thus in the very same representation as the three-forms (4.8). This is in accord with
the general pattern in gauged supergravities noted in the previous section: the quadratic
constraint transform in a (reducible) representation whose conjugate is equal to (or at least
contained in) the representation of the D-forms. We will propose a natural interpretation
for this in the last section, where the D-forms act as Lagrange multipliers for the quadratic
constraint.

Let us finally continue the tensor hierarchy one last step further, i.e., to the four-forms. Al-
though four-forms cannot live in three dimensions, their tensor gauge freedom shows up in the
three-dimensional tensor gauge algebra by the shift transformation of the three-forms (2.44).
For a complete picture we thus need to work out also their structure. Again, y KIMN JP[Q[RS 1l
does not map onto the full tensor product P[Q[RS]| but only onto a restricted subrepresen-
tation of 248 x (3875 + 147250), which we do not explicitly work out here. It is interesting
to note, that apart from the standard othogonality relations (2.48) which follow as a conse-
quence of the quadratic constraint (2.5), the tensor y KIMN JP[Q[RS 1] also identically satisfies

the relation

Qeraany YN prgrrsy = 0, (4.11)

with Qgan) from (4.9). This identity will also play an important role in the last section. Its
proof is not entirely straightforward, as (4.11) involves expressions cubic in © and quadratic

in the Eg structure constants, and is therefore most easily checked on a computer.

" The absence of the 248, 30380 and 779247 representations is in accord with equation (2.35) because

those are contained in the fully symmetrized product of three 248 representations.
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To summarize, we have explicitly worked out the tensor hierarchy of gauged three-
dimensional supergravity and shown that consistency requires two- and three-forms to trans-
form in the 3875 and 3875 + 147250 representation, respectively. The representation con-
tent of the (evanescent) four-forms is implicitly defined by (2.45) as a subrepresentation of
248 x (3875 + 147250) and shows up through the shift transformations (2.44) of the three-
forms. In principle,the precise representation content of of the index combinations in (2.45)

can be worked out further, but these details are not necessary in what follows.

5 The supersymmetry algebra in three space-time dimensions

In this section we present the complete determination of the supersymmetry transformations
and the corresponding algebra for the p-forms in three dimensions. Already in a number
of cases supersymmetry variations of p-forms that do not appear in the ungauged action,
have been determined. This was done by making an ansatz for these variations based on
their tensorial structure, which involves some undetermined coefficients. These constants
are subsequently fixed by imposing the supersymmetry algebra, after which one proceeds by
iteration. Here we go one step further and consider also the supersymmetry variations of
those p-forms that are not required for writing down the most general gaugings, in order
to determine what their possible role could be. In three space-time dimensions this implies
that we will now also consider the two-, three-, and four-form potentials. Although four-form
potentials do not exist in four dimensions, their symmetries will still play a role as they act
on the three-form potentials. We note that a similar investigation of maximal supergravity
in five dimensions has recently appeared in [45].

We use spinor and Eg(g) conventions from [7, 8].'2 In particular, the Eg(s) generators
tM split into 120 compact ones X1/ = XU/] associated with the group SO(16), and 128
non-compact ones denoted by Y4. Here I,.J,... and A, B, ..., respectively, label the 16,
and 128, representations of SO(16). Eventually we will also need indices A, B, ... labelling
the conjugate spinor representation 128.. Naturally we will also encounter SO(16) gamma
matrices I' 44 in what follows. We will freely raise and lower SO(16) indices.

The scalar fields parametrize the Eg(g)/SO(16) coset space in terms of an Egg)-valued

matrix VMB, which transforms as

V(@Mp = —an™MV(@)Vp + V(@)Mg h(z)p2, (5.1)

under global Eg(g) and local SO(16), characterized by the matrices g and h(x) which take
their values in the Lie algebra of the two groups. Note that underlined Egg) indices and
indices [I.J], A and A are always subject to local SO(16). The one-forms associated with the

scalars are given by

v'p,y = 39, x"4+pAvA, (5.2)

12To be precise: the only change in notation with respect to [7, 8] is the sign of the vector fields, i.e.,
AM — —A,M. The tangent space metric and gamma matrix conventions are as follows: 7,5 = diag(+, —, —),
{,ya’,yb} — 2,’7ab 1’ and ,yabc — _ieabc 1.
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where the derivative D, on the left-hand side is covariant with respect to the chosen gauge
group (cf. (2.8)). As is well-known, Q,// will play the role of a composite SO(16) gauge
connection. Both P, and Q,, will implicitly depend on the gaugings introduced in section 2,
through the defining relation (5.2).

For simplicity of the formulas we use the abbreviating notation,
— K — K
VWoir = VMWW, VWgs = VRVRVs, ete (5.3)

for multiple tensor products of these matrices. The fermionic field content is given by 16
gravitinos @ZJMI and 128 spin-1/2 fermions x* transforming under SO(16). In the presence of

a gauging their supersymmetry variations are given by

0’ = Duel +igAi e, ox?t = it TPl g A e (54)

with the tensors Ay, As given by

AT = LVMNY kO At = -4, VMY 14 O - (5.5)

The bosonic fields on the other hand transform as
de,* = iEI'yai/JMI, y-l5y = FﬁlA )ZAEI YA,

sAM 2VM ey, —ir! VM E A (5.6)

The supersymmetry transformations are expected to close into the various local symme-

tries, up to field equations. The supersymmetry comutator takes the form,
[561’562] = gﬂﬁuJF(sAﬁL(SEﬂL(;@JF"' , (57)

where the unspecified terms denote local Lorentz transformations, local supersymmetry trans-
formations and other symmetries which will be discussed below. By f“f)M we denote a co-
variant translation: a general coordinate transformation with parameter £&#* accompanied by
other field-dependent gauge transformations such that the combined result is fully covariant.
In the context of this work we are mostly interested in the field-dependent vector and tensor

gauge transformations,
f’uﬁu = §"Ou+0n) 0z +0ae) + - s (5.8)

where the vector and tensor gauge parameters are equal to

AOM = —erAM,
=€), MV = ¢ (Bp,/” + AprAMNJ) :
B(g),, TNV = g (CPWIC[MNJ — A, [K B, NI 2 4 [K 4 1M ApNJJ) . (5.9)
so that
ngpAuM = prpuM )
¢ DB, — A,MerD, AN ¢ A MerD, AN = P H,,, MY (5.10)
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take a fully covariant form in terms of the covariant variations and field strengths of section 2.
Note that we have suppressed the supercovariantizations in this result, as we restrict attention
to the terms of lowest order in the fermion fields. Calculating closure of the supersymmetry
algebra on the p-form tensor fields will determine the parameters £, A, Z, ® in (5.7).

Let us start from the supersymmetry commutator on vector fields. A short computation
starting from (5.4) and (5.6) yields

[Oe1 Oc, ] AMM = *2DM(VMIJ E[1162](]) +i€uwp VMA prA E[1I’Yp€2]j
+2g (T4 ; A7 AVMy 2475 VM Y e Tey” . (5.11)

The first term is a gauge transformation, while the last term proves to be the dressed version

of the constant tensor ZMpg defined in (2.3). Indeed, we note the identity,

F(AIA AgDAVMy — ATV o — A TEVM e = 2VPQ i ZMpo . (5.12)

Upon contraction with © pqar, the right-hand side of this equation vanishes, and we re-obtain
the identity (3.18) of [8]. The second term in (5.11) shows up in the duality equation relating

vector and scalar fields in three dimensions,
XM = HM A+ een, VPP (5.13)
which, at least in the ungauged theory, vanishes on-shell. Hence, we find that
0cys 0] AM = e H, M4 D AM — g ZMpgE, P — P X, M, (5.14)

with parameters

¢ o=~y
MM = VM ey’
=M = —HVIMN e g ey (5.15)

Except for the last term in (5.14) the supersymmetry algebra closes precisely as expected.
Usually, this last term is disregarded as the supersymmetry algebra is expected to close
modulo the first-order (duality) equations of motion (that is, X,,™ = 0). Nowever, matters
are more subtle here, as only a projection of the duality equation with the embedding tensor
is expected to correspond to an equation of motion. For the moment, let us just keep this

term: we will interpret it later as an additional local symmetry of the Lagrangian.

Let us continue with the two-forms. The supersymmetry variation of BWMN is deter-
mined by its tensor structure up to two constants, a; and ao,
. _I I - A
ABMV = g VMV e @y — aa VMV 5 I @yux® . (5.16)

MN

Requiring that the commutator closes into a gauge transformation with parameter =, as

given in (5.15), leads to a; = —8/7, ap = —4/7. From (5.16), we obtain after some further
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computation,
01, 0e) Bu™V = 2D, E )MV 4 L, PPEVIMN (DI ) ap &7 ey ©
—2g (V[MNJIK\LK AT+ %V[MNJIK\A I A2JA> &’ vuvey”
+2 A, M5, 60,) AN (5.17)
The first term denotes the tensor gauge transformation. To understand the second term we

need to make explicit use of the projection of [MN] onto the 3875, which induces relations
such as [7, 8],

V[MNJIJ\A = 4 ((FIFK)AB V[MNJKJ\B — (0T 45 V[MNJKHB) . (5.18)

After some calculation, the second term in (5.17) then reduces to 2 AIM (X, M — 7, M),
where we again introduced the expression for the duality relation (5.13). The term propor-
tional to HWN then yields a term belonging to the tensor gauge transformation (2.29). The
second line in (5.17) can be simplified in a similar way. Its (I.J) traceless part may be brought

into the form

LgyMV VIMPU ey € vuvey” (5.19)

K[PQ]
and thus constitutes the shift transformation of (2.29) with parameter!?

@MV’C[MNJ = —% V[K[MN“IK\KMLJ 5[1[Wu€2}‘] . (5.20)

It remains to consider the (I.J) trace part of the second line in (5.17) which reduces to
degeup&’ YIMNIIKL] Oxr , (5.21)

where VIMNHKLI gquals the symmetric scalar-dependent matrix defined by

yIMNLIKL] (7 PIMNIKL] 4 — 2 PIMNIIKL]

355 LIAIL]] IK|JK|IL|JL> . (5.22)

Putting everything together, the supersymmetry commutator on two-forms takes the form,
[Oers 0] BN = 4ge€le,, VMV @0 42D 5, MY — 27, IM AV
— gV MN 1oy @, M7 12 2, IMAN 2.4, M 5, 6, AN
_ (gﬂf)p +6a + 02 + 6q>> BN — g0y, MV
+ 22, M (AN A M) — 260 ) MA, N (5.23)
where in the second equation we introduced the tensor,

V™V = Hyuy™NV —dgeey, VIVVIRL g, 6.4, M x, )N (5.24)

13Note that not only the coefficient is determined. There exists yet another independent term with the

VI—)CI—MNJJA‘B‘JK E[ll'yweQ]J, which turns out to be absent. One may verify by

correct tensor structure, IS
explicit calculation that TN defined in (5.20) has contributions in both irreducible representations 3875

and 147250.
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This tensor takes the form of a duality relation between the field strength of the two-forms
(2.30) and the embedding tensor. The supersymmetry commutator thus closes according
to (5.7) modulo terms proportional to the duality relations (5.13) and (5.24). These terms
are interpreted as follows. The term proportional to yW,,MN corresponds to a new symmetry
transformation of the two-form potential. The last term proportional to XWM accompanies
the extra transformation in the vector fields represented by the last term in (5.14). Finally
the preceding terms proportional to XWM are interpreted as deformations of the vector
gauge transformation acting on the two-form potential (¢f. (2.40)). Hence we change this

transformation according to,
Smod(A) B,V = — 2 AMp, N o AMy, N o4 IMs(A)A,M
= 2eeu, AV, PrA Lo 4 IMG(A)A M. (5.25)

This deformation is reminiscent of what happens, for instance, in D = 4 gauged supergravity
[38, 26, 17], where the two-form fields acquire also additional variations once they couple to
other fields in the Lagrangian. Of course, it remains to see whether this interpretation is
correct, but we will present further evidence of this in section 6.

The duality relation (5.24) is remarkable. On-shell, (i.e. for XM = 0 = YMV) it reads

Houw,™"N = dgee,,, VIVVIRE g (5.26)

and it relates the field strengths of the two-forms to the embedding tensor. The scalar matrix
VIMNLIKL] defined in (5.22), which shows up in this equation, is related to the scalar potential
of the gauged theory in a simple way. With the explicit expression for the scalar potential V'

from [7, 8] one finds the expression
Vo= —i(Al Al - faRtalh) = VIMANIRE G e (5.27)

In other words, the matrix VIMNVHKL] precisely encodes the scalar potential of the gauged
theory. This appears to be a generic pattern for the (D—1)-forms in the gauged supergravities,
and we shall see its natural interpretation in the next section. We emphasize that the matrix
VIMNHKLL i5 pot positive definite — unlike the scalar matrices that show up in the lower-
rank p-form dualities. This lack of positivity is in accord with the fact that the potentials of
gauged supergravities are generically known to be unbounded from below.

At this point let us briefly comment on a similar result in [45] where the form fields are
considered for D = 5 gauge maximal supergravity. In that work an equation (4.27) appears
which seems the direct analogue of (5.26), but now for the field strength of the four-form
potential. Although it has the same structure as (5.26), its right-hand side is not related to
the potential in the way we described above. However, a direct comparison is subtle as (5.13)
only vanishes on shell upon projection with the embedding tensor, so that (5.26) will not be
realized as a field equation.

The duality equation (5.26) in particular provides the Egg) covariant field equation for

two-forms in the three-dimensional ungauged theory:

3“<V[MNJ7[;C£J'HW,)ICE> + fermions = 0, (5.28)
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with Viypficc) the inverse matrix to YIMNIKL],
To close this section, we also compute the commutator of supersymmetry transformations
on the three-forms. Equation (5.20) suggests to define the supersymmetry variation of the

three-forms as
AC, MMV S YKIMI el T g (5.20)
where the dots refer to the € x variations. Indeed,
20¢, (% VIRIMN g gﬁmuu%‘]}) = 3D},®,,/ "W (5.30)
+2 Dy, (V“C[MN“IK|KL|LJ) el ywey” +o

thus reproducing the correct ® term given in (5.20). Evaluating the derivatives of the second

term and using the duality equation (5.13), eventually brings this term into the form (modulo
XMy,

<% V[K[MN”A|KM|JM — % V[K[MNJJJMH(M\A) (FKFN)AB ,P[ﬁ Ef\lf’yvp] €2J]

(@) [k 2 MN]

+ 3H[u ~pl

(5.31)

In order to arrive at this result, we need to make use of the explicit projection onto the
3875 + 147250 within the tensor product [[MN]]. This gives rise to a number of non-

trivial identities, like

147K PIMMLL 16T WM

A|KM|JM JM|KM|A
K[MN
—(FMN) I s = 0, (5.32)

which results from the projection of a triple product of V’s onto the 147250 + 3875 rep-
resentation in the same way as (5.18) is obtained by applying (4.4) to a double product of
V’s. From (5.31) we can infer the full supersymmetry transformation of the three-forms.
While the last term is precisely expected from the tensor gauge transformations (2.29), the
rest must be cancelled by dx variations in dC. Together, this determines the supersymmetry

variation of the three-forms to be given by

AC,uzzp’qMNJ = %V[K[MNJJIK\KMLJ Elv[uuij} (533)

— L (VUC[MNJJ [MN]]

K - A
AIKM|IM — AU JM\KM|A) X @ wex ™

To summarize, we have determined the supersymmetry variations of all p-forms in three

dimensions by closure of the supersymmetry algebra. The full algebra is given by
[Oers0es] = &#Dpy+ 0a + 0= + 6 + 6x + Oy (5.34)

up to supersymmetry and local Lorentz symmetry transformations. The last two terms
correspond to additional local symmetries proportional to X}, and ), that have appeared
in (5.14) and (5.23) for the one- and two-forms, respectively. Furthermore, we recall that we

have made a modification in the vector gauge transformation rule for the two-forms.
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Of course, we have to justify both the presence of this deformation and the fact that
the two new variations can indeed be regarded as symmetries of a specific Lagrangian. In
this respect it is important to recall that X, and ), take the form of first-order duality
equations between p-forms in three dimensions and, as it turns out, there are indeed field
equations are proportional to &}, and ),,,,. This feature plays an important role in realizing
the invariance. To understand this issue further we turn to the construction of the Lagrangian

in the next section.

6 The Lagrangian with all p-forms in three dimensions

Finally, we give a Lagrangian which contains all p-forms in three dimensions. To this end we

start from the gauged Lagrangian of [7, §],
Loauged = —3eR+ ieP”AP;? + %E“"pl/;ﬁDV@bg - %ie)ZA'y“DMXA
—Lgemr AMO N 0 AN + L gXrsN ATALS)
— Je X UL T P+ Seg AT Dl g+ ieg AgTA XAy
+ 3¢9 A48 AP~ Leg? VIMNHKLIQ v Oxr + Latormi » (6.1)

where,
AgtB = L (TEE) L VMN1J|KL Omwn - (6.2)

This is the Lagrangian that describes all consistent gaugings with a constant, symmetric,
embedding tensor ©n that belongs to the 3875 + 1 representation and is subject to the
quadratic constraint Qi) = 0.

Now consider © yqnr not as a constant tensor but as an z-dependent field O ppr(z) satis-
fying the representation constraint (i.e. living in the 3875; for convenience we suppress the
singlet representation in what follows), but not the quadratic constraint on ©anr. To the
Lagrangian (6.1) we add a new Lagrangian describing the couplings to two-forms BWMN
and three-forms C'Wp’qMN I

Lpe = —19e"?Bu™N D,0un + 559%™ Cluwy™ N Qv (6.3)

The two- and three-form potentials thus act as Lagrange multipliers to ensure that O\
is constant and satisfies the quadratic constraint. As O is a field now, the quadratic
constraint can no longer be imposed by hand but must be implemented in this way.

Since the Lagrangian (6.1) is supersymmetric and gauge invariant for a constant ten-
sor © s satisfying the quadratic constraint, the new Lagrangian Lgayged + Lpc With z-
dependent © yn can be made supersymmetric and gauge invariant by introducing the proper
local transformation laws for the potentials BWMN and C’WPK[MN || while keeping 60y =
0. This construction thus shows that the supersymmetry algebra can be extended to two-
and three-forms transforming in 3875 and the 3875 4 147250, respectively. The same con-

struction can be applied in higher dimensions and gives a natural explanation of why in
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general the (D—1)-forms and the D-forms transform in the conjugate representations of the
embedding tensor and the quadratic constraint, respectively.
As a first exercise, we can compute the new field equation obtained by varying the full

Lagrangian with respect to O n. Neglecting fermions, we find,
Lgouged = —€g (%VMA prAgN 4 g yIMNIIKL] @,@) 5O
—Lgemr AM (9,AN + 2 gXirsV AVRALS) §0 0w (6.4)
and (modulo a total derivative),
SLpe = hger (3D,,BWMN — 692MpoA,N B, PO

+ gV ipg) CuupK[PQJ) SOMN (6.5)

where we used the identity Qi = 360p0 YPQ,C[MNJ. Therefore the variation of the
full Lagrangian £ = Lgauged + Lpc takes the form,

0L = Lge"? VN 60 (6.6)

so that we obtain precisely the duality relation prMN defined in (5.24). In particular, this

shows why the scalar matrix that relates the field strength of the (D —1)-forms to the em-

bedding tensor according to (5.26) is precisely the (non-positive definite) matrix YIMNIIKL]

of the scalar potential. Clearly the analogue of this relation will hold in any dimension.
Under general variations of vector and tensor fields, the full Lagrangian varies as (again

neglecting fermions),
5L = _%gglll/ﬂ O mn 5AHM XupN _ %gglwp (5B,U,I/MN + 2A[MM 51414./\/') Dp@/\/l./\f
+ 117292 chvp <5CMV/J’C[MNJ + 2AMICAI/M6ApN> QIC[MNJ ) (6.7)

Thus, varying the Lagrangian with respect to all p-form tensor fields and © pz7, one obtains

the set of first order and algebraic field equations
@,/\/l,/\f X,uz/N = 0, y,uzszN =0, au@MN =0, QIC[MNJ =0, (68)

and we recover the duality relations X and YMN that appeared in the computation of the
supersymmetry algebra (5.13) and (5.24), respectively.

Let us further remark that the full Lagrangian is invariant under the additional symmetry

SxAM =X, M, xBMY = 24, Mepa, N

SxChuy™ MM = —8 4 KA M 652 4 NI (6.9)
with an arbitrary vector field £%. This follows directly from (6.7):

SxL o POy XuMXNEG = 0. (6.10)
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Likewise, the Lagrangian is invariant under the additional symmetry
5)1B,LWMN = §§; yp,uyMN s 5)/@MN = g:l))} Dpe)/\/l/\/ ) (611)

with another arbitrary vector field £},. The extra symmetries (6.9) and (6.11) are those which
have shown up already in the supersymmetry algebra and correspond to the last two terms
in (5.34). The second one is a standard equations-of-motion symmetry’, whereas the first
one is a little more subtle as its corresponding field variations do not vanish completely upon
imposing the equations of motion.

Note that although there are of course no four-forms present in the three-dimensional
Lagrangian, their tensor gauge freedom shows up as a shift transformation on the the three-
forms (2.43). Since these are the only fields transforming under this symmetry, the Lagrangian
must be invariant under the mere shift of three-forms according to (2.43). Fortunately,
this invariance is precisely ensured by the additional orthogonality (4.11), showing that the
combination CMVpK[MN Oxmn) entering the Lagrangian is invariant under these shifts.

A rather lengthy but straightforward calculation now shows that the full Lagrangian
L = Lgauged + Lpc is invariant under supersymmetry provided the fields transform as (5.4),
(5.6), (5.16), and (5.33). Here no supersymmetry variation is assigned to the field © 5, which
can still satisfy the supersymmetry variations by virtue of the existence of the new symmetry
(6.11). Furthermore we precisely recover the new transformation rules for the higher p-forms
that we have derived in section 5. A somewhat similar construction has been carried out
in [47] to describe Roman’s massive deformation of ten-dimensional ITA supergravity [37] in
terms of a nine-form potential and an xz-dependent parameter m(x) rather than a constant
deformation parameter m. What is new here is the non-trivial representation structure of the
deformation parameters and the need to simultaneously implement on them the quadratic
constraint, hence the need for D-forms acting as the corresponding Lagrange multipliers.

We now return to the possible interpretation of our results, and especially the ones of the
present section, in the framework of infinite-dimensional duality symmetries. Let us recall
that the representations found in the level decompositions of E1; [31, 32, 33] are in one-to-
one correspondence with the various p-form fields identified in course of our analysis and
displayed in table 2. By contrast, the embedding tensor itself does not show up in this level
decomposition, but must be added as an ‘extraneous’ quantity, even though it is to be treated
as a ‘field’ in the present analysis (otherwise there would be no need for extra p-form fields
in the Lagrangian (6.3)). In order to better understand the link with infinite-dimensional
dualities, it would therefore be desirable to re-formulate the theory entirely in terms of only
the fields appearing in the group theoretical analysis, and thus without ©.

At least in principle, it is possible to pass from the total Lagrangian £ = Lgauged + LBC
to another Lagrangian which does not depend on ©, by noting that £ depends on © at most
quadratically. Accordingly, we now regard the field equation yu,,pMN = 0 as an algebraic
equation for the (auxiliary) field Oy,

dgeeuwp VIMNITEL] Oke = 3 D[MBVP]MN +6 A[u[M (aVAp]NJ + %QX[PQ]NJAVPAM Q)
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+ g YN i) Clnp 1781 — 6.4, M &, ;M (6.12)

and use it to eliminate © yqns from the Lagrangian. Although this equation is linear in © yqas,

its solution is rather complicated due to the hidden © dependence of the tensors X’])QN ,

YMN 5ns and ./'\,’WM on the right-hand side. Consequently, the solution cannot be written
in closed form, but only given as an infinite series in the p-forms and their derivatives.'* We

therefore exhibit only the lowest-order term of the solution which reads
Omn = %6_16MVPV[MNJ7[KLJ 8MBVPKL S R (6.13)

Plugging (6.13) back into (6.1) and (6.3) we derive the bosonic kinetic term for the two-form
fields in lowest order, with the result

Liin = ea[ﬂByp]MN ole greIkL V[MNJ,[ICLJ + ..., (6.14)

We thus see that the inverse scalar potential matrix Viaarj[xc) shows up as the kinetic
matrix of the (D—1)-forms, as would have been expected from (5.28). As we already pointed
out above (after (5.27)) this matrix is not positive definite, unlike the kinetic matrices of the
lower p-forms. Fortunately, we need to require positive definite kinetic terms only for those
fields which carry propagating degrees of freedom, whence the non-positivity of the kinetic
term for the 2-form fields in the above formula is entirely harmless.

In conclusion it is possible to re-formulate the theory in terms of a Lagrangian that
contains only the scalars and p-forms, but no embedding tensor. The price we have to pay is
that the resulting structure is rather complicated, with non-polynomial interactions and gauge
transformations. Nevertheless, the Lagrangian obtained by elimination of © is ‘universal’ in
the sense that it would incorporate all gaugings, in such a way that any specific gauging

would correspond to the 3-form field strength 8[MBl,p]MN

acquiring a vacuum expectation
value according to (6.13). One may view this as a kind of ‘spontaneous symmetry breaking’,
but of a novel kind: rather than simply breaking the rigid G invariance of the original theory
to some subgroup, this mechanism generates non-abelian gaugings from a theory with purely
abelian p-forms and interactions!

By construction, the constraints on the embedding tensor exhibited and studied in the
foregoing sections must also be consistently encoded into this new Lagrangian. Unfortunately,
due to the the non-polynomiality of the latter, it appears difficult to extract this information
directly and without explicit use of . For this reason, it would be desirable to go beyond the
mere kinematics of level decompositions, and to ‘test’ this non-polynomial Lagrangian (or
at least some of its pieces, and in particular the dependence of (6.14) on the scalars via the
kinetic matrix) directly either against the Ej; proposal of [48], or alternatively, against the
E1o proposal of [49, 50]. Because the latter admits a Lagrangian formulation (but without
D-forms as these do not appear in the decomposition of Ejp), such tests are possible in

principle. Although this will require much more work, we are confident that the present

“Observe that the matrix VIMVIIELD will have zero eigenvalues at certain points of the scalar field config-

uration space.
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results can serve as useful probes of M theory, or, more succinctly, of the specific proposals

made in [48] and [49, 50], respectively, and thereby shed new light on the unresolved issues
with them.
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