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Abstract

Deformations of maximal supergravity theories induced by gauging non-abelian

subgroups of the duality group reveal the presence of charged M-theory degrees of

freedom that are not necessarily contained in supergravity. The relation with M-

theory degrees of freedom is confirmed by the representation assignments under

the duality group of the gauge charges and the ensuing vector and tensor gauge

fields. The underlying hierarchy of these gauge fields is required for consistency

of general gaugings. As an example gauged maximal supergravity in three space-

time dimensions is presented in a version where all possible tensor fields appear.



1 Introduction

In recent years a wealth of information has become available about general gaugings of su-

pergravity. In particular, it has become clear that these theories may play an essential role in

probing and exploring M-theory beyond the supergravity approximations considered so far.

The key ingredient in these developments is the so-called embedding tensor, which defines

the embedding of the gauge group generators (up to possible central extensions) in the rigid

symmetry group, which for the maximal supergravities is the duality group that arises upon

dimensional reduction of eleven-dimensional or ten-dimensional (IIB) supergravity. With the

embedding tensor at hand, all gauged supergravities in various space-time dimensions can

now be classified.

The first maximal gauged supergravity, N = 8 supergravity in four space-time dimensions

with compact gauge group SO(8), was constructed in [1], soon followed by similar gaugings

in maximal supergravity in D = 5 [2] and D = 7 [3] dimensions. Also D = 4 gaugings with

non-compact versions of SO(8) and contractions thereof were found to exist [4]. Although

these results eluded a more systematic understanding for a long time, there were hints of a

deeper group-theoretical structure underlying these constructions, and linking the existence

of gauged supergravities to certain higher-dimensional representations of the duality groups

En(n): it was known already in 1984 that the so-called T -tensor of N = 8 supergravity

(essentially a ‘dressed’ version of the embedding tensor) belongs to the 912 representation

of E7(7) [5]. The latter group is the invariance group of (ungauged) maximal supergravity in

D = 4 dimensions [6].

The more recent developments allowing for a much more systematic exploration of gauged

supergravities go back to the discovery of maximal gauged supergravities in three space-time

dimensions [7, 8, 9], and it was in this context that the notion of embedding tensor was first

introduced. The case of three space-time dimensions is special because all higher-rank tensor

fields present in higher dimensions have been dualized away in the dimensional reduction of

D = 11 supergravity [10] to three dimensions, such that all propagating degrees of freedom

can be described by scalar fields. An immediate puzzle then (and the reason why these

theories had not been found earlier) was the question how to gauge a theory that apparently

does not have any vector fields left from the dimensional reduction. This puzzle was finally

resolved in [7, 8] by introducing a set of 248 ‘redundant’ vector fields transforming in the

adjoint representation of E8(8); rather than through the standard Yang-Mills kinetic term,

these gauge fields appear with a Chern-Simons term in the Lagrangian, ensuring that the

number of physical degrees of freedom in the theory remains the same as before.

The systematic investigation of gauged supergravities in dimensions D ≥ 4 by means

of the embedding tensor was initiated in refs. [11, 12], following the discovery of a new

maximal gauged supergravity in [13] based on Scherk–Schwarz compactification [14] of D = 5

supergravity. This systematic analysis has meanwhile lead to a complete classification of

gauged maximal supergravities in D = 5 [15], D = 7 [16], and, finally, D = 4 [17] and

D = 6 [18] (the situation in an even number of dimensions is more complicated because the

1



duality group is only a symmetry of the equations of motion, but not of the Lagrangian). In

particular, it can be shown that the known examples of gauged supergravities (including more

recent constructions such as [19, 20, 21, 22, 23, 24, 25, 26, 27, 28]) can all be accommodated

within the systematic approach based on the embedding tensor. Most recently, gaugings

of maximal supergravity in D = 2 were constructed in [29] — this case being more exotic

because the relevant duality group E9 is infinite dimensional.

The appearance of ‘redundant’ vector fields in D = 3 gauged supergravities and the

(long known) fact that the consistent gauging of maximal supergravity in D = 5 [2] requires

the simultaneous use of vector fields and 2-form potentials, has led to the conclusion that

a systematic understanding of gauged supergravities makes the consideration of higher-rank

tensor fields unavoidable [30]. As pointed out there, and as will be analyzed in further detail in

the present paper, gauged supergravities can be consistently and systematically formulated

by introducing a hierarchy of anti-symmetric tensor fields. The analysis at this point is

independent of the number of space-time dimensions, and the hierarchy contains in principle

an infinite number of anti-symmetric tensors of any rank. Of course, once the space-time

dimension is fixed to some integer D, the maximal rank is also fixed to D. Maintaining the

correct number of propagating degrees of freedom in the presence of these extra fields requires

a subtle interplay of ordinary gauge invariance and higher-rank tensor gauge transformations.

For non-zero gauge coupling the physical degrees of freedom reside in a finite number of the

tensor fields and it is the embedding tensor that determines how these degrees of freedom are

distributed over the various tensor fields. Here it is important to note that, in the presence

of gauge interactions, the possibility for converting rank-p to rank-(D−p−2) tensors fields is

severely restricted. When the gauge coupling constant vanishes the hierarchy can in general

be truncated.

In an important and independent development [31, 32, 33] it has been shown that the

relevant representations of all higher-rank tensors fields can also be obtained via a level

decomposition of the indefinite Kac–Moody algebra E11 (if one omits the D-forms, these

representations can be equivalently derived from the hyperbolic Kac–Moody algebra E10).

In order to arrive at this decomposition, one first selects a ‘disabled’ node in the Dynkin

diagram, and then decomposes the algebra in representations of the remaining finite dimen-

sional subgroups of E11, all of which are direct products SL(D)×E11−D where D ≥ 3 denotes

the number of uncompactified space-time coordinates. Remarkably, it turns out that the

low-lying representations in that analysis coincide with the representations found here by a

completely different route. However, one should keep in mind that ‘higher up’ in the level

decompositions of E10 and E11 there opens up a terra incognita of an exponentially growing

spectrum of representations of ever increasing size and complexity, whose ultimate role and

significance remain to be understood.

What is the physical significance of these results? As we will argue here, the existence

of these gauged supergravities constitutes direct evidence for new M-theoretic degrees of

freedom beyond the known maximal supergravities in space-time dimensions D ≤ 11 (and

possibly also beyond string theory as presently understood). This feature is most evident
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for D = 3 gauged supergravities with semi-simple gauge groups: none of these theories can

be obtained from higher-dimensional supergravity by conventional (Kaluza–Klein or Scherk–

Schwarz) compactification. Our claim is supported by the fact that several of the ‘exotic’

representations of the duality groups exhibited here have also been found to occur in toroidally

compactified matrix theory [34, 35], as well as in the context of del Pezzo surfaces and com-

pactified M-theory [36]. The process of gauging a given maximal supergravity can thus be

interpreted as the process of ‘switching on’ such new degrees of freedom, which are here en-

coded into the embedding tensor. A special role is played by the (D−1)- and D-forms: we

will set up a Lagrangian formulation of three-dimensional maximal supergravity containing

all higher-rank antisymmetric tensor fields with an initially space-time dependent embedding

tensor Θ(x), in such a way that the (D−1)- and D-forms, respectively, impose the constancy

of Θ, and the closure of the corresponding gauge group. Alternatively, one can eliminate

the field Θ which appears at most quadratically in the Lagrangian by means of its equations

of motion, thereby arriving at a Lagrangian that contains the higher-rank tensor fields in

a non-polynomial fashion. Gauging would then be realized as a kind of spontaneous sym-

metry breaking,1 and equivalent to the process of certain D-form field strengths acquiring

vacuum expectation values. In this way, the different maximal gauged supergravities can be

interpreted as different ‘phases’ of one and the same Lagrangian theory.

Finally, we should stress that we consider the deformations mainly from the point of view

of setting up a consistent gauging. On the other hand, additional deformations are some-

times possible, generated by singlet components in the ‘descendants’ of the embedding tensor

(which, presumably, could induce additional non-singlet terms higher up in the hierarchy).

The embedding tensor by definition specifies how the gauge group is embedded in the duality

group, but it also encodes many of the interactions of the tensor fields. At the level of these

tensor interactions the embedding tensor may be able to accomodate additional components

which will still fit into the hierarchy. A well-known example of this phenomenon is the Ro-

mans massive deformation of ten-dimensional IIA supergravity [37], which is induced by a

nine-form potential. We will comment on this in due course.

This paper is organized as follows. In section 2 we discuss the hierarchy of tensor gauge

fields in a general context. In section 3 we discuss the relation with M-theory degrees of

freedom. In section 4 we determine the duality representations of the tensor fields in three

space-time dimensions. The corresponding supersymmetry algebra is discussed in section 5

and the general Lagrangian for gauged three-dimensional maximal supergravity in section 6.

Results of the present investigation have already been announced and discussed by us in

several talks 2.

1This terminology clearly differs from the usual one, and should thus be understood cum grano salis.
2See, for instance: http://ggi-www.fi.infn.it/activities/workshops/stringM/talks/dewit.pdf;

http://maths.dur.ac.uk/events/Meetings/LMS/2007/TSAS/Talks/dewit.pdf

3



2 A hierarchy of vector and tensor gauge fields

Maximal supergravities in various space-time dimensions can be constructed by dimensional

reduction on a torus of supergravity in eleven and/or ten space-time dimensions. In general

these theories contain abelian vector fields and antisymmetric tensor fields of various ranks.

Their field content is not unique as p-rank tensor gauge fields can be dualized to tensor fields

of rank D − p − 2, where D denotes the dimension of space-time of the reduced theory.

However, there always exists an optimal choice of the field configuration that most clearly

exhibits the invariance under a duality group G. This group is listed for space-time dimensions

D = 3, . . . , 7 in the second column of table 1. The symmetry under the G-transformations

is realized non-linearly in view of the fact that the scalar fields parametrize a G/H coset

space, where H is the R-symmetry group of the corrresponding supersymmetry algebra.

This group equals the maximal compact subgroup of G and it is also listed in table 1. In

general the vector and antisymmetric gauge fields transform in specific representations of

G.3 The vector fields, which we denote by Aµ
M, transform in the fundamental or in a

spinor representation of G. These representations are (implicitly) listed in table 1, as we

will explain below. The generators in these representations are denoted by (tα)M
N , so

that δAµ
M = −Λα(tα)N

MAµ
N . Structure constants fαβ

γ of the duality group are defined

according to [tα, tβ] = fαβ
γ tγ .

Deformations of these maximal supergravities can be constructed by introducing a non-

abelian gauge group, which must be a subgroup of the duality group. The dimension of this

gauge group is obviously restricted by the number of vector fields in the theory. The discussion

in this section will remain rather general and will neither depend on the actual duality group

nor on the space-time dimension (we recall, however, that there may be subtleties in even

space-time dimensions related to selfduality of vector or tensor gauge fields). We refer to

[15, 16, 17] where a number of results were described for maximal supergravity in various

dimensions.

The gauge group generators XM, which will couple to the gauge fields Aµ
M in the usual

fashion, are obviously decomposed in terms of the independent G generators tα, i.e.,

XM = ΘM
α tα . (2.1)

The gauging is thus encoded in a real embedding tensor ΘM
α belonging to the product of

the representation conjugate to the representation in which the gauge fields transform and

the adjoint representation of G. This product representation is reducible and decomposes

into a number of irreducible representations as is indicated for the cases of interest in the

last column of table 1. However, as is also shown in the table, supersymmetry requires most

of these irreducible representations to be absent: only the underlined representations in the

table are compatible with local supersymmetry. Actually, for non-supersymmetric theories

one may have to impose similar constraints (see, e.g. [38]). This constraint on the embedding

3In even space-time dimensions this assignment may fail and complete G representations may require the

presence of magnetic duals. For four space-time dimensions, this has been demonstrated in [38].
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D G H Θ

7 SL(5) USp(4) 10 × 24 = 10 + 15 + 40 + 175

6 SO(5, 5) USp(4) × USp(4) 16 × 45 = 16 + 144 + 560

5 E6(6) USp(8) 27 × 78 = 27 + 351 + 1728

4 E7(7) SU(8) 56 × 133 = 56 + 912 + 6480

3 E8(8) SO(16) 248 × 248 = 1 + 248 + 3875 + 27000 + 30380

Table 1: Decomposition of the embedding tensor Θ for maximal supergravities in various space-time

dimensions in terms of irreducible G representations [11, 30]. Only the underlined representations are

allowed by supersymmetry. The R-symmetry group H is the maximal compact subgroup of G.

tensor is known as the representation constraint. Here we treat the embedding tensor as a

spurionic object, which we allow to transform under the duality group so that the Lagrangian

and transformation rules remain formally invariant under G. At the end we will freeze the

embedding tensor to a constant, so that the duality invariance will be broken. Later in this

paper we see that this last step can also be described in terms of a new action in which the

freezing of ΘM
α will be the result of a more dynamical process.

The embedding tensor must satisfy a second constraint, the so-called closure constraint,

which is quadratic in ΘM
α and more generic. This constraint ensures that the gauge trans-

formations form a group so that the generators (2.1) will close under commutation. Any

embedding tensor that satisfies the closure constraint, together with the representation con-

straint mentioned earlier, defines a consistent gauged supergravity theory that is both super-

symmetric and gauge invariant. To spell out the closure constraint in more detail let us write

out (2.1) once more, but now with representation indices in the G-representation pertaining

to the gauge fields written out explicitly, viz.

XMN
P ≡ ΘM

α (tα)N
P = X[MN ]

P + ZP
MN (2.2)

where we will use the notation

ZP
MN ≡ X(MN )

P , (2.3)

for the symmetric part throughout this paper. The closure constraint is a consequence of the

invariance of the embedding tensor under the gauge group it generates, that is

δPΘM
α = ΘP

βtβM
NΘN

α + ΘP
βfβγ

αΘM
γ = 0 . (2.4)

Contracting this result with tα we obtain

[XM, XN ] = −XMN
P XP = −X[MN ]

P XP , (2.5)

Hence, the gauge invariance of the embedding tensor is equivalent to the closure of the gauge

algebra. It is noteworthy here that the generator XMN
P and the structure constants of the

gauge group are thus related, but do not have to be identical. In particular XMN
P is in

general not antisymmetric in [MN ], as is evident from (2.2). The embedding tensor acts
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as a projector, and only in the projected subspace the matrix XMN
P is antisymmetric in

[MN ] and the Jacobi identity will be satisfied. Therefore (2.5) implies in particular that

X(MN )
P must vanish when contracted with the embedding tensor. In terms of the notation

introduced above, this condition reads

ΘP
α ZP

MN = 0 . (2.6)

The gauge invariant tensor ZP
MN transforms in the same representation as ΘM

α, except

when the embedding tensor transforms reducibly so that ZP
MN may depend on a smaller

representation. As may be expected the tensor ZP
MN characterizes the lack of closure of

the generators XM. This can be seen, for instance, by calculating the direct analogue of the

Jacobi identity,

X[NP
RXQ]R

M = 2
3Z

M
R[N XPQ]

R . (2.7)

We emphasize that seemingly strange features, such as the appearance of a symmetric

contribution in XMN
P , or the apparent violation of the Jacobi identity in (2.7), are entirely

due to the redundancy in the description: although the actual gauge group is usually smaller

than G, we nevertheless continue to label all matrices by G indices M, such that the number of

matrices XM in general will exceed the dimension of the gauge group. The main advantage

of this parametrization (and nomenclature) is its universality, which allows us to treat all

gaugings (and gauge groups) on the same footing.

Now we return to the field theoretic description. The gauging requires the replacement

of ordinary space-time derivatives by covariant ones for all fields except the gauge fields,

∂µ → Dµ = ∂µ − g Aµ
MXM , (2.8)

where the generator XM must be taken in the appropriate representation. To write down

invariant kinetic terms for the gauge fields one needs a suitable covariant field strength tensor.

This is an issue because the Jacobi identity is not satisfied. The standard field strength, which

follows from the Ricci identity, [Dµ, Dν ] = −gFµν
MXM, reads,

Fµν
M = ∂µAν

M − ∂νAµ
M + g X[NP]

MAµ
NAν

P , (2.9)

and is not fully covariant. The lack of covariance can be readily checked by observing that

Fµν
M does not satisfy the Palatini identity 4; rather, we have

δFµν
M = 2D[µδAν]

M − 2g XM
(PQ)A[µ

P δAν]
Q , (2.10)

under arbitrary variations δAµ
M. Assuming the standard gauge transformation,

δAµ
M = DµΛM = ∂µΛM + gAµ

NXNP
MΛP , (2.11)

it follows that Fµν
M transforms under gauge transformations as

δFµν
M = gΛPXNP

MFµν
N − 2g ZM

PQA[µ
P δAν]

Q , (2.12)

4That is, the standard relation δFµν
M = 2 D[µδAν]

M.
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which is not covariant — not only because of the presence of the second term on the right-hand

side, but also because the lack of antisymmetry of the structure constants XNP
M prevents

us from getting the correct result (cf. (2.20) below) by simply inverting the order of indices

NP in the first term on the right-hand side

In order to remedy this lack of covariance we now follow the strategy of [15, 30]. Since

we know that closure is ensured on the subspace projected by the embedding tensor, we

introduce additional gauge transformations in the orthogonal complement so that all diffi-

culties associated with the lack of closure can be compensated for by performing these new

transformations. For the gauge fields, this leads to the following transformation rule,

δAµ
M = DµΛM − g ZM

NP Ξµ
NP , (2.13)

where the transformations proportional to Ξµ
NP enable one to gauge away those vector fields

that are in the sector of the gauge generators XMN
P where the Jacobi identity is not satisfied

(this sector is perpendicular to the embedding tensor by (2.6)). Note that the parameter

Ξµ
NP in (2.13) appears contracted with the constant tensor ZM

NP defined in (2.3) as a

linear function of the embedding tensor. It is important, that this tensor generically does

not map onto the full symmetric tensor product (NP) in its lower indices but rather only on

a restricted subrepresentation. In other words, there is a non-trivial G-invariant projector P

such that

ZM
NP = ZM

RS P
RS

NP , (2.14)

for any choice of the embedding tensor. The precise representation content of P can be

determined for any given theory by carefully inspecting (2.3) and we give examples of this

in the later sections (see also [30]). In order not to overburden the formulas with explicit

projectors, we denote the projection corresponding to (2.14) by the special brackets ||⌈NP⌋||,

i.e. we use the notation

A||⌈MAN⌋|| ≡ P
MN

RS A
RAS , etc. (2.15)

Similar notation will be used for other index combination that we will encounter shortly.

The combined gauge transformations (2.13) generate a group on the vector fields, as

follows from the commutation relations,

[δ(Λ1), δ(Λ2)] = δ(Λ3) + δ(Ξ3) , (2.16)

where

Λ3
M = g X[NP]

M ΛN
2 ΛP

1 ,

Ξ3µ
MN = Λ

||⌈M
1 DµΛ

N⌋||
2 − Λ

||⌈M
2 DµΛ

N⌋||
1 . (2.17)

Here it is crucial that δ(Λ) and δ(Ξ) commute on the vector fields. However, these commu-

tators are subject to change when more fields will be introduced. We return to this issue in

due course.
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Under the combined gauge transformations Fµν
M changes as follows,

δFµν
M = gΛPXNP

MFµν
N − 2g ZM

PQ

(

D[µΞν]
PQ + A[µ

P δAν]
Q

)

, (2.18)

which is still not covariant. The standard strategy [15, 30] is therefore to define modified

field strengths,

Hµν
M = Fµν

M + g ZM
NP Bµν

NP , (2.19)

where we introduce tensor fields Bµν
NP , transforming under G in the restricted representa-

tion (2.14) i.e. Bµν
NP = Bµν

||⌈NP⌋||. Actually the restricted index pair ||⌈MN⌋|| will play the role

of a new index belonging to a specific representation, and ZM
NP is an intertwining tensor

between the representations of the vectors and the two-forms. The gauge transformation

rules of Bµν
MN will be chosen such that the field strengths Hµν

M will transform covariantly

under gauge transformations, i.e.,

δHµν
M = −gΛPXPN

MHµν
N . (2.20)

To do this in a systematic manner we first define generic covariant variations of the tensor

fields,

∆Bµν
MN ≡ δBµν

MN − 2A[µ
||⌈MδAν]

N⌋|| , (2.21)

so that generic variations of Hµν
M take the form

δHµν
M = 2D[µδAν]

M + g ZM
NP ∆Bµν

NP . (2.22)

For a combined gauge transformation we choose for ∆Bµν
MN ,

∆Bµν
MN

∣

∣

∣

gauge
= 2D[µΞν]

MN − 2 Λ||⌈MHµν
N⌋|| + · · · , (2.23)

where the unspecified contributions vanish when ∆Bµν
MN is contracted with ZP

MN , so that

they remain as yet undetermined. Substituting this expression and (2.13) into (2.22) leads

indeed to the required result (2.20).5

Here it is worth pointing out that the expected gauge transformation on Bµν
MN equal

to

δBµν
MN = −gΛPXP||⌈RS⌋||

||⌈MN⌋||Bµν
RS , (2.24)

where the generator XP||⌈RS⌋||
||⌈MN⌋|| = (XP)||⌈RS⌋||

||⌈MN⌋|| acts in the restricted representation to

which δBµν
MN belongs, is already contained in the second term in (2.23), up to an additional

gauge transformation associated with a three-rank tensor field, that we will introduce shortly.

The above strategy forms the starting point for the construction of a hierarchy of anti-

symmetric tensor gauge fields [30]. To see how one proceeds, let us turn to the construction

of the covariant field strength for the tensor fields Bµν
MN ,6

Fµνρ
MN = 3D[µBνρ]

MN + 6A[µ
||⌈M

(

∂νAρ]
N⌋|| + 1

3gX[PQ]
N⌋||Aν

PAρ]
Q

)

, (2.25)

5Here we note that the present formulae cannot be compared directly to the ones in [30], as those are

derived in a different basis, but they can be compared to later work along the same lines, starting with [16].
6We use the same letters F for the field strengths of vectors and higher p-forms. From the number of

space-time indices it is always clear to which forms the F belong.
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where the first two coefficients follow from (2.23) and the terms cubic in the vector gauge

fields are such that generic variations of Fµνρ
MN read as follows,

δFµνρ
MN = 3D[µ ∆Bνρ]

MN + 6H[µν
||⌈M δAρ]

N⌋||

− g YMN
P||⌈RS⌋|| (3B[µν

RS δAρ]
P + 2A[µ

PAν
RδAρ]

S) , (2.26)

where

YMN
P||⌈RS⌋|| = 2 δP

||⌈M ZN⌋||
RS −XP||⌈RS⌋||

||⌈MN⌋|| . (2.27)

Note that this definition can be rewritten as

YMN
P||⌈RS⌋|| = 2

(

δP
||⌈M ZN⌋||

RS −XP||⌈R
||⌈MδS⌋||

N⌋||
)

. (2.28)

Just as before we introduce an extra gauge invariance to eventually deal with the non-

covariant variations in the last term of (2.26), which will then provide the missing variations

in (2.23),

∆Bµν
MN

∣

∣

∣

gauge
= 2D[µΞν]

MN − 2 Λ||⌈MHµν
N⌋|| − g YMN

P||⌈RS⌋||Φµν
P||⌈RS⌋|| , (2.29)

where Φµν
P||⌈RS⌋|| is the new gauge parameter. Secondly we introduce a corresponding three-

form gauge field Cµνρ
P||⌈RS⌋||, and define the field strength Hµνρ

MN ,

Hµνρ
MN = Fµνρ

MN + g YMN
P||⌈RS⌋||Cµνρ

P||⌈RS⌋|| . (2.30)

such that it transforms covariantly, i.e.

δHµνρ
MN = −gΛPXP||⌈RS⌋||

||⌈MN⌋||Hµνρ
RS , (2.31)

in complete analogy with (2.20). As before, the tensor YMN
P||⌈RS⌋|| does not map onto the full

tensor product P||⌈RS⌋|| in its lower indices but only on a restricted subrepresentation inside,

i.e.,

YMN
P||⌈RS⌋|| = YMN

Q||⌈KL⌋|| P
Q||⌈KL⌋||

P||⌈RS⌋|| , (2.32)

for a non-trivial projector P independent of the embedding tensor. In principle, this projector

can be worked out from (2.27), but deriving more explicit expressions requires a case-by-case

consideration for each duality group G. As in (2.15) we will denote the corresponding pro-

jection by special brackets ||⌈P||⌈RS⌋||⌋||. The tensor YMN
P||⌈RS⌋|| thus represents an intertwining

tensor between the two- and the three-forms. It satisfies the properties

ZQ
MN YMN

P||⌈RS⌋|| = 0 , (2.33)

ZK
PQ Y

MN
K||⌈RS⌋|| = 2Z ||⌈M

PQ Z
N⌋||

RS . (2.34)

which are both consequences of the quadratic constraint (2.5). The first identity represents

the analogue of (2.6). Another identity follows directly from (2.28),

YMN
P||⌈RS⌋||

∣

∣

∣

(PRS)
= 0 , (2.35)
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Generic variations of the covariant field strength (2.6) can be written as

δHµνρ
MN = 3D[µ ∆Bνρ]

MN + 6H[µν
||⌈M δAρ]

N⌋|| + g Y ||⌈MN⌋||
P||⌈RS⌋||∆Cµνρ

P||⌈RS⌋|| , (2.36)

where

∆Cµνρ
P||⌈RS⌋|| = δCµνρ

P||⌈RS⌋|| − 3 δA[µ
||⌈P Bνρ]

RS⌋|| − 2A[µ
||⌈PAν

||⌈RδAρ]
S⌋||⌋|| . (2.37)

Now we consider again a combined gauge transformation. Requiring that Hµνρ
MN transforms

covariantly, it follows that we must choose

∆Cµνρ
P||⌈RS⌋||

∣

∣

∣

gauge
= 3D[µΦνρ]

P||⌈RS⌋|| + 3Hµν
||⌈P Ξρ

RS⌋|| + Λ||⌈PHµνρ
RS⌋|| + · · · , (2.38)

where the unspecified contributions vanish upon contracting ∆Cµνρ
P||⌈RS⌋|| with YMN

P||⌈RS⌋||,

so that they remain as yet undetermined. Here we made use of the Bianchi identity,

D[µHνρ]
M = 1

3g Z
M

NP Hµνρ
NP . (2.39)

Note that the standard Bianchi is obtained upon contraction with the embedding tensor.

At this point we must verify that the algebra of the various gauge transformations defined

so far, will close under commutation. Let us first summarize the various transformation rules,

δAµ
M = DµΛM − g ZM

NP Ξµ
NP ,

δBµν
MN = 2D[µΞν]

MN − 2 Λ||⌈MHµν
N⌋|| + 2A[µ

||⌈MδAν]
N⌋||

− g YMN
P||⌈RS⌋|| Φµν

P||⌈RS⌋|| ,

δCµνρ
P||⌈RS⌋|| = 3D[µΦνρ]

P||⌈RS⌋|| + 3Hµν
||⌈P Ξρ

RS⌋|| + Λ||⌈PHµνρ
RS⌋|| + 3 δA[µ

||⌈P Bνρ]
RS⌋||

+ 2A[µ
||⌈PAν

||⌈RδAρ]
S⌋||⌋|| + · · · . (2.40)

These tranformations indeed yield a closed algebra,

[δ(Λ1), δ(Λ2)] = δ(Λ3) + δ(Ξ3) + δ(Φ3) ,

[δ(Λ), δ(Ξ)] = δ(Φ4) ,

[δ(Ξ1), δ(Ξ2)] = δ(Φ5) ,

[δ(Λ), δ(Φ)] = · · · ,

[δ(Ξ), δ(Φ)] = · · · ,

[δ(Φ1), δ(Φ2)] = 0 , (2.41)

where we will comment on the two unspecified commutators in a sequal. The transformation

parameters appearing on the right-hand side of (2.41) take the following form,

Λ3
M = g X[NP]

M ΛN
2 ΛP

1 ,

Ξ3µ
MN = Λ

||⌈M
1 DµΛ

N⌋||
2 − Λ

||⌈M
2 DµΛ

N⌋||
1 ,

Φ3µν
P||⌈MN⌋|| = Hµν

||⌈||⌈M
(

Λ2
N⌋||Λ1

P⌋|| − Λ1
N⌋||Λ2

P⌋||
)

,

Φ4µν
P||⌈MN⌋|| = 2D[µΛ||⌈PΞν]

MN⌋|| ,

Φ5µν
P||⌈MN⌋|| = − gZ ||⌈P

RS

(

Ξ1[µ
MN⌋||Ξ2ν]

RS − Ξ2[µ
MN⌋||Ξ1ν]

RS
)

, (2.42)
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where the first two equations were already given in (2.17).

Continuing this pattern one can derive the full hierarchy of p-forms by iteration. For

instance, the transformation rule for Cµνρ
P||⌈RS⌋|| contains the expected gauge transformation

δCµνρ
P||⌈RS⌋|| = −gΛQXQ||⌈K||⌈LM⌋||⌋||

||⌈P||⌈RS⌋||⌋|| Cµνρ
K||⌈LM⌋|| , (2.43)

(where again, XQ||⌈K||⌈LM⌋||⌋||
||⌈P||⌈RS⌋||⌋|| = (XQ)||⌈K||⌈LM⌋||⌋||

||⌈P||⌈RS⌋||⌋||) up to a term

δCµνρ
P||⌈RS⌋|| = −g Y P||⌈RS⌋||

Q||⌈P||⌈RS⌋||⌋|| Φµνρ
Q||⌈P||⌈RS⌋||⌋|| , (2.44)

which characterizes a new gauge transformation with parameter Φµνρ
Q||⌈P||⌈RS⌋||⌋||, associated with

a new four-rank tensor field which will again belong to some restricted subrepresentation.

It turns out that the two unspecified commutators in (2.41) are precisely given by these

transformations. The tensor Y P||⌈RS⌋||
Q||⌈P||⌈RS⌋||⌋|| acts as an intertwiner between the three- and

four-rank tensor fields, and can easily be written down explicitly,

Y K||⌈MN⌋||
P||⌈Q||⌈RS⌋||⌋|| = − δ

||⌈K
P Y

MN⌋||
Q||⌈RS⌋|| −XP||⌈Q||⌈RS⌋||⌋||

||⌈K||⌈MN⌋||⌋||

= − 2
(

δ
||⌈K
Q δ

||⌈M
S XPR

N⌋||⌋||
+ δ

||⌈K
P δ

||⌈M
Q XSR

N⌋||⌋||
)

+ 2
(

δ
||⌈K
P δ

||⌈M
S XQR

N⌋||⌋||
+ δ

||⌈K
R δ

||⌈M
S XPQ

N⌋||⌋||
)

. (2.45)

To derive the second formula we made use of (2.35). Observe that on the r.h.s we must

apply the projector (2.32) in order to obtain the restricted representations in the index

triples ||⌈K||⌈MN⌋||⌋|| and ||⌈Q||⌈RS⌋||⌋||, respectively; the result is then automatically projected onto

a restricted representation in the indices P||⌈Q||⌈RS⌋||⌋||. In other words, our recursive procedure

‘knows about’ the new restricted representations occurring at the next step.

At this point one recognizes that there exists a whole hierarchy of such tensors.7 They

are defined by (p ≥ 3)

YM1||⌈M2||⌈···Mp⌋||··⌋||
N0||⌈N1||⌈···Np⌋||··⌋|| = − δ

||⌈M1

N0
Y

M2||⌈···Mp⌋||··⌋||
N1||⌈N2||⌈··· Np⌋||··⌋||

−XN0||⌈N1||⌈N2||⌈··· Np⌋||··⌋||
||⌈M1||⌈M2||⌈···Mp⌋||··⌋|| , (2.46)

where, as before, we employ the notation,

XN0||⌈N1||⌈N2||⌈··· Np⌋||··⌋||
||⌈M1||⌈M2||⌈···Mp⌋||··⌋|| = (XN0)||⌈N1||⌈N2||⌈··· Np⌋||··⌋||

||⌈M1||⌈M2||⌈···Mp⌋||··⌋|| . (2.47)

All these tensors are gauge invariant and they are formed from the embedding tensor multi-

plied by invariant tensors of the duality group G, so that they all transform in (a subset of)

the same representations as the embedding tensor. By induction, one can prove their mutual

orthogonality,

Y K2||⌈K3||⌈···Kp⌋||··⌋||
M1||⌈M2||⌈···Mp⌋||··⌋|| Y

M1||⌈M2||⌈···Mp⌋||··⌋||
N0||⌈N1||⌈···Np⌋||··⌋|| = 0 . (2.48)

7From this point we denote the intertwining tensors and p-forms by Y and C, respectively, and the corre-

sponding gauge transformation parameters by Φ. Their rank will be obvious from the index structure.
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To see this, one substitutes the expression (2.46) for the second Y -tensor and uses the gauge

invariance of the first Y -tensor to obtain the expression,

(2.48) = − Y K2||⌈K3||⌈···Kp⌋||··⌋||
N0||⌈M2||⌈···Mp⌋||··⌋|| Y

M2||⌈M3||⌈···Mp⌋||··⌋||
N1||⌈N2||⌈···Np⌋||··⌋||

− YM2||⌈M3||⌈···Mp⌋||··⌋||
N1||⌈N2||⌈···Np⌋||··⌋|| XN0||⌈M2||⌈M3||⌈···Mp⌋||··⌋||

||⌈K2||⌈K3||⌈···Kp⌋||··⌋|| . (2.49)

This result vanishes upon expressing the generator X on the right-hand side in terms of the

Y -tensors, using the definition (2.46), and subsequently using the orthogonality constraint

for a lower value of the rank p. The fact that symmetrization over the three last indices of

the restricted representation will vanish as a result of (2.35), implies that higher-rank tensors

will vanish as well under certain index symmetrizations.

The Y -tensors form an (infinite, in principle) hierarchy of intertwiners between successive

sets of restricted representations of tensor gauge fields. The restrictions on the representations

occurring at the (p+1)-th step of the iteration are determined inductively via formula (2.46),

where on the r.h.s. the projectors obtained at the previous p-th step of the iteration must be

applied to the p-tuples of indices M1||⌈M2||⌈ · · ·Mp⌋|| · ·⌋|| and N1||⌈N2||⌈ · · · Np⌋|| · ·⌋||, respectively. We

emphasize that no other information is needed to determine the hierarchy. However, as we

pointed out already, working out more explicit expressions requires a case-by-case study, as we

will exemplify for D = 3 supergravity and duality group G = E8(8) in section 4 of this paper.

Consequently, given the Y -tensors, and specifying the duality group G, the above results

enable a complete determination of the full hierarchy of the higher-rank p forms required

for the consistency of the gauging. In particular, we can exhibit some of the terms in the

variations of the p-form fields that follow rather directly from the previous discussion,

δCµ1...µp

M1||⌈M2||⌈···Mp⌋||··⌋|| = pD[µ1
Φµ2···µp]

M1||⌈M2||⌈···Mp⌋||··⌋||

+ Λ||⌈M1Hµ1···µp

||⌈M2···⌋||··⌋||⌋|| + p δA[µ1

||⌈M1 Cµ2···µp]
||⌈M2···⌋||··⌋||⌋||

− g YM1||⌈M2||⌈···Mp⌋||··⌋||
N0||⌈N1||⌈...Np⌋||.⌋|| Φµ1...µp

N0||⌈N1||⌈...Np⌋||··⌋|| ,

+ · · · . (2.50)

Although the number of space-time dimensions does not enter into this analysis (as we

said, the iteration procedure can in principle be continued indefinitely) there is, for the

maximal supergravities, a consistent correlation between the rank of the tensor fields and

the occurrence of conjugate G-representations that is precisely in accord with tensor-tensor

and vector-tensor (Hodge) duality 8 corresponding to the space-time dimension where the

maximal supergravity with that particular duality group G lives. In the next section we

discuss some of the results of this analysis and their implications for M-theory degrees of

freedom.

8As well as with the count of physical degrees of freedom.
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3 M-Theory degrees of freedom

The hierarchy of vector and tensor gauge fields that we presented in the previous section can

be considered in the context of the maximal gauged supergravities. In that case the gauge

group is embedded in the duality group G, which depends on the space-time dimension in

which the supergravity is defined. Once we specify the group G the representations can

be determined of the various p-form potentials. In principle the hierarchy allows a unique

determination of the higher p-forms, but in practice this determination tends to be somewhat

subtle. To see this, let us first briefly consider the possible representations for the two-

forms. For that we need the representations in the symmetric product of two representations

belonging to the vector fields (we will deal with the case D = 3 separately),

D = 7 : 10 ×sym 10 = 5 + 50 ,

D = 6 : 16c ×sym 16c = 10 + 126c ,

D = 5 : 27 ×sym 27 = 27 + 351
′
,

D = 4 : 56 ×sym 56 = 133 + 1463 .

(3.1)

Hence it seems that the two-forms can belong to two possible representations of the duality

group. To see which representation is allowed, we take its conjugate and consider once more

the product with the vector field representation, This product should contain the represen-

tation associated with the tensor ZM
NP . The latter is simply equal to the representation

of the embedding tensor. If this representation is contained in the product, then we are

dealing with an acceptable candidate representation. If this is not the case, then we must

conclude that ZM
NP cannot act as an intertwiner between the corresponding two-forms and

the one-form potentials.

Performing this test9 on each of the two representations in (3.1), it turns out that only

the first representation is allowed, leading to the entries for the two-forms presented in the

third column of table 2. For the case of D = 3 space-time dimensions the above approach

leads only to a partial determination of the representation assignment. Here the symmetric

product decomposes into six different representations and in section 4 we will proceed diffently

to deduce the correct assignment. The results for the two-forms in 4 ≤ D ≤ 7 dimensions were

originally derived in [30], where also the representations of the three-forms were determined

that are shown in the table.

As we stressed already the hierarchy leads to a unique determination of the representations

of the higher-rank tensor fields, but this has only partially been carried out. Already for

lower-rank tensors, table 2 shows remarkable features. We recall that the analysis described

in section 2 did not depend on the number of space-time dimensions. For instance, it is

possible to derive representation assignments for (D+1)-rank tensors, although these do not

live in a D-dimensional space-time. On the other hand, whenever there exists a (Hodge)

duality relation between fields of different rank at the appropriate value for D, then one finds

that their G representations turn out to be related by conjugation. This property is already

9We used the Lie package [39] for computing such decompositions.
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1 2 3 4 5 6

7 SL(5) 10 5 5 10 24 15 + 40

6 SO(5, 5) 16c 10 16s 45 144s 10+126s+320

5 E6(6) 27 27 78 351 27+1728

4 E7(7) 56 133 912 133+8645

3 E8(8) 248 1+3875 3875+147250

Table 2: Duality representations of the vector and tensor gauge fields for gauged maximal supergrav-

ities in space-time dimensions 3 ≤ D ≤ 7. The first two columns list the space-time dimension and

the corresponding duality group. Note that the singlet two-form in three dimensions is not induced by

the hierarchy. Its presence follows from independent considerations, which are discussed in the text.

exhibited at the level of the lower-rank tensors and we have simply extrapolated this pattern

to higher-rank fields. Furthermore the diagonals pertaining to the (D−2)-, (D−1)- and

D-rank tensor fields refer to the adjoint representation and the representations conjugate to

those assigned to the embedding tensor and its quadratic constraint, respectively. While not

all of these features show up fully for the lower-rank tensors, the pattern is quite suggestive.

The underlying reasons for some of this will become apparent in the later sections, where we

establish that the (D−1)- and D-rank tensors play the special role of imposing the constancy

of the embedding tensor and the closure of the corresponding gauge group.

It is an obvious question whether these systematic features have a natural explanation

in terms of M-theory. Supergravity may contain some of the fields carrying charges that

could induce a gauging. For instance, in the toroidal compactification there are towers of

massive Kaluza-Klein states whose charges couple to the corresponding Kaluza-Klein gauge

fields emerging from the higher-dimensional metric. This is of direct relevance in the so-

called Scherk-Schwarz reductions [14]. However, these Kaluza-Klein states cannot generally

be assigned to representations of the duality group and therefore there must be extra degrees

of freedom whose origin cannot be understood within the context of a dimensional compact-

ification of supergravity.10 This phenomenon was discussed some time ago, for instance, in

[35, 40].

The general gaugings that have been constructed in recent years obviously extend beyond

gaugings whose charges are carried by supergravity degrees of freedom. The embedding

tensor can be regarded as a duality covariant tensor that, once it is fixed to some constant

value, selects a certain subsector of the available charge configurations carried by degrees of

freedom that will cover complete representations of the duality group. If this idea is correct

these degrees of freedom must exist in M-theory, and there are indeed indications that this

is the case. In this way the gauging acts as a probe of M-theory degrees of freedom.

Independent evidence that this relation with M-theory degrees of freedoms is indeed re-

10In view of the fact that the Kaluza-Klein states are 1/2-BPS, also these extra degrees of freedom must

correspond to 1/2-BPS states.
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alized is provided by the work of [34] (see also, [35] and references quoted therein) where

matrix theory [41, 42] is considered in a toroidal compactification. These results are based on

the correspondence between N = 4 super-Yang-Mills theory on a (rectangular) spatial torus

T̃n with radii s1, . . . , sn, and M-theory in the infinite-momentum frame on the dual torus Tn

with radii R1, R2, . . . , Rn, where si = l3p/R11Ri and lp denotes the Planck length in eleven

dimensions. The conjecture then is that the latter should be invariant under permutations

of the radii Ri and under T-duality of type-IIA string theory. The relevant T-duality trans-

formations follow from making two consecutive T-dualities on two different circles. When

combined with the permutation symmetry, T-duality can be represented by (i 6= j 6= k 6= i)

Ri →
l3p

RjRk

, Rj →
l3p

RkRi
, Rk →

l3p
RiRj

, l3p →
l6p

RiRjRk

, (3.2)

The above transformations generate a discrete group which coincides with the Weyl group

of En; on the Yang-Mills side, the elementary Weyl reflections correspond to permutations

of the compactified coordinates (generating the Weyl group of SL(n)) and Montonen-Olive

duality geff → 1/geff (corresponding to reflections with respect to the exceptional node of

the En Dynkin diagram). This Weyl group, which leaves the rectangular shape of the com-

pactification torus invariant, can be realized as a discrete subgroup of the compact subgroup

of En(n), and consequently as a subgroup of the conjectured non-perturbative duality group

En(n)(Z) [43]. Representations of this symmetry can now be generated by mapping out the

Weyl orbits starting from certain states. For instance, one may start with Kaluza-Klein

states on Tn, whose masses are proportional to M ∼ 1/Ri. The action of the Weyl group

then generates new states, such as the ones that can be identified with two-branes wrapped

around the torus, whose masses are of order M ∼ RjRk/l
3
p, and so on. According to [43],

the non-perturbative states should combine into multiplets of En(n)(Z); if the representation

has weights of different lengths, one needs several different Weyl orbits to recover all states

in the representation.

Following this procedure one obtains complete multiplets of the duality group (taking into

account that some states belonging to the representation will vanish under the Weyl group and

will therefore remain inaccessible by this construction). More specifically, using the relation

n = 11−D, it turns out that the first two columns of table 2, respectively, correspond to the

so-called flux and momentum multiplets of [34]. However, as already pointed out above, the

conjecture of [43] is essential in that one may need extra states from different Weyl orbits in

order to get the full representation; for instance, there are only 2160 momentum states for

E8(8), which must be supplemented by 8-brane states to obtain the full 3875 representation

of E8(8).

The representations in the table were also found in [36], where a ‘mysterious duality’ was

exhibited between toroidal compactifications of M-theory and del Pezzo surfaces. Here the

M-theory dualities are related to global diffeomorphisms that perserve the canonical class of

the del Pezzo surface. Again the representations thus found are in good agreement with the

representations in table 2.
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For n ≥ 9, the flux and momentum multiplets of [34] have infinitely many components.

Indeed, there are hints that the above considerations concerning new M-theoretic degrees

of freedom can be extended to infinite-dimensional duality groups: in particular, a recent

analysis of the indefinite Kac–Moody algebra E11 has shown that the decomposition of its

adjoint representation at low levels under its finite-dimensional subalgebras SL(D) × E11−D

for D ≥ 3 yields the same representations as in table 2 [31, 32, 33]. However, it is far from

clear what these (infinitely many) new degrees of freedom would correspond to, and how they

would be concretely realized. Concerning the physical interpretation of the new states, a first

step was taken in [44], where an infinite multiplet of BPS states is generated from the M2

brane and M5 brane solutions of D = 11 supergravity by the iterated action of certain A
(1)
1

subgroups of the E9 Weyl group. In the context of gauged supergravities, the significance of

these states may become clearer with the exploration of maximal gauged supergravities in

two space-time dimensions [29], where the embedding tensor transforms in the so-called basic

representation of E9 (which is infinite dimensional).

4 Tensor field representations in three space-time dimensions

Here and in the following two sections we will illustrate the preceding discussion and consider

maximal supergravity in three space-time dimensions, where the full tensor hierarchy of

p-forms is short enough to obtain all relevant information from the explicit results given

in section 2. This example will show all the characteristic features that are generic for

gauged supergravities. In this section we will determine the representation assignments for

the tensor fields. The relevant duality group is equal to E8(8), which is of dimension 248. Its

fundamental representation coincides with the adjoint representation, so that the generators

in this representation are given by the E8(8) structure constants, (tM)N
P = −fMN

P . Indices

may be raised and lowered by means of the Cartan-Killing form ηMN . The vector fields

Aµ
M transform in the 248 representation and the embedding tensor ΘMN is a symmetric

matrix belonging to the 3875 + 1 representation [7, 8]. Using these data, we may evaluate

the general formulas of section 2 for this particular theory.

The gauge group generators are obtained by contracting E8(8) generators with the em-

bedding tensor XM ≡ ΘMN tN . In the adjoint representation we thus have

XMN
P = −ΘM

Q fQN
P = ΘMQ f

QP
N . (4.1)

The tensor ZP
MN defined in (2.3) is then given by

ZP
MN = ΘQ(M fQP

N ) . (4.2)

Because this tensor is a group invariant contraction of the embedding tensor, its representa-

tion must overlap with some of the representations of the embedding tensor. Obviously, the

singlet component drops out so that we may conclude that (4.2) must belong to the 3875

representation.
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As discussed before (cf. (2.14)), the tensor ZK
MN generically does not map onto the full

symmetric tensor product (MN ), which decomposes according to

248 ×sym 248 = 1 + 3875 + 27000 , (4.3)

but only on a restricted representation. Since (4.2) represents an infinitesimal E8(8) trans-

formation on the embedding tensor ΘMN which leaves the representation content invariant,

it follows the indices (MN ) in (4.2) are restricted to the 3875 representation, so that the

relevant projector is precisely P
(3875) acting on the symmetric tensor product. This projector

can be written as [46]

(P(3875))RS
MN = 1

7 δ
(R
Mδ

S)
N − 1

56 ηMN ηRS − 1
14 f

P
M

(R fPN
S) . (4.4)

According to the general discussion, it follows that closure of the vector field gauge alge-

bra requires the introduction of two-forms in the 3875 representation. Hence the two-forms

transform in the same representation as the embedding tensor. As noted in the previous

section, this is a general pattern in gauged supergravities: the embedding tensor in D dimen-

sions transforms in the representation which is conjugate to the (D−1)-forms. More precisely,

the field strength of the (D−1)-forms is dual to the embedding tensor. We will discuss the

explicit relation in the next sections. In three dimensions there is a subtlety related to the

fact that the embedding tensor is not irreducible but contains an additional singlet 1 besides

the 3875. The associated two-form can be defined but does not yet show up in the tensor

hierarchy at this point. In order to keep the discussion as simple as possible, we will in the

following restrict to the gaugings induced by an embedding tensor in the irreducible 3875.

Continuing the tensor hierarchy according to the general pattern discussed above, the

next intertwining tensor YMN
K||⌈PQ⌋||, defined in (2.28), takes the form

YMN
K||⌈PQ⌋|| ≡ 2

(

δ||⌈P
||⌈R
f
S⌋||||⌈M

Q⌋|| δK
N⌋||

− δK
||⌈R
f
S⌋||||⌈M

||⌈P δQ⌋||
N⌋||

)

ΘRS . (4.5)

In view of the group-invariant contractions, the tensor YMN
K||⌈PQ⌋|| transforms again in the

3875 representation. It controls the appearance of three-forms in the gauge transformations

of two-forms and thereby determines the (minimal) field content of three-forms required for

consistency of the algebra. Again it does not map onto the full tensor product K||⌈PQ⌋|| but

only onto a restricted subrepresentation, as in (2.14). To determine this subrepresentation,

we observe that the expression in parentheses in (4.5) is symmetric under exchange ||⌈RS⌋|| ↔

||⌈MN⌋||, and thus transforms in

3875 ×sym 3875 = 1 + 3875 + 27000 + 147250 + 2450240 + 4881384 . (4.6)

On the other hand, by its index structure, the tensor product K||⌈PQ⌋|| is given by

248 × 3875 = 248 + 3875 + 30380 + 147250 + 779247 , (4.7)
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Comparing (4.6) and (4.7), it follows that the index combination K||⌈PQ⌋|| is indeed restricted to

certain irreducible representations so that the three-forms transform in the representation11

Cµνρ
K||⌈PQ⌋|| ∼ 3875 + 147250 . (4.8)

In principle, the argument so far does not exclude the possibility that the image of YMN
K||⌈PQ⌋||

is restricted to only one of the two irreducible representations in (4.8). To show that both

irreducible parts are present, one may e.g. compute and diagonalize the action of the E8(8)

Casimir operator on YMN
K||⌈PQ⌋||.

At this point, it is instructive to have a closer look at the quadratic constraint. In three

dimensions, this constraint implies that the tensor

QM||⌈PQ⌋|| ≡ ΘMN ZN
PQ = −XM||⌈P

N ΘQ⌋||N , (4.9)

must vanish. Let us determine, in which representation QM||⌈PQ⌋|| transforms. As we have

seen above, the tensor ZN
PQ in its indices PQ projects onto the 3875 representation. As

a consequence, QM||⌈PQ⌋|| transforms in the tensor product 248 × 3875 given in (4.7). On

the other hand, as QM||⌈PQ⌋|| is quadratic in Θ it transforms in the symmetric tensor product

3875 ×sym 3875 given in (4.6). Comparing (4.6) and (4.7), it follows that also QM||⌈PQ⌋||

transforms in the representation,

Cquad = 3875 + 147250 , (4.10)

and thus in the very same representation as the three-forms (4.8). This is in accord with

the general pattern in gauged supergravities noted in the previous section: the quadratic

constraint transform in a (reducible) representation whose conjugate is equal to (or at least

contained in) the representation of the D-forms. We will propose a natural interpretation

for this in the last section, where the D-forms act as Lagrange multipliers for the quadratic

constraint.

Let us finally continue the tensor hierarchy one last step further, i.e., to the four-forms. Al-

though four-forms cannot live in three dimensions, their tensor gauge freedom shows up in the

three-dimensional tensor gauge algebra by the shift transformation of the three-forms (2.44).

For a complete picture we thus need to work out also their structure. Again, Y K||⌈MN⌋||
P||⌈Q||⌈RS⌋||⌋||

does not map onto the full tensor product P||⌈Q||⌈RS⌋||⌋|| but only onto a restricted subrepresen-

tation of 248× (3875 + 147250), which we do not explicitly work out here. It is interesting

to note, that apart from the standard othogonality relations (2.48) which follow as a conse-

quence of the quadratic constraint (2.5), the tensor Y K||⌈MN⌋||
P||⌈Q||⌈RS⌋||⌋|| also identically satisfies

the relation

QK||⌈MN⌋|| Y
K||⌈MN⌋||

P||⌈Q||⌈RS⌋||⌋|| = 0 , (4.11)

with QK||⌈MN⌋|| from (4.9). This identity will also play an important role in the last section. Its

proof is not entirely straightforward, as (4.11) involves expressions cubic in Θ and quadratic

in the E8 structure constants, and is therefore most easily checked on a computer.

11The absence of the 248, 30380 and 779247 representations is in accord with equation (2.35) because

those are contained in the fully symmetrized product of three 248 representations.
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To summarize, we have explicitly worked out the tensor hierarchy of gauged three-

dimensional supergravity and shown that consistency requires two- and three-forms to trans-

form in the 3875 and 3875 + 147250 representation, respectively. The representation con-

tent of the (evanescent) four-forms is implicitly defined by (2.45) as a subrepresentation of

248× (3875 + 147250) and shows up through the shift transformations (2.44) of the three-

forms. In principle,the precise representation content of of the index combinations in (2.45)

can be worked out further, but these details are not necessary in what follows.

5 The supersymmetry algebra in three space-time dimensions

In this section we present the complete determination of the supersymmetry transformations

and the corresponding algebra for the p-forms in three dimensions. Already in a number

of cases supersymmetry variations of p-forms that do not appear in the ungauged action,

have been determined. This was done by making an ansatz for these variations based on

their tensorial structure, which involves some undetermined coefficients. These constants

are subsequently fixed by imposing the supersymmetry algebra, after which one proceeds by

iteration. Here we go one step further and consider also the supersymmetry variations of

those p-forms that are not required for writing down the most general gaugings, in order

to determine what their possible role could be. In three space-time dimensions this implies

that we will now also consider the two-, three-, and four-form potentials. Although four-form

potentials do not exist in four dimensions, their symmetries will still play a role as they act

on the three-form potentials. We note that a similar investigation of maximal supergravity

in five dimensions has recently appeared in [45].

We use spinor and E8(8) conventions from [7, 8].12 In particular, the E8(8) generators

tM split into 120 compact ones XIJ = X [IJ ], associated with the group SO(16), and 128

non-compact ones denoted by Y A. Here I, J, . . . and A,B, . . ., respectively, label the 16v

and 128s representations of SO(16). Eventually we will also need indices Ȧ, Ḃ, . . . labelling

the conjugate spinor representation 128c. Naturally we will also encounter SO(16) gamma

matrices ΓI
AȦ in what follows. We will freely raise and lower SO(16) indices.

The scalar fields parametrize the E8(8)/SO(16) coset space in terms of an E8(8)-valued

matrix VM
P , which transforms as

δV(x)MP = −gN
M V(x)NP + V(x)MQ h(x)P

Q , (5.1)

under global E8(8) and local SO(16), characterized by the matrices g and h(x) which take

their values in the Lie algebra of the two groups. Note that underlined E8(8) indices and

indices [IJ ], A and Ȧ are always subject to local SO(16). The one-forms associated with the

scalars are given by

V−1DµV = 1
2 Qµ

IJ XIJ + Pµ
A Y A , (5.2)

12To be precise: the only change in notation with respect to [7, 8] is the sign of the vector fields, i.e.,

Aµ
M → −Aµ

M. The tangent space metric and gamma matrix conventions are as follows: ηab = diag(+,−,−),

{γa, γb} = 2ηab
1, and γabc = −iεabc

1.
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where the derivative Dµ on the left-hand side is covariant with respect to the chosen gauge

group (cf. (2.8)). As is well-known, Qµ
IJ will play the role of a composite SO(16) gauge

connection. Both Pµ and Qµ will implicitly depend on the gaugings introduced in section 2,

through the defining relation (5.2).

For simplicity of the formulas we use the abbreviating notation,

VMN
P|R ≡ VM

P VN
R , VMNK

P|R|S ≡ VM
P VN

R VK
S , etc. (5.3)

for multiple tensor products of these matrices. The fermionic field content is given by 16

gravitinos ψµ
I and 128 spin-1/2 fermions χȦ transforming under SO(16). In the presence of

a gauging their supersymmetry variations are given by

δ ψµ
I = Dµǫ

I + ig A1
IJ γµǫ

J , δ χȦ = 1
2 i γµǫI ΓI

AȦ
PA

µ + g A2
IȦ ǫI , (5.4)

with the tensors A1, A2 given by

AIJ
1 = 1

7 V
MN

IK|JK ΘMN , AIȦ
2 = − 1

7 ΓJ
AȦ

VMN
IJ |A ΘMN . (5.5)

The bosonic fields on the other hand transform as

δeµ
α = iǭIγαψµ

I , V−1δV = ΓI
AȦ

χ̄ȦǫI Y A ,

δAµ
M = 2VM

IJ ǭ
Iψµ

J − iΓI
AȦ VM

A ǭIγµχ
Ȧ . (5.6)

The supersymmetry transformations are expected to close into the various local symme-

tries, up to field equations. The supersymmetry comutator takes the form,

[δǫ1 , δǫ2 ] = ξµD̂µ + δΛ + δΞ + δΦ + · · · , (5.7)

where the unspecified terms denote local Lorentz transformations, local supersymmetry trans-

formations and other symmetries which will be discussed below. By ξµD̂µ we denote a co-

variant translation: a general coordinate transformation with parameter ξµ accompanied by

other field-dependent gauge transformations such that the combined result is fully covariant.

In the context of this work we are mostly interested in the field-dependent vector and tensor

gauge transformations,

ξµD̂µ ≡ ξµ∂µ + δΛ(ξ) + δΞ(ξ) + δΦ(ξ) + · · · , (5.8)

where the vector and tensor gauge parameters are equal to

Λ(ξ)M ≡ −ξρAρ
M ,

Ξ(ξ)µ
MN ≡ −ξρ

(

Bρµ
M +Aρ

||⌈MAµ
N⌋||

)

,

Φ(ξ)µν
K||⌈MN⌋|| ≡ −ξρ

(

Cρµν
K||⌈MN⌋|| −Aρ

||⌈KBµν
||⌈MN⌋||⌋|| − 2

3 A[µ
||⌈KAν]

||⌈MAρ
N⌋||⌋||

)

, (5.9)

so that

ξρD̂ρAµ
M = ξρ Hρµ

M ,

ξρD̂ρBµν
MN −Aµ

||⌈MξρD̂ρAν
N⌋|| +Aν

||⌈MξρD̂ρAµ
N⌋|| = ξρ Hρµν

MN , (5.10)
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take a fully covariant form in terms of the covariant variations and field strengths of section 2.

Note that we have suppressed the supercovariantizations in this result, as we restrict attention

to the terms of lowest order in the fermion fields. Calculating closure of the supersymmetry

algebra on the p-form tensor fields will determine the parameters ξ, Λ, Ξ, Φ in (5.7).

Let us start from the supersymmetry commutator on vector fields. A short computation

starting from (5.4) and (5.6) yields

[δǫ1 , δǫ2 ]Aµ
M = −2Dµ(VM

IJ ǭ[1
Iǫ2]

J) + i ǫµνρ V
M

A Pν A ǭ[1
Iγρǫ2]

I

+ 2ig
(

ΓI
AȦ

A2
JȦ VM

A − 2A1
JK VM

IK

)

ǭ[1
Iγµǫ2]

J . (5.11)

The first term is a gauge transformation, while the last term proves to be the dressed version

of the constant tensor ZM
PQ defined in (2.3). Indeed, we note the identity,

Γ
(I

AȦ
A2

J)Ȧ VM
A −A1

JK VM
IK −A1

IK VM
JK = 2

7 V
PQ

IK|JK ZM
PQ . (5.12)

Upon contraction with ΘMN , the right-hand side of this equation vanishes, and we re-obtain

the identity (3.18) of [8]. The second term in (5.11) shows up in the duality equation relating

vector and scalar fields in three dimensions,

Xµν
M ≡ Hµν

M + e ǫµνρ V
M

A Pρ A , (5.13)

which, at least in the ungauged theory, vanishes on-shell. Hence, we find that

[δǫ1 , δǫ2 ]Aµ
M = ξρ Hρµ

M +Dµ ΛM − g ZM
PQ Ξµ

PQ − ξρ Xρµ
M , (5.14)

with parameters

ξµ = −i ǭ[1
Iγµǫ2]

I ,

ΛM = −2VM
IJ ǭ[1

Iǫ2]
J ,

Ξµ
MN = −4

7 iV ||⌈MN⌋||
IK|JK ǭ[1

Iγµǫ2]
J . (5.15)

Except for the last term in (5.14) the supersymmetry algebra closes precisely as expected.

Usually, this last term is disregarded as the supersymmetry algebra is expected to close

modulo the first-order (duality) equations of motion (that is, Xµν
M = 0). Nowever, matters

are more subtle here, as only a projection of the duality equation with the embedding tensor

is expected to correspond to an equation of motion. For the moment, let us just keep this

term: we will interpret it later as an additional local symmetry of the Lagrangian.

Let us continue with the two-forms. The supersymmetry variation of Bµν
MN is deter-

mined by its tensor structure up to two constants, α1 and α2,

∆Bµν
MN = iα1 V

||⌈MN⌋||
IK|JK ǭIγ[µψν]

J − α2 V
||⌈MN⌋||

A|IJ ΓI
AȦ

ǭJγµνχ
Ȧ . (5.16)

Requiring that the commutator closes into a gauge transformation with parameter Ξµ
MN as

given in (5.15), leads to α1 = −8/7, α2 = −4/7. From (5.16), we obtain after some further

21



computation,

[δǫ1 , δǫ2 ]Bµν
MN = 2D[µΞν]

MN + 4
7 ǫµνρ P

ρ B V ||⌈MN⌋||
IJ |A (ΓIΓK)AB ǭ[1

Jǫ2]
K

− 8
7 g

(

V ||⌈MN⌋||
IK|LK A1

JL + 1
2V

||⌈MN⌋||
IK|A ΓK

AȦA2
JȦ

)

ǭ[1
Iγµνǫ2]

J

+ 2A[µ
||⌈M [δǫ1 , δǫ2 ]Aν]

N⌋|| . (5.17)

The first term denotes the tensor gauge transformation. To understand the second term we

need to make explicit use of the projection of ||⌈MN⌋|| onto the 3875, which induces relations

such as [7, 8],

V ||⌈MN⌋||
IJ |A = 1

14

(

(ΓIΓK)AB V ||⌈MN⌋||
KJ |B − (ΓJΓK)AB V ||⌈MN⌋||

KI|B

)

. (5.18)

After some calculation, the second term in (5.17) then reduces to 2 Λ||⌈M (Xµν
N⌋|| − Hµν

N⌋||),

where we again introduced the expression for the duality relation (5.13). The term propor-

tional to Hµν
N then yields a term belonging to the tensor gauge transformation (2.29). The

second line in (5.17) can be simplified in a similar way. Its (IJ) traceless part may be brought

into the form

1
7 g Y

MN
K||⌈PQ⌋|| V

||⌈K||⌈PQ⌋||⌋||
IK|KL|LJ ǭ[1

Iγµνǫ2]
J , (5.19)

and thus constitutes the shift transformation of (2.29) with parameter13

Φµν
K||⌈MN⌋|| = −1

7 V
||⌈K||⌈MN⌋||⌋||

IK|KL|LJ ǭ[1
Iγµνǫ2]

J . (5.20)

It remains to consider the (IJ) trace part of the second line in (5.17) which reduces to

4 eg εµνρ ξ
ρ

V
||⌈MN⌋||,||⌈KL⌋|| ΘKL , (5.21)

where V
||⌈MN⌋||,||⌈KL⌋|| equals the symmetric scalar-dependent matrix defined by

V
||⌈MN⌋||,||⌈KL⌋|| = 1

392

(

7V ||⌈MN⌋||||⌈KL⌋||
IJ |A|IJ |A − 2V ||⌈MN⌋||||⌈KL⌋||

IK|JK|IL|JL

)

. (5.22)

Putting everything together, the supersymmetry commutator on two-forms takes the form,

[δǫ1 , δǫ2 ]Bµν
MN = 4ge ξρ εµνρ V

||⌈MN⌋||,||⌈KL⌋|| ΘKL + 2D[µΞν]
MN − 2Hµν

||⌈M ΛN⌋||

− gYMN
K||⌈PQ⌋|| Φµν

K||⌈PQ⌋|| + 2Xµν
||⌈M ΛN⌋|| + 2A[µ

||⌈M [δǫ1 , δǫ2 ]Aν]
N⌋|| .

=
(

ξρD̂ρ + δΛ + δΞ + δΦ

)

Bµν
MN − ξρYρµν

MN

+ 2Xµν
||⌈M (ΛN⌋|| + Λ(ξ)N⌋||) − 2 ξρ Xρ[µ

||⌈MAν]
N⌋|| , (5.23)

where in the second equation we introduced the tensor,

Yµνρ
MN ≡ Hµνρ

MN − 4 g e εµνρ V
||⌈MN⌋||,||⌈KL⌋|| ΘKL − 6A[µ

||⌈MXνρ]
N⌋|| . (5.24)

13Note that not only the coefficient is determined. There exists yet another independent term with the

correct tensor structure, ΓIK
AB V ||⌈K||⌈MN⌋||⌋||

A|B|JK ǭ[1
Iγµνǫ2]

J , which turns out to be absent. One may verify by

explicit calculation that ΦK||⌈MN⌋|| defined in (5.20) has contributions in both irreducible representations 3875

and 147250.
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This tensor takes the form of a duality relation between the field strength of the two-forms

(2.30) and the embedding tensor. The supersymmetry commutator thus closes according

to (5.7) modulo terms proportional to the duality relations (5.13) and (5.24). These terms

are interpreted as follows. The term proportional to Yµνρ
MN corresponds to a new symmetry

transformation of the two-form potential. The last term proportional to Xρµ
M accompanies

the extra transformation in the vector fields represented by the last term in (5.14). Finally

the preceding terms proportional to Xµν
M are interpreted as deformations of the vector

gauge transformation acting on the two-form potential (cf. (2.40)). Hence we change this

transformation according to,

δmod(Λ)Bµν
MN = − 2 Λ||⌈MHµν

N⌋|| + 2 Λ||⌈MXµν
N⌋|| + 2A[µ

||⌈M δ(Λ)Aν]
N⌋||

= 2e εµνρ Λ||⌈MVN⌋||
A PρA + 2A[µ

||⌈M δ(Λ)Aν]
N⌋|| . (5.25)

This deformation is reminiscent of what happens, for instance, in D = 4 gauged supergravity

[38, 26, 17], where the two-form fields acquire also additional variations once they couple to

other fields in the Lagrangian. Of course, it remains to see whether this interpretation is

correct, but we will present further evidence of this in section 6.

The duality relation (5.24) is remarkable. On-shell, (i.e. for XM = 0 = YMN ) it reads

Hµνρ
MN = 4g e εµνρ V

||⌈MN⌋||,||⌈KL⌋|| ΘKL , (5.26)

and it relates the field strengths of the two-forms to the embedding tensor. The scalar matrix

V
||⌈MN⌋||,||⌈KL⌋|| defined in (5.22), which shows up in this equation, is related to the scalar potential

of the gauged theory in a simple way. With the explicit expression for the scalar potential V

from [7, 8] one finds the expression

V = −1
8

(

AIJ
1 AIJ

1 − 1
2 A

IȦ
2 AIȦ

2

)

= 1
2 V

||⌈MN⌋||,||⌈KL⌋|| ΘMN ΘKL . (5.27)

In other words, the matrix V
||⌈MN⌋||,||⌈KL⌋|| precisely encodes the scalar potential of the gauged

theory. This appears to be a generic pattern for the (D−1)-forms in the gauged supergravities,

and we shall see its natural interpretation in the next section. We emphasize that the matrix

V
||⌈MN⌋||,||⌈KL⌋|| is not positive definite — unlike the scalar matrices that show up in the lower-

rank p-form dualities. This lack of positivity is in accord with the fact that the potentials of

gauged supergravities are generically known to be unbounded from below.

At this point let us briefly comment on a similar result in [45] where the form fields are

considered for D = 5 gauge maximal supergravity. In that work an equation (4.27) appears

which seems the direct analogue of (5.26), but now for the field strength of the four-form

potential. Although it has the same structure as (5.26), its right-hand side is not related to

the potential in the way we described above. However, a direct comparison is subtle as (5.13)

only vanishes on shell upon projection with the embedding tensor, so that (5.26) will not be

realized as a field equation.

The duality equation (5.26) in particular provides the E8(8) covariant field equation for

two-forms in the three-dimensional ungauged theory:

∂µ
(

V||⌈MN⌋||,||⌈KL⌋||Hµνρ
KL

)

+ fermions = 0 , (5.28)

23



with V||⌈MN⌋||,||⌈KL⌋|| the inverse matrix to V
||⌈MN⌋||,||⌈KL⌋||.

To close this section, we also compute the commutator of supersymmetry transformations

on the three-forms. Equation (5.20) suggests to define the supersymmetry variation of the

three-forms as

∆Cµνρ
K||⌈MN⌋|| = 3

7 V
||⌈K||⌈MN⌋||⌋||

IK|KL|LJ ǭ
Iγ[µνψρ]

J + · · · , (5.29)

where the dots refer to the ǭ χ variations. Indeed,

2δǫ[1

(

3
7 V

||⌈K||⌈MN⌋||⌋||
IK|KL|LJ ǭ

I
2]γ[µνψ

J
ρ]

)

= 3D[µΦνρ]
KMN (5.30)

+ 3
7 D[µ

(

V ||⌈K||⌈MN⌋||⌋||
IK|KL|LJ

)

ǭ[1
Iγµνǫ2]

J + · · · ,

thus reproducing the correct Φ term given in (5.20). Evaluating the derivatives of the second

term and using the duality equation (5.13), eventually brings this term into the form (modulo

X [M]),
(

3
14 V

||⌈K||⌈MN⌋||⌋||
A|KM |JM − 3

7 V
||⌈K||⌈MN⌋||⌋||

JM |KM |A

)

(ΓKΓN )AB PB
[µ ǭ

N
[1γνρ]ǫ

J
2]

+ 3H
(2)
[µν

||⌈K Ξ
MN⌋||
ρ] . (5.31)

In order to arrive at this result, we need to make use of the explicit projection onto the

3875 + 147250 within the tensor product ||⌈K||⌈MN⌋||⌋||. This gives rise to a number of non-

trivial identities, like

14 ΓK
AȦ

V
||⌈K||⌈MN⌋||⌋||

A|KM |JM
+ 16 ΓK

AȦ
V
||⌈K||⌈MN⌋||⌋||

JM |KM |A

−(ΓKΓMN )AȦV
||⌈K||⌈MN⌋||⌋||

MN |JK|A = 0 , (5.32)

which results from the projection of a triple product of V’s onto the 147250 + 3875 rep-

resentation in the same way as (5.18) is obtained by applying (4.4) to a double product of

V’s. From (5.31) we can infer the full supersymmetry transformation of the three-forms.

While the last term is precisely expected from the tensor gauge transformations (2.29), the

rest must be cancelled by δχ variations in δC. Together, this determines the supersymmetry

variation of the three-forms to be given by

∆Cµνρ
K||⌈MN⌋|| = 3

7 V
||⌈K||⌈MN⌋||⌋||

IK|KL|LJ ǭ
Iγ[µνψ

J
ρ] (5.33)

− 1
14 i

(

V ||⌈K||⌈MN⌋||⌋||
A|KM |JM − 2V ||⌈K||⌈MN⌋||⌋||

JM |KM |A

)

ΓK
AȦ ǭ

Jγµνρχ
Ȧ .

To summarize, we have determined the supersymmetry variations of all p-forms in three

dimensions by closure of the supersymmetry algebra. The full algebra is given by

[δǫ1 , δǫ2 ] = ξµD̂µ + δΛ + δΞ + δΦ + δX + δY , (5.34)

up to supersymmetry and local Lorentz symmetry transformations. The last two terms

correspond to additional local symmetries proportional to Xµν and Yµνρ, that have appeared

in (5.14) and (5.23) for the one- and two-forms, respectively. Furthermore, we recall that we

have made a modification in the vector gauge transformation rule for the two-forms.

24



Of course, we have to justify both the presence of this deformation and the fact that

the two new variations can indeed be regarded as symmetries of a specific Lagrangian. In

this respect it is important to recall that Xµν and Yµνρ take the form of first-order duality

equations between p-forms in three dimensions and, as it turns out, there are indeed field

equations are proportional to Xµν and Yµνρ. This feature plays an important role in realizing

the invariance. To understand this issue further we turn to the construction of the Lagrangian

in the next section.

6 The Lagrangian with all p-forms in three dimensions

Finally, we give a Lagrangian which contains all p-forms in three dimensions. To this end we

start from the gauged Lagrangian of [7, 8],

Lgauged = −1
4eR+ 1

4eP
µAPA

µ + 1
2 ε

µνρψ̄I
µDνψ

I
ρ − 1

2 ieχ̄ȦγµDµχ
Ȧ

− 1
4 g ε

µνρAµ
M ΘMN (∂νAρ

N + 1
3 gX[RS]

N Aν
RAρ

S)

− 1
2e χ̄

ȦγµγνψI
µ ΓI

AȦP
A
ν + 1

2eg A1
IJ ψ̄I

µ γ
µν ψJ

ν + ieg A2
IȦ χ̄Ȧγµ ψI

µ

+ 1
2eg A3

ȦḂ χ̄Ȧ χḂ − 1
2eg

2
V
||⌈MN⌋||,||⌈KL⌋|| ΘMN ΘKL + L4−fermi , (6.1)

where,

A3
ȦḂ = 1

48 (ΓIJKL)ȦḂ VMN
IJ |KL ΘMN . (6.2)

This is the Lagrangian that describes all consistent gaugings with a constant, symmetric,

embedding tensor ΘMN that belongs to the 3875 + 1 representation and is subject to the

quadratic constraint QK||⌈MN⌋|| = 0.

Now consider ΘMN not as a constant tensor but as an x-dependent field ΘMN (x) satis-

fying the representation constraint (i.e. living in the 3875; for convenience we suppress the

singlet representation in what follows), but not the quadratic constraint on ΘMN . To the

Lagrangian (6.1) we add a new Lagrangian describing the couplings to two-forms Bµν
MN

and three-forms Cµνρ
K||⌈MN⌋||,

LBC = −1
8g ε

µνρBµν
MN DρΘMN + 1

12g
2 εµνρCµνρ

K||⌈MN⌋||QK||⌈MN⌋|| , (6.3)

The two- and three-form potentials thus act as Lagrange multipliers to ensure that ΘMN

is constant and satisfies the quadratic constraint. As ΘMN is a field now, the quadratic

constraint can no longer be imposed by hand but must be implemented in this way.

Since the Lagrangian (6.1) is supersymmetric and gauge invariant for a constant ten-

sor ΘMN satisfying the quadratic constraint, the new Lagrangian Lgauged + LBC with x-

dependent ΘMN can be made supersymmetric and gauge invariant by introducing the proper

local transformation laws for the potentials Bµν
MN and Cµνρ

K||⌈MN⌋||, while keeping δΘMN =

0 . This construction thus shows that the supersymmetry algebra can be extended to two-

and three-forms transforming in 3875 and the 3875 + 147250, respectively. The same con-

struction can be applied in higher dimensions and gives a natural explanation of why in
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general the (D−1)-forms and the D-forms transform in the conjugate representations of the

embedding tensor and the quadratic constraint, respectively.

As a first exercise, we can compute the new field equation obtained by varying the full

Lagrangian with respect to ΘMN . Neglecting fermions, we find,

δLgauged = −eg
(

1
2V

M
A Pµ AAµ

N + gV
||⌈MN⌋||,||⌈KL⌋|| ΘKL

)

δΘMN

− 1
4g ε

µνρAµ
M

(

∂νAρ
N + 2

3 gX[RS]
N Aν

RAρ
S
)

δΘMN , (6.4)

and (modulo a total derivative),

δLBC = 1
24g ǫ

µνρ
(

3DρBµν
MN − 6gZM

PQAρ
NBµν

PQ

+ gYMN
K||⌈PQ⌋||Cµνρ

K||⌈PQ⌋||
)

δΘMN , (6.5)

where we used the identity δQK||⌈MN⌋|| = 1
2δΘPQ Y

PQ
K||⌈MN⌋||. Therefore the variation of the

full Lagrangian L = Lgauged + LBC takes the form,

δL = 1
24g ε

µνρ Yµνρ
MN δΘMN , (6.6)

so that we obtain precisely the duality relation Yµνρ
MN defined in (5.24). In particular, this

shows why the scalar matrix that relates the field strength of the (D−1)-forms to the em-

bedding tensor according to (5.26) is precisely the (non-positive definite) matrix V
||⌈MN⌋||,||⌈KL⌋||

of the scalar potential. Clearly the analogue of this relation will hold in any dimension.

Under general variations of vector and tensor fields, the full Lagrangian varies as (again

neglecting fermions),

δL = −1
4g ε

µνρ ΘMN δAµ
MXνρ

N − 1
8g ε

µνρ
(

δBµν
MN + 2A[µ

M δAν]
N

)

DρΘMN

+ 1
12g

2 εµνρ
(

δCµνρ
K||⌈MN⌋|| + 2Aµ

KAν
MδAρ

N
)

QK||⌈MN⌋|| . (6.7)

Thus, varying the Lagrangian with respect to all p-form tensor fields and ΘMN , one obtains

the set of first order and algebraic field equations

ΘMN Xµν
N = 0 , Yµνρ

MN = 0 , ∂µΘMN = 0 , QK||⌈MN⌋|| = 0 , (6.8)

and we recover the duality relations XM and YMN that appeared in the computation of the

supersymmetry algebra (5.13) and (5.24), respectively.

Let us further remark that the full Lagrangian is invariant under the additional symmetry

δXAµ
M = ξν

XXνµ
M , δXBµν

MN = −2A[µ
||⌈M δXAν]

N⌋|| ,

δXCµνρ
K||⌈MN⌋|| = −8A[µ

||⌈KAν
||⌈M δXAρ]

N⌋||⌋|| , (6.9)

with an arbitrary vector field ξν
X . This follows directly from (6.7):

δXL ∝ εµνρ ΘMN Xµν
MXρσ

N ξσ
X = 0 . (6.10)
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Likewise, the Lagrangian is invariant under the additional symmetry

δYBµν
MN = ξρ

Y Yρµν
MN , δYΘMN = ξρ

Y DρΘMN , (6.11)

with another arbitrary vector field ξµ
Y . The extra symmetries (6.9) and (6.11) are those which

have shown up already in the supersymmetry algebra and correspond to the last two terms

in (5.34). The second one is a standard equations-of-motion symmetry’, whereas the first

one is a little more subtle as its corresponding field variations do not vanish completely upon

imposing the equations of motion.

Note that although there are of course no four-forms present in the three-dimensional

Lagrangian, their tensor gauge freedom shows up as a shift transformation on the the three-

forms (2.43). Since these are the only fields transforming under this symmetry, the Lagrangian

must be invariant under the mere shift of three-forms according to (2.43). Fortunately,

this invariance is precisely ensured by the additional orthogonality (4.11), showing that the

combination Cµνρ
K||⌈MN QK||⌈MN⌋|| entering the Lagrangian is invariant under these shifts.

A rather lengthy but straightforward calculation now shows that the full Lagrangian

L = Lgauged + LBC is invariant under supersymmetry provided the fields transform as (5.4),

(5.6), (5.16), and (5.33). Here no supersymmetry variation is assigned to the field ΘMN , which

can still satisfy the supersymmetry variations by virtue of the existence of the new symmetry

(6.11). Furthermore we precisely recover the new transformation rules for the higher p-forms

that we have derived in section 5. A somewhat similar construction has been carried out

in [47] to describe Roman’s massive deformation of ten-dimensional IIA supergravity [37] in

terms of a nine-form potential and an x-dependent parameter m(x) rather than a constant

deformation parameter m. What is new here is the non-trivial representation structure of the

deformation parameters and the need to simultaneously implement on them the quadratic

constraint, hence the need for D-forms acting as the corresponding Lagrange multipliers.

We now return to the possible interpretation of our results, and especially the ones of the

present section, in the framework of infinite-dimensional duality symmetries. Let us recall

that the representations found in the level decompositions of E11 [31, 32, 33] are in one-to-

one correspondence with the various p-form fields identified in course of our analysis and

displayed in table 2. By contrast, the embedding tensor itself does not show up in this level

decomposition, but must be added as an ‘extraneous’ quantity, even though it is to be treated

as a ‘field’ in the present analysis (otherwise there would be no need for extra p-form fields

in the Lagrangian (6.3)). In order to better understand the link with infinite-dimensional

dualities, it would therefore be desirable to re-formulate the theory entirely in terms of only

the fields appearing in the group theoretical analysis, and thus without Θ.

At least in principle, it is possible to pass from the total Lagrangian L ≡ Lgauged + LBC

to another Lagrangian which does not depend on Θ, by noting that L depends on Θ at most

quadratically. Accordingly, we now regard the field equation Yµνρ
MN = 0 as an algebraic

equation for the (auxiliary) field ΘMN ,

4 g e εµνρ V
||⌈MN⌋||,||⌈KL⌋|| ΘKL = 3D[µBνρ]

MN + 6A[µ
||⌈M

(

∂νAρ]
N⌋|| + 1

3gX[PQ]
N⌋||Aν

PAρ]
Q

)
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+ g YMN
P||⌈RS⌋||Cµνρ

P||⌈RS⌋|| − 6A[µ
||⌈MXνρ]

N⌋|| , (6.12)

and use it to eliminate ΘMN from the Lagrangian. Although this equation is linear in ΘMN ,

its solution is rather complicated due to the hidden Θ dependence of the tensors XPQ
N ,

YMN
PRS and Xµν

M on the right-hand side. Consequently, the solution cannot be written

in closed form, but only given as an infinite series in the p-forms and their derivatives.14 We

therefore exhibit only the lowest-order term of the solution which reads

ΘMN = 3
4 e

−1εµνρ
V||⌈MN⌋||,||⌈KL⌋|| ∂µBνρ

KL + · · · . (6.13)

Plugging (6.13) back into (6.1) and (6.3) we derive the bosonic kinetic term for the two-form

fields in lowest order, with the result

Lkin = e ∂[µBνρ]
MN ∂[µBνρ]KL

V||⌈MN⌋||,||⌈KL⌋|| + . . . , (6.14)

We thus see that the inverse scalar potential matrix V||⌈MN⌋||,||⌈KL⌋|| shows up as the kinetic

matrix of the (D−1)-forms, as would have been expected from (5.28). As we already pointed

out above (after (5.27)) this matrix is not positive definite, unlike the kinetic matrices of the

lower p-forms. Fortunately, we need to require positive definite kinetic terms only for those

fields which carry propagating degrees of freedom, whence the non-positivity of the kinetic

term for the 2-form fields in the above formula is entirely harmless.

In conclusion it is possible to re-formulate the theory in terms of a Lagrangian that

contains only the scalars and p-forms, but no embedding tensor. The price we have to pay is

that the resulting structure is rather complicated, with non-polynomial interactions and gauge

transformations. Nevertheless, the Lagrangian obtained by elimination of Θ is ‘universal’ in

the sense that it would incorporate all gaugings, in such a way that any specific gauging

would correspond to the 3-form field strength ∂[µBνρ]
MN acquiring a vacuum expectation

value according to (6.13). One may view this as a kind of ‘spontaneous symmetry breaking’,

but of a novel kind: rather than simply breaking the rigid G invariance of the original theory

to some subgroup, this mechanism generates non-abelian gaugings from a theory with purely

abelian p-forms and interactions!

By construction, the constraints on the embedding tensor exhibited and studied in the

foregoing sections must also be consistently encoded into this new Lagrangian. Unfortunately,

due to the the non-polynomiality of the latter, it appears difficult to extract this information

directly and without explicit use of Θ. For this reason, it would be desirable to go beyond the

mere kinematics of level decompositions, and to ‘test’ this non-polynomial Lagrangian (or

at least some of its pieces, and in particular the dependence of (6.14) on the scalars via the

kinetic matrix) directly either against the E11 proposal of [48], or alternatively, against the

E10 proposal of [49, 50]. Because the latter admits a Lagrangian formulation (but without

D-forms as these do not appear in the decomposition of E10), such tests are possible in

principle. Although this will require much more work, we are confident that the present

14Observe that the matrix V
||⌈MN⌋||,||⌈KL⌋|| will have zero eigenvalues at certain points of the scalar field config-

uration space.
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results can serve as useful probes of M theory, or, more succinctly, of the specific proposals

made in [48] and [49, 50], respectively, and thereby shed new light on the unresolved issues

with them.
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