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Abstract

We construct the most general gaugings of the maximal D = 6 supergrav-
ity. The theory is (2,2) supersymmetric, and possesses an on-shell SO(5,5)
duality symmetry which plays a key role in determining its couplings. The
field content includes 16 vector fields that carry a chiral spinor representa-
tion of the duality group. We utilize the embedding tensor method which
determines the appropriate combinations of these vectors that participate in
gauging of a suitable subgroup of SO(5,5). The construction also introduces
the magnetic duals of the 5 two-form potentials and 16 vector fields.
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1 Introduction

Gaugings of maximal supergravity theories have revealed intriguing insights into the struc-
ture of supergravity theories as well as into their higher dimensional origin and the possi-
ble symmetry structures underlying string and M-theory. The coupling of vector fields to
charges assigned to the elementary fields renders the gauge theories generically non-abelian
and — more general — in higher dimensions induces a deformation of the hierarchy of
formerly abelian p-form tensor gauge transformations. The most systematic approach for
a classification and construction of gauged supergravities resorts to exploiting the duality
symmetry underlying the ungauged theories. Their possible deformations are described in
terms of a constant tensor © encoding the embedding of the gauge group into the duality
group G of the ungauged theory [1, 2, 3]. Transforming in a certain representation of
the duality group, this tensor parametrizes the possible gaugings in a manifestly covari-
ant way. In particular, consistency of the theory can then be encoded in a number of
representation constraints on ©. The action of the gauged supergravities can be entirely
parametrized by the embedding tensor; in particular, the scalar potential that arises upon
gauging is given by a covariant expression bilinear in © dressed with the scalar fields.

From a higher-dimensional perspective a large part of the gaugings constructed in a given
dimension finds a natural interpretation as the effective theories arising from compactifi-
cation on curved manifolds, and/or in the presence of (geometrical and non-geometrical)
fluxes (see, e.g. [4, 5, 6]). The various geometrical and flux-parameters may be associated
with the different components of the tensor ©. Vice versa, decomposing © under suitable
subgroups of G allows to identify by merely group-theoretical methods the effective the-
ories descending from particular compactifications. The covariant formulation of gauged
supergravities furthermore allows to directly identify the transformation of the various
flux parameters under the action of the duality group.

For the set of antisymmetric p-form tensor fields, the covariant construction of the gaug-
ings induces a deformation of the hierarchy of formerly abelian gauge transformations.
In particular, it gives rise to a Stueckelberg-type coupling that shifts the p-forms with
the gauge parameter of the (p+1)-forms. The tensor required for such a coupling that
intertwines between p-forms and (p+1)-forms is proportional to the embedding tensor ©.
As a consequence, the gauging non-trivially entangles the tensor gauge transformations of
forms of different degree. On the level of the Lagrangian, this entanglement has an inter-
esting consequence: while in the abelian theory all bosonic degrees of freedom are carried
by the metric and antisymmetric p-forms with p < [D/2] —1 (recall that in D dimensions
all higher-rank massless p-forms may be dualized down into massless (D—p—2)—forms), the
generic gauging in its covariant formulation also requires explicit couplings of the [D/2]-
forms in the action. Consistency requires that these additional forms arise with no kinetic
but only a topological term (proportional to the gauge coupling constant), such that they
do not introduce new propagating degrees of freedom. However, as a consequence, gauge-



fixing part of the tensor gauge freedom may shuffle some degrees of freedom from the
lower degree forms to the new forms, in particular render some of the latter massive. It is
the specific form of the embedding tensor together with the choice of gauge fixing which
encode the proper distribution of the degrees of freedom among the p-forms. This fits
nicely with the observations in explicit compactification scenarios where turning on fluxes
may induce massive [D/2]-forms, absent in the ungauged theory.

In even dimensions D = 2n, there is an additional subtlety related to the fact that
the duality group G of the ungauged theory is not realized off-shell but only on the
combination of equations of motion and Bianchi identities of the (n—1)—forms. More
specifically, only (the “electric”) half of the (n—1)—forms shows up in the Lagrangian
while the other half is defined as their on-shell (“magnetic”) duals. Only together they
form an (irreducible) representation of G. Upon gauging, both electric and magnetic
(n—1)—forms enter the Lagrangian; again the latter couple only with a topological term
in order to preserve the balance of degrees of freedom. Contrary to what one might
expect at first glance, the construction allows even for the gauging of subgroups of G that
are not off-shell realized in the ungauged theory. In other words, there is a well-defined
Lagrangian even for such gaugings whose gauge group is not among the global symmetries
of the ungauged Lagrangian. The existence of these gaugings is intimately related to the
appearance of magnetic forms in the action. This construction has been worked out in 4
dimensions [7, 8] where the relevant duality is electric/magnetic duality for vector fields
and in 2 dimensions [9] where it amounts to the scalar-scalar duality which is at the heart
of the integrable structure of the ungauged theory.

In this paper we consider the maximal D = 6 supergravity and its possible gaugings.
The ungauged maximal supergravity in six dimensions has been constructed in [10] and
possesses a global Essy = SO(5,5) symmetry. Only a GL(5) subgroup is realized off-
shell with the 5 two-forms B,, transforming in its fundamental representation. Together
with their magnetic duals B™ in the 5 they combine into the vector representation 10
of SO(5,5). Little is known about the gaugings of this theory. Cowdall [11] obtained
an SO(5) gauge theory from circle reduction of the SO(5) gauged maximal supergravity
in 7D [12]. Alternatively, this theory describes the S* reduction of the ITA theory and
proves to be relevant in a non-conformal extension of the AdS/CFT correspondence [13].
However, as it has only the SL(5) symmetry inherited from 7D manifest, the 6D result
is in an exceedingly complicated form that does not shed much light onto the maximal
duality symmetry. Here we fill this gap by providing all possible gaugings by a direct
construction in 6D. The embedding tensor © which covariantly parametrizes the possible
deformations transforms in the 144, spinorial representation of SO(5,5). The gauged
Lagrangian features the full set of 10 two-forms as well as a set of three-forms in the
16, which are on-shell dual to the vector fields of the theory. We should stress that our
formalism differs from other approaches introducing p-form fields together with their duals
in that the relevant first order duality equations here arise as true equations of motion



from the Lagrangian. This appears only possible in the gauged theory.

The plan of this paper is the following. In section 2 we review the building blocks of
maximal D = 6 supergravity. In particular, we discuss the role of the SO(5,5) dual-
ity group under which electric and magnetic two-forms undergo an orthogonal rotation
and their consistent coupling is provided by the formalism of Gaillard and Zumino [14].
We review in detail the structure of the scalar fields which parametrize the coset space
SO(5,5)/(SO(5) x SO(5)). Finally, we give Tanii’s Lagrangian of the ungauged theory.
In section 3 we turn to the gauging of the theory. Applying the general framework, the
gauging is parametrized by the embedding tensor © transforming in the 144, of SO(5,5).
We derive the quadratic constraints on this tensor whose solutions correspond to viable
gaugings of the six-dimensional theory and work out the deformed tensor hierarchy up
to and including the three-forms. We present the Lagrangian of maximal gauged D = 6
supergravity which for a general gauging carries the set of 10 electric and magnetic two-
forms By, = (B,,, B™) of which the latter couple only with a topological term © C'dB to
the set of three-forms C4 in the 16,. Finally, we give a short overview and discussion of
various types of possible gaugings, i.e. solutions of the quadratic constraint and discuss
their possible higher-dimensional origin by dimensional reduction from seven and eleven
dimensions, respectively. Our notations and conventions are given in Appendix A, and
some identities, useful in deriving the topological Lagrangian and computing its variation,
are given in Appendix B.

2 The Ingredients of the Maximal D=6 Supergravity

2.1 The Field Content

The N = (2,2) supersymmetric maximal supergravity in six dimensions has been con-
structed by Tanii [10]. It is an ungauged theory in which the couplings are governed,
along with supersymmetry, by the duality symmetry group SO(5,5) that rotate the field
equations and Bianchi identities of the five 2-form potentials into each other. Only the
subgroup GL(5) C SO(5,5) is a manifest off-shell symmetry of the theory. There is also
a manifest composite local symmetry SO(5) x SO(5).

The bosonic fields of the theory are the vielbein €], 2-form potentials B, (m = 1, ...,5),
vector fields AZ‘(A =1,...,16) and scalars V{*(a, & = 1,...,4) that parametrize the coset
SO(5,5)/(SO(5) x SO(5)). The index A labels the 16 dimensional Majorana-Weyl spinor
of SO(5,5), and the indices «, & label the spinors of SO(5) x SO(5). The spinor fields
are the gravitini ¢4 0, V.6 and Xias, X—aa, Where a,a@ = 1,...,5 are the SO(5) x SO(5)
vector indices, and =+ refers to the spacetime chirality of the spinors which are symplectic-
Majorana-Weyl. (See Appendix A for further notations and conventions). In summary,



the full supergravity multiplet consists of the fields:

(6;> B;wma Aﬁa V,A?da w-i-/wm 'lvb—uda X+ads X—aa) (21)

As we gauge this theory in the most general possible way, we will introduce the following
duals of the vector fields and the 2-form potentials:

( Bul/ma C/u/pA ) (22)

Note that the vectors are in 16, and the 3-form potentials in 16, of the duality group
SO(5,5). Electric and magnetic two-forms B,, and B™ transform in the 5 and 5" of GL(5),
respectively, and combine into the 10 of SO(5,5).

From F4q, it has been predicted that one can extend the field content of D = 6 maximal
gauged supergravity by the introduction of further 4,5 and 6-forms [15, 16]:

4 5 6 6
(Cliw, Ciu Clinp s Cliront) - (2.3)

where Cyn is antisymmetric, Cy4 is y-traceless, Cyy p is mixed symmetric, Cynpor+
is self-dual, and thus in 45, 144, 320 + 10 and 1265 dimensional representations of
SO(5,5), respectively. The 4-form potentials have constraints on their curvatures such
that on-shell they describe 25 independent degrees of freedom corresponding to the Hodge
duals of the scalar fields in the coset SO(5,5)/SO(5) x SO(5). We will see that the 5-
forms are in the same representation as the embedding tensor and that the quadratic
constraints of the embedding tensor precisely transform in the representations dual to
the 6-forms given in (2.3) [17, 18, 19]. These 5-forms and 6-forms can easily be included
in the D = 6 Lagrangian, where the constant embedding tensor has been replaced by a
scalar field, as Lagrange multipliers giving rise to the constancy of the embedding tensor
and the quadratic constraints, respectively [17, 18, 19]. We will not explicitly perform
this construction in this paper. Recently, D = 5 maximal gauged supergravity has been
constructed using the embedding tensor approach and its relation with an Ej;-extended
spacetime has been investigated [20]. It would be interesting to further study the proposed
relationship for the six-dimensional case studied in this paper.

2.2  Duality Symmetry

To appreciate the duality symmetries in Tanii’s Lagrangian and also to set our notation,
we begin by reviewing the part of the Lagrangian involving the 2-form potential. Let us
define the field strengths

~ oL
0) _ m _ _ q|,—1
Y =B, Gy = =3 (2.4)



The Hodge-dual of a 3-form w is defined as w,,, = %eewpm,\ w?*. The field equations
dG’{OL) = 0 and the Bianchi identities dH\Y = 0 form a system invariant under linear

transformations, which are restricted to SO(5,5) by the requirement that the equation
for G?a) is covariant under these transformations. Infinitesimally, these transformations

act as
H(O) H(O) 0 on
) m = o , u'n+un=0, n= R (2.5)
( (0) ) ( G0y o 0

Gaillard and Zumino have shown that the appropriate Lagrangian that achieves the du-
ality symmetry is given by [14]'

L=—LeHOGH — e [HOS™ + GO R, + Lin | (2.6)
where (R,,,S™), which is a pair that transforms under SO(5,5) as in (2.5), and L,

which is duality invariant, are built out of fields other than (H,(,g ), Gz’g)), and jGg, is given
by

jGiy = S" + K™ (H — jR,) . (2.7)
The operation j acting on a given 3-form w is defined by
jw = s j2 =+1 s (’D/“/P = %6€MVPU:‘€)\ w”“)‘ s (28)
and the matrix K™ to be built out of the scalar fields must be of the form
1
K™ = K["P, + K™P_ | (K)'=K_, P.= 5(1 +7), (2.9)
or equivalently
K™ = K" 4+ jKy . Kl =K,, Kj=-K,. (2.10)

Under the infinitesimal SO(5,5) duality transformations,
_(* Y
u-(z t), (2.11)

0K =—-Ka+tK +zj — KyKj , (2.12)

as required by the covariance of the second equation in (2.4). For the 5 x 5 matrices K
this gives

K must transforms as

5K+ — _K_i_l"l—tK_i_—‘—Z_K_;’_yK_;’_ 5
VK. = K o+tK_ —z+K_yK_ . (2.13)

Substituting (2.7) into the Lagrangian (2.6) gives

e 'L=—L(HY —jR,) K™ (HY — jR,) =% (HY — jRy)-S™— 5 jRp-S"+e " Liny .
(2.14)

'For a very nice review, see [21].



2.3 Gauge Symmetry

So far the construction is rather general, and as far as duality symmetry is concerned the
result above provides the answer. In the particular model we wish to study, however, we
need to consider the gauge symmetries and supersymmetry as well. To this end, we need
to introduce the Chern-Simons modified 3-form field strengths, and their duality invariant
Pauli couplings to fermionic bilinears. To achieve this, the pair (R,,, S™) is chosen as

GRm = —wm + O, . ST =™+ O™ (2.15)

where the Chern-Simons forms are given by

wm=3FANymA,  wm=3FAq"A (2.16)
and we have used the 16 x 16 chirally projected SO(5,5) Dirac matrices vy = (Y, ¥™),
and (O,,, O™) are bilinears in fermions, to be determined by supersymmetry, multiplied
by suitable functions of the scalar fields so that they transform as (R,,, S™) under SO(5, 5)

transformations. Thus, the Lagrangian takes the form

UL = R H K, 4 Ly b
g (W JO™ H W™ jOR) + ¢ Liny (2.17)

where
Hyp = HY) + W, . (2.18)

Given the gauge transformations
0By, = —3Fym\ A =d\, (2.19)
we see that all but the wO terms are invariant, since
FAyuFANFyMX=0 (2.20)
which holds, thanks to the well known identity

YM(AB ’Yg)p =0. (2.21)

As to the wO terms, while they are not gauge invariant, they are nonetheless duality
invariant. Therefore, we can discard them by choosing L;,, to contain these terms with
opposite sign. Then, we are left with

-1 _ 1 mn 1 cm 1 com
e L = —5Hp K™"H,+ gHpy - jw™ — f5wm - Jw

+5 i (K™0, = jO™) = 505 - (K™0, — jO™) + €' L, .

(2.22)
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The Lagrangian is then determined completely by specifying K™", the pair of 3-forms
(O, O™) and L, ,. Defining a following dual field strength, in analogy with (2.18),

nuv*

G =Gy W (2.23)
it follows from (2.7) that
G™ = jK™H, + O* terms . (2.24)

In the supergravity model we shall study, O? represents quartic fermion terms. Working
up to quartic fermion terms in the action, which we shall do in the rest of the paper, it
is convenient to define a field strength G, that transform as 10-plet of the duality group

SO(5,5) as
G\ [ Hn

Using this definition, the Lagrangian (2.22) can be written as

e'L = —LH, K"™H,+ tHy, - jo™ — Swp, - jw™
+3jGy - OM 7L

mv

(2.26)

where OM = (O™, 0,,,) and we have dropped O? terms that are quartic in fermions. With
O representing fermionic bilinears, the jG - O term describes already duality invariant
Pauli couplings.

Next, we discuss the matrix K™" which is to be expressed in terms of the scalar fields,

following [10]. Here we shall choose a convenient basis for the scalar fields to make the
GL(5) € SO(5,5) symmetry manifest at the Lagrangian level. To this end, we introduce

the 10 x 10 matrix _
4 (V" Vui\_[(A B
VM - ( yma de ) — ( C D ) (227>

where a,a are the vector indices of SO(5) x SO(5). Tanii has expressed his results in
a basis in which HY + G5y transform into each other under SO(5,5) as components of
10-vector, and used a matrix U that obeys the relation

I/{Tndiagu = Ndiag » Ndiag = dlag (1a _1) ) (228)

and therefore it is an SO(5, 5) representation. However, in this basis, the GL(5) symmetry
is not manifest. This can be remedied by working in a basis in which (Hr(r?), G5y ) trans-
form as a vector under SO(5,5). To achieve this, we work with the matrix V of (2.27)
which is related to the group element U/ as

V= MU, M:%(} _11) (2.29)



Since M ngiagM = n with n defined as in (2.5), the matrix V satisfies the relation
VIV = Niiag | (2.30)

where 7 is as given in (2.5), and 744, explicitly by

[ 0 O
UA_B - < 0 _5(11') ) (231)

From (2.30), it also follows that
VMaVMb — 5ab ’ VMaVMb — _61'15 ’ VMaVMd =0 ’
VYN — v 0pNe = 53 (2.32)

It is important to note that in our conventions, the explicitly written (a,a) indices are
always raised and lowered with +0,, and +d,;, starting from the basic object (2.27). This
explains the occurrence of minus signs in the formulae above where the form of n4p has
been used.

Our choice of the scalar matrix V makes both the GL(5) acting from the left, and SO(5) x
SO(5) acting from the right manifest in the formalism. Note that, given V), the group
h = S0(5); x SO(5);r acts from the right diagonally in the form h = diag (hy, h;;). The
condition (2.30) translates into

ATc+cTA=1, B'D+D'B=-1, A'™D+C"B=0. (2.33)
With this parametrization, the matrix K™" can be chosen as?
K=CA'P,—-DB'P_. (2.34)

It can be easily checked that this K indeed transforms under SO(5,5) as in (2.12). Written
in terms of V', we have

Kmn — Vma(vna)—lp+ - Vm[z(vﬂ[z)—lp_ 7 (235>
which gives the useful relations
K_ri_rmvna — P+Vma 7 K?_rmvn[z — _P_Vm[z ’ (236)

with K defined in (2.9).

2We are grateful to Yoshiaki Tanii for helpful discussions regarding this point.



2.4 Supersymmetry

The choice for Oy, is dictated by supersymmetry. Tanii has found that the following
choices are appropriate [10]

Ou =Vu*P_O% + VMdP+Od , (237)

with the exact form of the fermionic bilinears (O,, O;) determined by supersymmetry
(see next section). Moreover, the description of the supersymmetric transformation rules
requires the quantities H® and H® defined by

H,, =V,"P H" —V,,*P_H" . (2.38)
Recalling (2.36) and (2.32), we find that?
P.H,=P.GyVM,  P_H,=-P.GuV¥. (2.39)
Employing the relations (2.35) and (2.32) also shows that
P.GyWM =0, PGuyWM=0. (2.40)
Using the quantities defined so far, the Lagrangian (2.26) can be written as
e 'L = —FHp K™H,+ ¢ (P H*- 0"+ P_H"- 0%)

e Hpy - jw™ — Swp, - jw™ + e L],

inv °

(2.41)

In showing the cancelations of the terms proportional to 1, H? terms coming from the
variation of the metric in the H-kinetic terms, it is useful to note that

0Lin(H) = —3eK7™ (H,,, - H), + Hp,, - Hy, ) 09" (2.42)
where H* = P, H, and we have used the identity
K™ Hf Hy o (1 v) = g0 K H - H (2.3

We are using the notation H,- H, = H,,,H,””, and H*-H~ = H, H~""?. Finally, upon
using (2.38) and (2.32) one finds that

0Lwn(H) = —te (HI*- HI*+ H* - H;*) 5g" . (2.44)

These terms are then canceled by terms arising from the variation of the Pauli couplings
in (2.41).

3The indices (a,a) on H, O and V are raised and lowered by o, and d,;.



2.5 The Scalars

The 25 scalar field of the theory parametrize the coset SO(5,5)/(SO(5) x SO(5)) which

can conveniently be parametrized in terms of an SO(5,5) valued 16 x 16 matrix V,*°,
with its inverse defined by

Vi VE =68 veivA = e 556 _ (2.45)

The 10 x 10 scalar matrix V defined in (2.27) can be expressed in terms of the above
16 x 16 matrices Vg as * (see Appendix A for notations and conventions).

Vu® =35V V., Vu' = =5V (2.46)

These relations follow from the fact that the SO(5, 5) y-matrices (obeying Clifford algebra
with non-diagonal 7,y ) are left invariant by SO(5,5) transformations realized in terms
of V and V. Noting that (see Appendix A)

A 0 Var®y® + Vaty®

the invariance of the SO(5,5) y-matrices translates into the relations
VAaa(VM)ABVgB = Vu* (7a)a65g - VMa(Vd)aBCSg :
Vab(an)asV" = Var® (1)a85 + Var (07)a67 . (2.48)

from which (2.46) follows.

The scalar currents are defined as [10]
VA 0.Va™ = 100 (v)a03 + 105 62(v™)a” + 155 (v9)a" (%) - (2.49)
It follows that
P = 2VA"y9,V QYW = VAo,V | Q“b iV “b8 vV, (2.50)

and . _
D,V = i Pﬁ“ 2 el 74 (2.51)

Moreover, we have the standard integrability conditions

Dy Pyt =0, 0,Q% +Qu Qu™+2P Py =0, (2.52)

4Working with V related to SO(5,5) matrices U through V = MU implies that the SO(5, 5) v matrices
obey the Clifford algebra with off diagonal nasn.

10



and a similar equation for the curl of QZI’. The covariant derivatives in the above expres-
sions contain the composite connections. Other useful identities are:

DV = -3 P Vy*,  DVy*=-1PVy". (2.53)
It is also useful to introduce the matrix
Myp = VAQBVBQB , (2.54)

which will be used in the construction of kinetic term for the vector fields.

2.6 The Lagrangian

Using the building blocks describe above, Tanii’s Lagrangian [10], can be written in our
notation and conventions (see Appendix A) as follows:

L=Lp+LFp, (255)
where

e 'Ly = [R—45Hy K" H, — MapF;, F*"" — PPl

16~ 1 ~ aa

+2 Hpp - ju™ — Swp, - jw™ | (2.56)

and, up to quartic fermions,’
6_1£F = _%@+MVHVPDV¢+p - %@—uV“VpDﬂﬂ—p - %XGVuDuXa - %Xd’VuDuXd
3P Il — AF0 JW + 3 (PR H® - O+ P_H* - O%) . (2.57)

The fermionic bilinears occurring in (2.57) have been determined by Tanii as follows

Lt = "y X+
Jwa = V77 WVate + 30,707 7 Vax"
— XY Var Yy + XY Var X
Oy = B0 Yy — BV X" — X )X (2.58)

and O% is obtained from O% by interchanging dotted and undotted indices.

®We have corrected the coefficient of the P, I* term in [10].

11



The Lagrangian (2.55) is invariant under the following supersymmetry transformations:

56;; = g—i—’fﬂ’-‘:—u + €—7T¢—u )
5¢u+ = DHE-F - nganfyafypgﬁf}/ﬂE'f‘ + % (f)/l‘yp o 65nyﬁ) F’ﬁVA €~

My = Dye_ — ngaﬁvdvp‘mwe_ + % (7,/” — 65;%) F;},VA € ,
oX* = IPMOyyte+ LH AP P+ LFAVAY I €
ox* = indvdv”e + %Hgypv‘“’pe + iFﬁ,f/Av‘WW €,

0AL = =&V, + 9V e+ §ey, VA + XV e

ABuum = Vgl (@E[,u%/}’yae + %Xa')//we) + Vgl (@Z[“’yy]’}/dE + %Xar/we) )
5VA = % (’VaVAfVC'L) (Xaq/[ze + Xt'zfyae) ’ (259>
where AB,, is the gauge covariant variation defined in Appendix B,
D,e=0d,¢e+ iw,fsvme + iQ,ﬂb%be , (2.60)

and “ ~ 7 denotes transposition. The chiralities are shown explicitly only when there is
an ambiguity. Otherwise, when suppressed, they can easily be deduced from the structure
of the terms (see Appendix A for notation and conventions).

3 Gauging G, C SO(5,5)

Using the embedding tensor formalism [1, 2, 3], we will find the most general gauging of
a group Gy C SO(5,5) by employing a suitable combination of the 16 vector fields in the
theory.

3.1 The Embedding Tensor
The key ingredient in the construction is the covariant derivative
DM = 8u—gAuA@AMNtMN s (31)

with SO(5,5) generators tyy = tpn) and an embedding tensor © 4. Tt follows from
supersymmetry [2] that the latter can be parametrized in terms of a tensor % trans-
forming in the 144, representation, i.e. satisfying

YMAB HBM =0 s (32)

12



as follows:
O4MN = —gBIM Ny = (yIMgNY) (3.3)

In this paper, we show that indeed every embedding tensor in the 144, (which also satisfies
the quadratic constraints (3.7) below) defines a consistent gauging, and present the full
Lagrangian.

The SO(5,5) algebra is realized by generators tMNvKL = 417K[M5]LV] in the vector repre-
sentation and ¢/, 4P = (yun) 4P on the spinor representation, respectively, satisfying

[trxr,tun]) = 4(Mrtnge — N tng) - (3.4)
Therefore, the gauge algebra generators X4 = 0,4Vt take the form
Xag® = (M) alyun)s® . Xaar™ =200 )a +2(vV0u)a (3.5)

acting on spinors and vectors, respectively. The quadratic constraints on the embedding
tensor state that

(X4, Xp] = —Xap®Xe. (3.6)
Some computation shows that this reduces to imposing
MO Ny = 0, MO ()4 = 0, (3.7)

on the embedding tensor 64" . This means that the quadratic constraints transform in
the 10+126.4 320 of SO(5,5) — and thus in the representation conjugate to the 6-forms
of the theory (2.3). They ensure, for example, that

0M X459 = 0. (3.8)
The generators X 45 satisfy
Xap© = =" (M (yun)p© = = (a0 = duap 29, (3.9)
where we have introduced the general notation
dyas = (Ym) aB 70M = M (3.10)

As we have discussed in the introduction, gauging the theory in general not only corre-
sponds to covariantizing the derivatives according to (3.1) but also induces a nontrivial
deformation of the hierarchy of p-form tensor gauge transformations. In particular, p-
forms start to transform by (Stueckelberg)-shift under the gauge transformations of the
(ptl)-forms. The corresponding tensors required to intertwine between the representations
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of p- and (p+1)-forms are generated by the embedding tensor. The lowest intertwining
tensors can be obtained by evaluating the general formulas of [3] for our case, yielding

ZC,M = _90M
Vara = =207 (v9) panup 65 +20°7 (W) panmo 65 — 20°Y (var)pa
= =20y (YV)as - (3.11)

for the tensors intertwining between vectors/2-forms and 2-/3-forms, respectively. In
particular, the latter tensor encodes the representation content of 3-forms, required for
consistency of the deformed tensor gauge algebra. As the 3-forms (with the generic index
structure C,,, ~*) will always appear under projection Yy 4™ Cuvp ~4, the particular form
of (3.11) shows that out of this general set only the 16 projected 3-forms (YV) ap Cupn* =
Cupp enter the theory. This is in accordance with the field content discussed in the
introduction, in particular with the fact that as a consequence of their on-shell duality,
3-forms should transform in the representation conjugate to the vector fields. With (3.11),
the p-form tensor gauge algebra in six dimensions can now be written down by evaluating
the general formulas of [3] (see in particular [22], Appendix A).

General p-form variations are most conveniently expressed in terms of the “covariant
variations” ¢

AAY = A%, (3.12)
AB;WM = 5BWM - ('YM)AB A[uA 5AI/]B )
ACups = 6Cupa— 3™ an Buwm 64," — 200" ap(yar)ep AP AL 5A,
The full non-abelian gauge transformations are then given by’
AAY = DA+ g0 ME,
ABuy = 2DpEgn — () as M MY, + g0 nyn Py a

ACuwpa = 3Dp®uya+30")as M, S + 207" ) ap AP Hywprr - (3.13)

6Note that B and = have been rescaled by a factor of two, and 6 by a minus sign, in the formulae
provided in [22].

TAs usual in even dimensions there is a subtlety with the gauge transformation law of the D/2-
forms [7, 9] requiring that eventually in the off-shell formulation of gauge transformations, H,,., ar in the
last line of (3.13) is replaced by G,., ar from (3.41), below.
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with gauge parameters A4, =, P4, and the covariant field strengths
Hy, = 20LA0" + 9 X ot APA =290 B
Huvprr = 3DyBygn + 3 (var) ap Ay (5’uAplB + 39X [OD}BAVCAP}D>
-9 6N NMN C,pr )
HMVP)\A = 4D[MCVP/\}A - (VM)AB(HBWMHEA + 1299BNB[MVMBp)\]N
+8(1)epAPACH, A + Q(W)CFXDEFA[MBAVCAPDAME) . (3.14)

Under arbitrary variations these field strengths transform as

SHS, = 2Dy (AAyY) =290 AB,,
S Hupym = 3Dy(AByym) + 3 (var)an Hﬁw AAP]B — 90" nun ACupa -

6H,uz/p)\A = 4D[MACup)\]A - 4(7M)AB (BHiVABpA]M - QH[WJPMAA)\}B) . (315)

One of the consequences of the gauge covariantization a la (3.1) is the modification of the
scalar currents as

Py —  Pit=1Vy'D,V QY — QY =1iVy"D,V , (3.16)
and similarly for H‘ﬂ", with the gauge covariant derivative given by
D,V =D,V — g(AAMN) yunV . (3.17)
This leads to the following modified integrability equations:
Dy Py +49F i Tag =0,
Q) + APUPY" + 4gF i Tt =0,
Qi 4 4PLP,® 4 4gFI TS =0 | (3.18)
where Qzl,’/ = 20, QZ? +29,°°Q,).> and
Fu = 20,A0" + 9 Xipoy* AP AC
= 20, A" + g(yunAp) MV A, (3.19)
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and
Tie = 5 (Vaarubn) (VA" "NV)
7% = & (Vaaymbn) (VA*MNV) |
T = f (Vasrwty) (V999" (3.20)

These expressions can be simplified and their group theoretical meaning can be made
more transparent by making use of (2.48) and recalling that 7,6 = 0. As a result, we
find

Tab — ,y[a Tb} ’ Tt'zb — _T[c'ufyb] ’ Ta[z — —%(’}/aTd + Ta’}/d) :
YT + T =0, (3.21)
where we have defined the T-tensors,
T =V oMV, . T =Vt 0Myy (3.22)

Thus, T4 = (T%,T%) is in one-to-one correspondence with the embedding tensor . For
later purposes, it is convenient to also define

T =~"T* = —T%% (3.23)
The quadratic constraints (3.7) translate into

o pa _ i i _ Coia A mBlSH _
TadTﬁg TaaTgﬁ 0, T 7aa,55T 0, (324)

where 74 = (7% x 1,1 x 7). Restricting to SO(5); x SO(5);; directions, several identities
result from the latter equation. For example, restriction to the SO(5); direction, upon
the use of (A.5), gives

7T — itr(T“Tb) =% tr(7°7°°) . (3.25)

We recall that “ ~ 7 denotes transposition. The nontrivial content of this equation is the
antisymmetric part in its free SO(5) indices, namely,

tr(T°y1 1) =0, (3.26)

while the symmetric projection, contains no new information, in view of (A.6). A use-
ful identity needed in establishing the supersymmetry of the Lagrangian is obtained by
evaluating the antisymmetric part of ¥*7T®. Using the trace of the constraint equation
(3.25), and recalling (A.6), we obtain

NTT® + TTy* = ATT® — tr T°T* — 27T + tr TT | (3.27)
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Next, we observe that the constraint (3.24) enables us to covariantize the identities (3.18)
D Py — 4gH, tr T*Vy =0, (3.28)

Q¥ + AP Pyt — AgH, tr TV =0 . (3.29)

Further useful relations are furnished by the derivatives of the T-tensors, which take the
form

DMTa — %PZb (,bea,yl.) o 25(1le5) ’
DMTd _ 1 sz ('Vde’}/i) o 25deb) ’
DT = P (=T + T — 37°TH") . (3.30)
The quantities P and Q can conveniently be written as
Pat = Py +8g AN tr TV, (3.31)
Q= QP +4g At TV, (3.32)

and similarly for @ ;. Finally, the modified Bianchi identities are

D[Mpr] = _§ g HAMH,uupM ) (333)
,D[MHVPU}M = %ﬂ[quVMHpa] - igeleHVPUA : (334>

3.2 The Gauged Maximal D=6 Supergravity

The building blocks we have just described can now be used to gauge the maximal D=6
supergravity. Thus, we introduce the magnetic potentials B, and the 3-form potentials
Clwpa accordingly, and in the ungauged Lagrangian we make the replacements

Hul/pm - H;u/pm ) H;?V - HA Pgd — PZ(I s (335)

L2

as well as gauge covariantize the derivatives by the prescription
ab ab ab ab
D,—7D,, QM — QM , QM — QM , (3.36)

in the supersymmetry transformation rule, and the Lagrangian with the exception of the
topological terms. They are modified by the requirement of all the gauge symmetries
described in the previous section. This turns out to be highly constraining nontrivial
requirement which remarkably fixes the topological terms entirely, as will be described
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in detail in the next section. These modifications will introduce new, gauge coupling
constant g dependent supersymmetry variations due to the explicitly g-dependent terms
in (3.28), (3.31), (3.32) and (3.34). To cancel them, as usual, we parametrize the most
general fermionic mass terms that are linear in the T-tensors, and a potential that is
quadratic in the T-tensors, and introduce linear in T-tensor terms in the supersymme-
try variations of the fermions. As for the supersymmetry transformations of the newly
introduced higher rank p-forms, that of Bj, is straightforward by simply requiring that
together with B,,,, they form a 10-plet of SO(5, 5). Regarding the 3-form potential C),,,4
we simply parameterize its supersymmetry transformation rules in a fashion dictated by
gauge symmetries and dimensional analysis. Requiring that all the g-dependent variations
cancel, we determine all the coefficients used in parameterizing the Lagrangian and super-
symmetry transformation rules. The subtle features that arise in these computations are
to a large extent parallel to those encountered in the construction of the gauged maximal
supergravities in D=4 [8]. We will spell out some more details of the salient features in
this computation but first, let us present our results.

We have found that the Lagrangian £ = Lz + Lp, up to quartic fermion terms, is given
by

e 'Ly = JR—HHu K™H, — {MagH H"P
PPl + g (0 TT = S0 TT) + €7 Loy (3.37)
where L, is the topological part of the Lagrangian given in the next section, and
e 'Lp = =30 Dtsy — 30, P Duth_y — X Dux® — XY Dux®
Hipe It — A, IR+ L (PyHY - O + PoHY - O%)
+ges YV Ty + 29 (G " TOX" + X T "Y,)
+39 (YT = 0"y )
+gx* (29T — 2Ty + $4°T~*) x* (3.38)

where the fermionic bilinears are as given in (2.58).

18



The supersymmetry transformations are
oe," = &Y by HEAN Yy,
Wt = Duer — 5oV s + 5 (W — 66,7°) Hy,Vaeo + 397, e
S = Due — FiHo, Y e+ § (07 — 6017°) Hy,Vaey — JgvuTes
¢ = inavav“e + %qupv‘“’pe + iHﬁuVAvav‘” €+2¢9T% + %g TH%
ox* = iPZdvdv“e + %waﬂ‘“’pe + iH;‘VVMwW €+ 29T% — %g T~% ,
SAT = —&VA4%, + PV e+ 3E7, VAN + 3V A e
ABun = Vig (pmwy"e + 35X we) + Vir (Upwn’e + 58" we)
ACuvps = 6 (EVaruths — P Va€) + (@ Vatupx” = XVar Yupe)
Va = 3 (vVay") (X% + x*%) . (3.39)

We emphasize again that the 4 chiralities have been shown explicitly only when necessary,
and when suppressed they can be deduced from the structure of the terms. We also note
that H,, 0 and H,,,q are defined by

Mo = V" PyH® — Vi PUH® | (3.40)

where we have suppressed the tensorial indices. This is analogous to the relation (2.38)
in the ungauged model. Similarly, we can define the analog of the field strength (2.25) as

o= (G0 ) = () (3.41)

As in (2.39), it follows that

P.H,=P.GyVY P H,=-PGyVl. (3.42)

Thus, the supersymmetry transformations, as well as the Pauli couplings involving G,
are manifestly duality-covariant. The supersymmetry algebra is expected to close on-
shell with field dependent composition symmetry parameters, as usual. Normally, the
fermionic field equations are needed for the closure, but here, the closure on the three-
form potential requires its field equation as well. In the next section, we will show that
this field equation takes the simple form 64 (Gy; — Hy) = 0.

We conclude this section by expressing the potential explicitly in terms of the embedding
tensor and the coset representatives, and observe that it takes the remarkably simple form

V() =3 00PNV (Var' Vi) (3.43)
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3.3 The Topological Term

In establishing the gauge and supersymmetry of the action a highly complicated topolog-
ical term is needed. The full topological term is given by

Liop = —H"N0,C —30"CN6,C+ 260YyV0" A By A By A Bp

—200y™A N BM N dB,, — 20,,v™M AN By A dB™

—2 (éMvaéNva + 0, AMA AN A —20,,4M A éNva) A By N By

+1(Ay"dA+ 2AY"X) N dB,y, — 20Ny A(AYNdA + AN X) A By

+(0p Y™ A — 0M~,, A)(Ay™dA — %[me) A By

— 2 Ay dA(Ay"dA — A" X)) — £ Ay X (Ay™dA + 3Ay™X) | (3.44)
where the wedge symbols among the Yang-Mills fields and the gauge coupling constant
g, are suppressed and ) )

XA = LAMON A (Aypn)? (3.45)

The topological Lagrangian £,,, is completely fixed by requiring gauge invariance of Lo, +
Lyin. In fact, the topological term can already completely be determined just starting from
its leading term 9{,‘1 Clivp 4 05 B:\™ and completing the term by requiring invariance under
tensor gauge transformations dgLiop, = 0 = d=Lyop. Subsequently, one can show that its

general variation takes the fully covariant form (3.50) below, which is a strong consistency
check. Useful identities needed for these computations are provided in Appendix B.

Note that the mass term for the three forms 62 §5™ is automatically antisymmetric due to
the quadratic constraint. Moreover, no such term would exist with full SO(5, 5) covariance,
i.e. it is essential here that the Lagrangian exhibits only GL(5) covariance. Also the
cubic B? coupling M 4N6” is automatically symmetric in (MNP) due to the quadratic
constraint (3.7). Finally, note that also the A® term could not exist in an SO(5, 5) covariant
Lagrangian: there is no SO(5, 5) singlet in the tensor product of ©2A%. Again it is essential
that SO(5,5) is broken to GL(5).

In the ungauged theory (6™ = 0) the topological term (3.44) is simply
L=1Ay"dAN (dB,, + 1 Ay,,dA) | (3.46)

— 2
and contained in (2.56). For electric gaugings (67 = 0) the topological term reduces to:
Lip = 200" N B, A B, A B, —20"y" AN\ B, A dB,,
+20P7, A"y AN B, A B, — 3 (Ay"dA+ 2Ay"X) A dBy,
—10" A (AYNdA + LAYV X) A By, — 6", d A (AyMdA — 2A9™X) A B,
— s Ay dA (Ay"dA — AV X)) — L Ay X (Ay"dA + 2AYX) (3.47)
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and one sees explicitly that in this case neither 3-forms C),, 4 nor magnetic two-forms
B,,™ enter this Lagrangian. For the B?® term we have used here that 6™v,0" = 0 for
electric gaugings as a consequence of the quadratic constraint.

We find that the complete variation of the topological term is given by

e Ly = —1—166_1 e“”'””“)"l:{w/yMHpo (ABux ) (3.48)

—37Hm - D(AB™) = 5gjH™ - (0, AC) = 5jHm - (Hy™ AA) |

and thus expressible in a very compact form in terms of the covariant variations A defined
above. In the ungauged theory, only the first and the last term of this variation are present,
while the second term becomes a total derivative. Note that the variation (3.48) is only
GL(5) invariant. This forbids for example in the gauged theory to integrate by parts
the second term, as the sum over m is not the full SO(5,5) covariant one whereas the

derivative D, is covariant with respect to a gauge group that might not be contained in
GL(5). Only together with the variation of the kinetic term

e 10Lwn(A, B) = —H™AMup (DM(AA,,B) _ g™ ABWM) (3.49)
— tHpm - K™ (3D(ABy) 4+ 3 Hy, AA — g0, AC)
the two non-covariant terms join and the combined variation takes the form
e (0 Lin(A, B) + Liop) = —H™A Mg (DM(AAVB) _ goBM ABWM>

_%6_1 EMVPJHAHMVVMHMI (ABH)\ M)

—1iGy - DABM — 1iG,, - (HAM AA)
29 (Has — Gar) - (07 AC) . (3.50)
Since there is no kinetic term for the 3-form potential C'4, its field equation is given by
GOt (H™ — jK™H,) =0, (3.51)

where we have used (3.41). As for the field equation of the “magnetic” 2-form potentials,
it takes the form
g@Am (H;u/paA + 6€MVPU,€)\MABHH)\B) =0 s (352)

where we have used the Bianchi identity (3.34). This equation, as expected, furnishes the
duality relation between the three-form potentials and the vector fields.

The variation formula (3.50) is also very useful in finding the gauge coupling constant
dependent terms in the action and supersymmetry transformation rules that are needed
for establishing supersymmetry. The supersymmetry variations, with undifferentiated
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supersymmetry parameter, that do not depend on the gauge coupling constant will be
covariantizations of those which arise in the ungauged Lagrangian. Therefore, they will
cancel as in the ungauged theory, and in a covariantized form. Supersymmetric variations
with overall explicit coupling constant dependence, on the other hand, cancel as follows:

(1) The partial integration in the Gy - DABM term yields gH,,,0 4 via the modified
Bianchi identity (3.34). This is canceled by a term arising in the variation of the gravitino
in the Pauli coupling term G - O, followed by partial integration, and use of the Bianchi
identity (3.34).

(2) The terms involving gH* coming from the H-AB term in (3.50) and the new variations
of the Pauli term JH, are canceled the terms coming from the old variations in the
fermionic mass terms, in gravitino kinetic term and the Noether term P,I*, using (3.29)
and (3.28).

(3) The terms involving gH s coming from the Hjy, - AC term in (3.50), cancel the terms
coming from the variation in the Pauli term JH using the modified Bianchi identity (3.33).
In fact, this is a convenient way to determine the supersymmetric variation of C4.

(4) The terms involving gGys coming from the Gy - AC term in (3.50), the new variations
of the Pauli coupling term G - O and the old variations of the g-dependent fermionic mass
terms, all cancel.

(5) Finally, the new variations of the fermionic kinetic terms are canceled by the old
variations of the potential.

3.4 Classification of Gaugings Under GL(5)

So far, we have shown that every tensor #4M in the 144, of SO(5,5) which satisfies the
quadratic constraint (3.7) defines a consistent and maximally supersymmetric gauging in
six dimensions. It remains to study the possible solutions of (3.7) and to identify the
resulting theories. As usual, a systematic way to scan the various possibilities is given
by decomposing 4™ under a given subgroup of SO(5,5) and to separately analyze the
different irreducible parts. In six dimensions, a distinguished subgroup is the maximal
GL(5) € SO(5,5) which allows to identify a possible seven-dimensional origin of the
theories — with SL(5) corresponding to the seven-dimensional duality group — as well
as a possible origin in eleven dimensions, in which context GL(5) is associated to the
five-torus on which the reduction is performed.

Under GL(5), the SO(5,5) representations break as
10 -5 +572 16, —17°+5" 4+107", 16, — 17 +52 410" (3.53)
where we denote the B, by 5 and the B™ by 5. The adjoint breaks as
45 —1° +24° + 107" 4+ 10" (3.54)
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The 1°+24° is the GL(5) subgroup, the 10™ generators are realized as shift symmetries on
the scalar fields. They correspond to the off-diagonal block z in (2.11) and thus correspond
to off-shell symmetries of the Lagrangian. The complete off-shell symmetry group is thus
given by GL(5) x 10™. The 10'~* generators on the other hand are hidden symmetries
that correspond to the off-diagonal block y in (2.11) and are realized only on-shell, i.e.
do not constitute symmetries of the action. We expect that there is a dual Lagrangian in
which the 107 and 10'~* generators have exchanged their roles.

Next, we turn to the classification of gaugings under GL(5). Under GL(5), the embedding
tensor 144, decomposes as

144, — 5P 4577 4107 41571 +247° 44071 + 4512 (3.55)

Splitting 4M = (4™ 9-1) this amounts to distinguishing between electric and magnetic
gaugings: gaugings triggered by #4™ only involve the electric two-forms B,, and no three-
forms. This can be seen explicitly in the tensor gauge transformations (3.13), the covariant
field strengths (3.14) and the topological term (3.47). On the other hand, gaugings
triggered by 64 involve magnetic two-forms B™ as well as additional three-form tensor
fields. In terms of representations, these components can contain

A = 53 1107 42470 407, 02 =5 45T 107 157 44518 L (3.56)
Comparing this to (3.55), we see, that 2475 +40'~! and 5%7 + 1571 + 453 trigger purely
electric and purely magnetic gaugings, respectively, whereas 573 + 10~! correspond to
gaugings involving simultaneously electric and magnetic two-forms. Recall the quadratic
constraint

QAM QAN n _

uN = 0 ’ 9AM QB[N(

vNap = 0. (3.57)
The first equation is automatically satisfied for gaugings that are purely electric or purely

magnetic. For these we have to impose only the second equation, which is a 320 under
SO(5,5) and thus

320 — 5T+ 57 4+40T0 +4070 +4572 + 452+ 70T2 47072 (3.58)

This shows that e.g. any 6 in the 2477 (since its square does not show up in (3.58)) defines
a consistent (electric) gauging. In fact, this makes sense: these are the Scherk-Schwarz
gaugings obtained by reduction from seven dimension, the 24~5 corresponds to choosing a
generator in the seven-dimensional symmetry group SL(5). The 40’~! on the other hand
also defines purely electric gaugings, but these 6’s need to satisfy an additional quadratic
constraint in the 70'~2 of (3.58). These are the theories obtained by torus reduction from
gaugings in seven dimensions, where indeed (part of) the embedding tensor lives in the
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40" and its quadratic constraint in the 70’ [22]. Explicitly, for @ given by 9™k = glmnlk
with 9™™* = 0, the quadratic constraint is

PTG e = 0. (3.59)

Purely magnetic gaugings described by the 57 also satisfy automatically the quadratic
constraint (3.58). They may correspond to reductions from eleven dimensions with non-
trivial four-form flux. Also for magnetic gaugings described by the 157!, the square of
0 does not show up in (3.58), thus these are automatically consistent theories. These
come from torus reduction of seven-dimensional CSO(p,q,r) gaugings [12, 22|, whose
embedding tensor indeed transforms in the 15. And it makes perfect sense that these
give magnetic gaugings: in order to gauge CSO(p, ¢, r) in seven dimensions, a number of
two-forms have been dualized into three-forms, whose reduction to six dimensions gives
rise to the magnetic dual two-forms. A more constrained version of magnetic gaugings
is parametrized by the 45’3 (explicitly: some traceless 9™ = 9I™™) with a quadratic
constraint in the 4079, given by

Vs 19’[;‘1 0. (3.60)

Exmnpg

Note the duality to (3.59). As 97" has the index structure of a torsion, these theories
could presumably be obtained by reduction from eleven dimensions on some twisted tori.

The gaugings triggered by 5% and 107! (let us parametrize them by 9™ and ¥, = Opny,
respectively) are neither purely electric nor purely magnetic, i.e. the first equation of (3.57)
has to be imposed explicitly. However, it follows immediately that they give rise to only
few constraints. While apparently they cannot be switched on together, ¥ alone defines
a consistent gauging, and 1,,) comes with the constraint

DO € = 0, (3.61)
which is solved by ¥4, = Apm&n), which is a possible candidate to be the most general
solution.

Of course, there are many more gaugings possible which correspond to simultaneously
switching on various GL(5) irreducible components of 6.

The nature of these gaugings can be illustrated by the following table

o.M | 10 1° 240 10™
573 57 (5 45)T (10+40) 7T (3.62)
107 | (545 1071 (10 +15440")7" 2475 '
12 10 2475

where the top row represents the SO(5, 5) generators, the left column represents the vector
fields, and we have depicted their mutual couplings by the various GL(5) components of
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the embedding tensor according to (3.1). In accordance with the discussion above, we see
that electric gaugings (those triggered by the 2475 4 40’~!) involve only generators that
belong to the off-shell symmetry group GL(5)x 10** of the Lagrangian. Magnetic gaugings
in the 577 4453 on the other hand also gauge symmetries that are realized only on-shell,
very much like what happens in other even dimensions. A notable exception are gaugings
triggered by the 1571, these are magnetic in the sense that they require introduction
of magnetic two-forms and three-form fields, on the other hand they only gauge on-shell
symmetries inside of GL(5)! This is rather different from the situation in four dimensions,
where every gauging whose gauge group resides within the off-shell symmetry group of
the Lagrangian can be realized as a purely electric gauging, i.e. without introduction of
magnetic forms [7]. Note however that due to the first quadratic constraint in (3.7) there
is always a frame, which may be reached by an O(5,5) rotation from Tanii’s Lagrangian,
in which the gauging takes a purely electric form. However, this may not be the frame
the most suited in order to identify a particular higher dimensional origin.

3.5 Classification of Gaugings Under SO(4,4) and Truncation to
N = (1,1) Theories

It would be interesting to consider truncations of our results to D = 6 half-maximal
gauged supergravity. The duality group of non-chiral D = 6 half-maximal gauged su-
pergravity coupled to 4 + n vector multiplets is given by RT x SO(4,4 + n). There are
three different classes of gaugings [17]. The gauging of the R scaling symmetry leads
to an embedding tensor in the fundamental representation of the duality group. On the
other hand, the gauging of a subgroup of the SO(4, 4 4+ n)-factor leads to an embedding
tensor in the three-index antisymmetric representation. On top of this there is also a
massive supergravity with an embedding tensor in the fundamental representation. This
includes the massive supergravity of [23]. Gaugings of this theory coupled to further
matter multiplets have been constructed in [24, 25]. The IIA origin of the n = 16 case
via a K3 compactification was studied in [26]. A massive supergravity is a particular
deformation of the p-form gauge transformations that does not involve the gauging of a
duality group. These massive supergravities are also described by the embedding tensor
approach. The T-duality properties of the D = 6 half-maximal massive supergravities
have been discussed in [27].

Let us see, how these structures can be embedded into our results. The duality group of
the half-maximal supergravity coupled to 4 vector multiplets embedded in the maximal
theory is Rt x SO(4, 4) under which the SO(5,5) representations break according to

10 — 8 4+17+172, 16, — 8 +87",
45 — 19428 4872 8.2, (3.63)
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In particular, the embedding tensor breaks according to
144, — 56, +567" +8 1 + 81 + 87 + 8.7 (3.64)

and we may analyze the gaugings triggered by the different SO(4, 4) irreducible parts. The
three different classes discussed above correspond to the gaugings induced by the 8.1, the
56! and the 873, respectively. Again, we can infer the structure of these gaugings from

the table of minimal couplings

MV | 8.2 10 280 82
gt | 871 +5611 871 871 +56;! 8% (3.65)
8—1 8+3 8+1 8+1 + 56+1 8—1 + 56—1

where again the top row and the left column represent the SO(5,5) generators and the
vector fields of the maximal theory, respectively, and we have depicted their mutual
couplings by the various SO(4, 4) components of the embedding tensor according to (3.1).
The structure of the deformed p-form tensor hierarchy can be illustrated by explicitly
branching the matrix #4

eAM ‘ 1—2 80 1+2
87T 87 RIT+56/T 8.7 (3.66)
871 | 8t 871 +561 873

which plays the role of the intertwiner between vectors/2-forms and 2-/3-forms, respec-
tively, cf. (3.14). Truncation to the half-maximal theory coupled to 4 vector multiplets
corresponds to projecting out the 8 vector fields and the 82 two-forms, in the bosonic
sector. Next, we describe the two classes of gaugings of this theory triggered by the 83
and 8!

Let us first consider the gaugings induced by the 8. As its square does not appear
in the decomposition of the quadratic constraint 10 4+ 126. + 320, a gauging induced
by such an embedding tensor ¥ is automatically consistent. According to (3.65), it
gauges the 8, shift symmetries, while (3.66) shows that it induces a Stueckelberg type
coupling of the form F,,* 4+ 9*B,,. Alternatively, we may consider the gaugings induced
by the component 8;1. Again, one can verify that its symmetric square is not part of
the quadratic constraint, thus we obtain another viable class of gaugings, parametrized
by a 9. According to (3.65) these in particular gauge the R™ shift symmetry. Note
however, that 8% and 8! cannot be switched on simultaneously, but lead to a quadratic
constraint of the form ¥(®9® = 0. This is in line with the occurrence of corresponding
6-form potentials in the same representations [17, 18, 19].

The 4 vector multiplets in these theories can be consistently truncated to obtain the pure
half-maximal theory [23]. It is well known that there exists an SU(2) gauged version
of this theory with an additional massive deformation parameter. The SU(2) gauge
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group is the non-chiral diagonal subgroup of the SU(2) x SU(2) isomorphism group of
the N = (1,1) Poincaré superalgebra. It is interesting to determine if and how this
theory can be embedded in the gauged maximal theory. To this end, considering the
gaugings induced by the 813 discussed above, upon a consistent truncation to the pure
half-maximal theory, the shift symmetries and the associated vector fields 8, are projected
out and what remains is precisely Romans’ massive deformation. In this theory, the only
effect of the gauging in the bosonic sector is the Stueckelberg type coupling and the scalar
potential, the mass parameter m corresponding to a fixed component within ¥*. Thus,
we are able to show how Romans’ massive deformation of the pure half-maximal theory
can be embedded into the maximal theory where it is a true gauging of shift isometries.

The SU(2) gauging with mass parameter set to zero is certainly expected to arise in a
suitable truncation as well. In fact, there exists a variant of Romans’ theory [28, 29]
emerging in a generalized Kaluza-Klein reduction of D=11 supergravity on K3 x R, with
all 4 vectors abelian, which should also be embeddable in our gauged maximal supergrav-
ities. However, the embedding of Romans’ theory with the gauge coupling constant and
mass deformation parameter switched on simultaneously is far from obvious. Indeed, such
an embedding may even be impossible for the simple reason that the quadratic constraints
encountered in gauging of the maximal theory are far more stringent than what is required
in gauging of the half-maximal theory, and therefore there may be more solutions to the
gauging problem starting from the latter one. In fact, a very simple example of this phe-
nomenon arises in seeking a truncation of Romans’ theory to an N = (1,0) supergravity
that maintains any gauging at all. One quickly finds that this is not possible, and indeed
this is the case for the variant of the Romans’ theory as well. On the other hand, a U(1)
gauged N = (1,0) supergravity does exist in its own right, and it is constructed directly
in the N = (1,0) supersymmetric setting [30, 31].

In conclusion, it would be highly interesting to see, which gaugings of the half-maximal
theory, or indeed minimal theory, with or without matter couplings, can be lifted to the
maximal gaugings and which of their solutions may be embedded. We leave these and
related questions for future work.
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A Notations and Conventions

In our conventions:
{%La%/} = 277#!/ ) Nuv = dia‘g<_7+7+7+'+7+>
{Fév FQ} = 27]%173 ) UA7B = diag(+7+7+7+7+7_7_7_7_7_) ) (Al)

where A = (a,a). A convenient representation for I'4 is

I, =1x7, X0y, [y =9 X 1 Xioy (A.2)
with
{YaWmh = 20w, dap = diag(+, +,+,+,+) ,
{va, ) = 264 , 8, = diag(+, 4+, +,+,+) , (A.3)

From the position where they are used, it can be seen that the matrix v is either (v),” or
(7)aa™ = (v)4” 67, depending on what it acts on, and similarly for 4*. The indices (a, &)
on the y-matrices are raised and lowered with d,, and d,;. We use the chirally projected
SO(5, 1) Dirac matrices, such that 7, are symmetric and v, are antisymmetric. Similarly,
we use the chirally projected SO(5,5) Dirac matrices and all (anti) symmetrizations are
with unit strength. Note that there is no need to raise and lower the spinor indices in this
chiral notation. The USp(4) indices are raised and lowered by the symplectic invariant
tensors as: X = QX5 X, = X°Qgs, with Q,50% = —§). The symmetry properties
of the v and I matrices are as follows:

v.C : symmetric , YuwpC 1 antisymmetric
(Va)ap : antisymmetric , (Yab)ap © Symmetric
(Va1 Yayoms ) ap © symmetric ,  (Yunyp)ap @ antisymmetric (A.4)

The SO(5) v-matrices satisfy the identity
(V) (v")5" = 268268 + 2Q4, Q% — 5560 . (A.5)
Note also that any A,g = —Aga, and any S,3 = Sp can be expanded as
A = jtrA+437try"4, (A.6)
S = —%fy“btr yS (A.7)

The matrices VA, and Vaa(A =1,...,16, «a,& = 1,...,4) can be treated as sixteen 4 x 4
matrices V4 and V4. The index A is a chiral SO(5,5) spinor index which is never raised
and lowered but the v and ¢ indices can be raised and lowered as usual.
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Whenever the row and column indices of a matrix are suppressed we will always assume
that the indices are in the order (M),*, with the exception of the chirally projected
SO(5,1) Dirac matrices v, and again chirally projected SO(5,5) matrices v, in which
case they are both up or down. Thus, for example,
Yy = ()’ xs . DY Vax =0 (v)a” (Va)ax;
VMY = A My B VE D Uy V = VO (yirn) 4% Viaa - (A.8)

ad )

B Useful Identities

Proving invariance of the topological term (3.44) under tensor gauge transformations
and showing that its variation takes the fully covariant form (3.48) is quite lengthy and
requires a number of rather non-trivial identities which combine SO(5,5) properties with
the constraints on the embedding tensor 64" . Among the SO(5,5) identities are

0 = ywas¥eon) .
0 = vaeV"™ pys — Y BV pya + v oV A + 49 4N D) -
(B.1)
The following identity hold upon antisymmetrization in indices [ABC:
0 = YeapvLerY" " se + 2vk a3V ryo + Y AV PBYKCD - (B.2)

Another SO(5,5) identity (upon antisymmetrization in indices [ABCD]) is given by:

( )

0 = 107k a7 BrY" ™ cp + 87 M upy rv %k cp + 107 a5V ey M X op

— 107k Ay BrY?™ME op — 499 aryk BEY M5 0p + 47Kk APy BEY?M K cp

(PAB'VLQ)MCD

EFYNKL AB'VQ}MLCD . (B-3)

+ 20"k Ay BEYM * op — 2vk BRYE

PNK KNP

— 2y AE'VQLN BFVMKL cp — 7

We derive this identity by first observing that there must be a relation between this
number of terms with this symmetry structure in the free indices, as a consequence of
representation theory. We then compute the coefficients either by tracing or by using an
explicit representation.

Now we multiply this identity with 9%95 and use the tracelessness vM 45 05, = 0, upon
which this identity reduces to

0 = 9595 (37KAE’YKBF7PQMCD +29M 4V BV i cp — 679 amvi BEY M 0D
+ 0"k asve ey op + vk ey a1 e ) : (B.4)
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Finally we may use the quadratic constraint on # and obtain

0 = 9595 (37KAE7KBF7PQM(JD + 29M a5 VX By Uk op — 69 am Y BEY M  Oop ) ,
(B.5)

a quite strong identity (upon antisymmetrization in indices [ABC D]), which enters the
calculation of the variation of the topological term.
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