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Patrice Abry, Richard Baraniuk,
Patrick Flandrin, Rudolf Riedi, and Darryl Veitch

he complexity and richness of telecommuniea

tions traffic is such that one may despair to find

any regularity or explanatory principles. None

theless, the discovery of scaling behavior in
teletraffic has provided hope that parsimonious models
can be found. The statistics of scaling behavior present
many challenges, especially in nonstationary environ
ments. In this article, we overview the state of the art in
this area, focusing on the capabilities of the wavelet trans-
form as a key tool for unraveling the mysteries of traffic
statistics and dynamics.

Traffic and Scaling

By the term telecommunications traffic or teletraffic we
mean the flow of information, or data, in telecommuni-
cations networks of all kinds. From its origins as an ana-
log signal carrying encoded voice over a dedicated wire or
“circuit,” traffic now covers information of all kinds, in-
cluding voice, video, text, telemetry, and real-time ver
sions of each, including distributed gaming. Instead of
the dedicated circuits of traditional telephone networks,
packet switching technology is now used to carry traffic
of all types in a uniform format (to a first approximation):
as a stream of packets, each containing a header with-net
working information and a payload of bytes of “data.”
Although created by man and machine, the complexity
of teletraffic is such that in many ways it requires treat
ment as a natural phenomenon. It can be likened to a tur
bulent, pulsating river flowing along a highly convoluted
landscape, but where streams may flow in all directions in
defiance of gravity. The landscape is the network. It cen
sists of a deep hierarchy of systems with complexity at
many levels. Of these, the “geographical” complexity or
connectivity of network links and nodes, illustrated in
“Teletraffic: A Turbulent River over a Rugged Land
scape,” is of central importance. Other key aspects-in
clude the size or bandwidth of links (the volume of the
river beds), and at the lowest level, a wide variety of phys
ical transport mechanisms (copper, optic fiber, etc.) exist
with their own reliability and connectivity characteristics.
Although each atomic component is well understood, the
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Teletraffic: A Turbulent River
over a Rugged Landscape

The geographic and topological complexity of the
Internet “infoways” has reached a point that it is
now a significant challenge to provide even rough
maps of the major tributaries. The Skitter program, a
CAIDA (Cooperative Association for Internet Data
Analysis http://www.caida.org/) project, attempts to
provide maps such as the one shown here, tracing
connectivity of hosts throughout the Internet by send -
ing messages out to diverse destinations and counting
the number of links traversed to reach them. Each line
represents a logical link between nodes, passing from
red on the outbound side to blue on the inbound. The
data visible here are only a small part of a large dataset
of around 29,000 destinations.

(Figure reproduced with the kind permission of
CAIDA. Copyright 2001 CAIDA/UC Regents. Mapnet
Author: Bradley Huffaker, CAIDA. The three-dimen
sional rendering is provided by the hypviewer tool.)
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whole is so complex that it must be measured and its
emergent properties “discovered.” Comprehensive simu
lation is difficult.

A key concept in networking is the existence of net
work protocols, and their encapsulation. Let us explain
with an example. The Internet protocol (IP) is used to al
low the transport of packets over heterogeneous net
works. The protocol understands and knows how to
process information such as addressing details contained
in the header of IP packets. However, by itself IP is only a
forwarding mechanism without any guarantee of success
ful delivery. At the next higher level, the transfer control
protocol (TCP) provides such a guarantee by establishing
a virtual connection between two end points and moni
toring the safe arrival of IP packets, and managing there
transmission of any lost packets. On a still higher level,
web-page transfers occur via the hypertext transport pro
tocol (HTTP), which uses TCP for reliable transfer.

The resulting encapsulation “HTTP over TCP over
IP” therefore means that HTTP oversees the transfer of
text and images, while the actual data files are handed
over to TCP for reliable transfer. TCP chops the data into
datagrams (packets) which are handed to IP for proper
routing through the network. This organization offers
hierarchal structuring of network functionality and traffic
but also adds complexity: each level has its own dynamics
and mechanisms, as well as time scales.

Over this landscape flows the teletraffic, which has
even more levels of complexity than the underlying net-
work. Three general categories can be distinguished.

Geographicomplexity plays a major role. Although
one can think of the Internet as consisting of a “core” of
very high bandwidth links and very fast switches, with
traffic sources at the network “edge,” the distances from
the edge to the core vary greatly, and the topology is
highly convoluted. Access bandwidths vary widely, from
slow modems to gigabit Ethernet local area networks,

Although created by man and
machine, the complexity of
teletraffic is such that in many
ways it requires treatment as a
natural phenomenon.

very wide range of time-scales, from microseconds for
protocols acting on packets at the local area network
level, through daily and weekly cycles, up to the evolution
of the phenomena themselves over months and years.

The huge range of time-scales in traffic and the equally
impressive range of bandwidths, from a kilobytes up to
terabytes per second over large optical backbone links; of
fers enormous scope for scale dependent behavior in traf
fic. But is this scope actually “exploited” in real traffic? Is
traffic in fact regular on most time scales, with variability
easily reducible to, say, a diurnal cycle plus some added
variance arising from the nature of the most popular
data-type/protocol combination? Since the early 1990s,
when detailed measurements of packet traffic were made
and seriously analyzed for the first time [14], [15], [21],
we know that the answer is an emphatic “No.” Far from
being smooth and dominated by a single identifiable fac-
tor, packet traffic exhibits scale invariance features, with
no clear dominant component.

For instance, long memory is a scale invariance phe-
nomenon that can be seen in the time seri&4qt) describ-
ing the data transfer rate over a link at time. Other
examples of time series with long memory are the number
of active TCP connections in successive time intervals or
the successive interarrival times of IP packets shown in
Fig. 1.

The philosophy of scale invariance or “scaling” can be
expressed as the lack of any special characteristic time or

and mobile access creates traffic which changes its spatialspace scale describing fluctuations M(t). Instead one

characteristics. Sources are inhomogeneously distrib

uted; for example concentrations are found in locations
such as universities and major corporations. Furthermore
traffic streams are split and recombined in switches in pos
sibly very heterogeneous ways, and what is at one level a
superposition of sources can be seen at another level, closel
to the core, as a single, more complex kind of “source.”
Offered trafficcomplexity relates to the multilayered
nature of traffic demands. Users, generating web brows
ing sessions for example, come and go in random patterns
and remain for widely varying periods of time, during
which their activity levels (number of pages downloaded)
may vary both qualitatively and quantitatively. The users’
applications will themselves employ a variety of protocols
that generate different traffic patterns, and finally, the un
derlying objects themselves, text, audio, images, video,

10*

200 400 600 800 1000 1200 1400 1600

have widely differing properties.

Temporalomplexity is omnipresent. All of the above
aspects of traffic are time varying and take place over a
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1. A series of interarrival times of TCP connections, showing
highly detailed local structure as well as long memory.
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needs to describe the steady progression across scales. In

the case of traffic such a progression has been found empir
ically and has lead to long memory models and more gen
erally to models with fractal features, as we will explore.
The scale invariant features of traffic can be thought of
as giving precise meaning to the important but potentially
vague notion of traffic burstiness, which means, roughly, a
lack of smoothness. In very general terms, burstiness isim
portant because from the field of performance analysis of
networks, and in particular that of switches via queueing
theory, we know that increased burstiness results in lower
levels of resource utilization for a fixed quality of service,
and therefore to higher costs. At the engineering level, ser
vice quality refers to metrics such as available bandwidth,
data transfer delay, and packet loss. The impact of scale

It is important to distinguish between two canonical
meanings of the term burstiness, which have their coun
terparts in models and analysis. Again let us take “traffic”
to be the data rateY (t), nominally in bytes per second,
over a link at timet. One kind of burstiness arises from
dependencies over long time periods, which can be made
precise in terms of the correlation function ofY (t) (as
suming stationarity and that second order statistics exist).
As shown in “Temporal Burstiness in Traffic,” such tem
poral burstiness was explored when scaling was first
found in packet traffic. More precisely, the well-known
long-range dependent (LRD) property of traffic is a phe
nomenon defined in terms of temporal correlation,
whose network origins are now thought to be quite well
understood in terms of the paradigm of heavy tails of file

invariance extends to network management issues such assizes of requested objects, which causes sources to trans

call admission control, congestion control, as well as peli
cies for fairness and pricing.

Temporal Burstiness in Traffic

mit over extended periods [36].

A second kind of burstiness describes variability, the
size of fluctuations in value or amplitude, and
therefore concerns small scales. It refers to the
marginal distribution of Y(t), as character

ere, we present an analysis of a standard trace of Ethernet traf

fic, “pAug” from [14]. An entry Y( K of this time series represents
the number of bytes observed on the Ethernet at Bellcore during the
kth time slot of duration 12 ms of the measurement. Denote by
Y™ the aggregated series of level m; for example
Y@ (YY) Y2 P/ 3representsthen the average traffic ob-
served in time slots of duration 3 . Through this averaging operator,
scale invariance can be illustrated in a simple but powerful way. From
top to bottom, the first 512 points of four series are plotted:
YR YOk, YR, YCE(R, and YO (K, with  varying from

12msto 12*8*8*8 ms,or6.1s.

ized, for example, by the ratio of standard de
viation to mean if this exists, as the local
singular behavior of multifractal models (de-
scribed in the next section), or alternatively as
a heavy tail parameter of the distribution of
the instantaneous traffic load in the case of in-
finite variance models. ‘Amplitude Burstiness
in Traffic” illustrates this latter case for the
time series of successive TCP connection du-
rations, derived from measurements taken
over a 2 Mb/s access link, made available at the

University of Waikato [22]. Even when an ap-
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parently stationary subset is selected, the vari-
ation in value or amplitude is very significant
and highly non- Gaussian. Marginals of other
time series do not always yield such extreme
power-law tails; however Weibullian or
log-normal behavior is more common than
Gaussian, unless the data has already been
highly aggregated or if scales above a few sec
onds are examined.

The two types of burstiness just described
are quite different. However, often it is con
venient to work not with a stationary series
like Y (t), but with its integrated or “counting
process” equivalentN(t), which counts the
amount of traffic arriving in [0, ]. It is then
important to bear in mind that the statistics

The decrease in variability with increased smoothing is very slow,

consistent with

vary™] Qm ),

the so-called “slowly decaying variance” of long memory proce
A wavelet analysis of this series appears in Fig. 7, middle

0.4 (0,1)
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of N(t) are a function both of the temporal
and the amplitude burstiness of the rate pro
cessy (t).

The next step in this introduction to scaling
in traffic is to draw attention to the fact that, at
though at large scales (seconds and beyond) as
tonishingly clear, simple, and relatively
well-understood scaling laws are found, the

SSes.
plot.
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Gnsider a particular time series derived from Internet data, the durations (in seconds) of successive TCP connections
ur(k), k=1,2:-175223, for connections beginning during a 6.4 h-long subset of a much larger trace. The subset was
selected for apparent stationarity across a range of criteria.

10* Successive TCP Durations Log - Histogram
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Part (a) shows the time series. Gaussian models can provide in some cases reasonable approximations to traffic
traces, but certainly not here. Indeed, the sample standard deviation to mean ratio is 12 that, given the natural con-
straint of positivity for the series, is decidedly nonnormal!

The marginal of the series is examined in (b), in a log-log plot of the sample complementary probability distribution func -
tion P(dur) x The roughly straight line strongly suggests a heavy power-law-like tail, with an index that is close to the
boundary of infinite variance. The horizontal lines highlight, from top to bottom, the 20, 90, and 95% quantiles, respectively.

same cannot be said at small scales. This is true, for exam-feature of traffic data. Therefore, a key motivation for in-
ple, of the interarrival time series shown in Fig. 1, adiscrete vestigating such scaling is to help identify generating
series giving the successive intervals (in milliseconds) be- mechanisms leading to an understanding of their root
tween the arrival of new TCP connections. When exam- causes in networking terms. If, for example, it were
ined with the naked eye this series may be accused of known that a certain feature of the TCP protocol was re-
having long memory, with a marginal slightly deviating sponsible for generating the observed complex scaling
from Gaussianity. In reality, in addition to long memory, it ~ behavior at small scales, then we would be in a position to
contains much nontrivial scaling structure at small scales perhaps eliminate or moderate it via modifications to the
(see Fig. 7) which is suggestive of a rich underlying dy ~ Protocol. Alternatively, if a property of certain traffic
namics of TCP connection creation. Investigation of such ~source types was the culprit, then we could predict if the
dynamics is beyond the scope of this review, however
knowledge of its scaling properties lays a foundation for an
informed investigation. o T
The fact is that much work remains to be done to | 8000f
achieve a clear understanding of traffic scaling over small | 7009
scales, which is characterized by far higher variability,
more complex and less definitive scaling laws, and the-ne
cessity of dealing with non-Gaussian data and hence-sta | 5000
tistics beyond second order. The high variability on small
scales is shown in Figs. 2 and 3 for a publicly available
trace collected at the Lawrence Berkeley Laboratory. The | 3000
time series of the number of TCP packets arriving per
time interval has very irregular local structure, as seen in
the blowups in the lower plots. While large-scale behav 1000
ior such as long memory matters for many network de 0
sign and management issues, understanding small-scale 415 4.2 425 4.3 4.35 4.4 445 4.5 455 4.6 4.65
behavior is particularly important for flow control, per-
formance, and efficiency. In terms of network perfor 2. A snap shot (seconds 415000 470 000 ) of the LBL trace of
mance, variability is (almost) always an undesirable  packet arrival per time depicting erratically varying regularity.
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scaling would persist in the future or fade away as the ha
ture of telecommunications services evolve.

To conclude this introduction to scaling in telecom
munications, we point out that in many series derived
from traffic data, in particular TCP/IP traffic and includ-
ing the data in Fig. 1 (see Fig. 7, right most plot and “Ex
tracting an Infinitely Divisible Cascade”), a recurring
feature is the existence of a characteristic scale at around 1
s, which separates the now classic “monoscaling” at large
scales indicative of long memory, from the more complex,
but none-the-less scaling behavior, at small scales.
Multifractal models are one possible approach for the lat
ter domain, whereas infinitely divisible cascades offer the
possibility of integrating both regimes in a single descrip
tion. In the following two sections we will describe these
models and the associated traffic phenomena in detail; to
gether with wavelet based statistical methods which en
able them to be effectively explored.

Scaling Models

The notion of scaling is defined loosely, as a negative
property of a time series: the absence of characteristic
scales. Its main consequence is that the whole and its parts
cannot be statistically distinguished from each other. The
absence of such scales means that new signal processing
tools are needed both for analysis and modeling, while
standard techniques built on characteristic times (for ex-
ample, simple Markov models) must be abandoned. This
section provides an introductory review of various mod-
els used to give flesh to the spirit of scaling.

Self-Similarity

The purest formal framework for scaling is undoubtedly
that of exactly self-similar processes. Self-similarity (see
Fig. 4 for an illustration, “Self-Similar Processes with Sta
tionary Increments” for a technical definition and [33]
for further information) means that the sample paths of
the process X(t) and those of a rescaled version

32

3. Zooms: (a) 429,500-432,000, (b) 463,000-466,000, and
again: (c) 463,700-464,100. This demonstrates the existence
of long memory as well as the interwoven coexistence of
smooth and bursty periods at all times.

IEEE SIGNAL PROCESSING MAGAZINE

4. Statistical self-similarity. A dilated portion of the sample path
of a self-similar process cannot be (statistically) distinguished
from the whole.
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c" X(t/ ¢, obtained by simultaneously dilating
the time axis by a factorc 0, and the amplitude
axis by a factorc™ , cannot be statistically distin
guished from each otherH is called the self-simi
larity or Hurst parameter. Equivalently, itimplies
that an affine dilated subset of one sample path
cannot be distinguished from its whole. It is
therefore not possible to identify a reference scale
of time, and thus there is no such reference scale
Exact statistical self-similarity thereby fulfils the
intuition of scaling in a simple and precise way.
Self-similar processes are, by definition,
nonstationary, as can be seen from (2). The most
important subclass, namely self-similar processe:
with stationary increments {H -sssi processes) are
nonstationary in a very homogeneous way. They
can be thought as the integral of some stationary
process. Fractional Brownian motion is the unique
Gaussian self-similar process with stationary inere
ments and is the most widely used process to
model scaling properties in empirical times series.
For example it has been used to model the data
shown in “Temporal Burstiness in Traffic,” more
specifically to model the variability of the number
of Ethernet bytes in the intervalQ, t]. Practically,
self-similarity is usually tested for and analyzed
through its increments and the relation (6).

Limitations of Self-Similarity

Self-similar processes with stationary increments,
and more specifically fractional Brownian mo-
tions, are very attractive models to describe scal-
ing because they are mathematically well defined
and well documented. In addition, their great ad
vantage lies in being simple and parsimonious:
each of their properties is defined and controlled
by the same parameteH . Their main drawback
however, lies in them being simple. It is unlikely
that the wide variety of scaling encountered in
data can be modeled by a process with a single pa

Self-Similar Processes
with Stationary Increments

process X( ) is said to be self-similar, with self-similarity
parameter H O, if

{X()t RY{" X1 % tR,

d

c O, Q)

where ° means equality for all finite dimensional distribu -
tions. A major consequence of this definition is that the mo -
ments of X, provided they exist, behave as power laws of
time:

EXO)" EPIE™. @

For applications, one usually restricts the class of self-simi
lar processes to that of self-similar processes with stationary
increments (or H-sssi processes). A processX is said to have
stationary increments Y( , 9 if

YO, Y(xr Xt) QttR{® Op ©)

or, in other words, if none of the finite dimensional laws of
Y( ,9? dependon t.

For aH-sssi processX, the self-similarity parameter neces-
sarily fallsin0 H 1and the covariance function, when it ex -
ists, takes a specific, unique, and constrained form:

EX()X B o [f" 18" [0 B 7 gl

Moreover, it can be shown that the autocovariance function of
the increment process Y reads:

EYOOY(t 3 o [s 7 s [ 28" “

H

The self-similarity of the process X is transferred to its incre-
ments insofar as

YO, 0" 1 ¢t ), (5)

EVC.Of Bt ) of T )

rameter. The model is overly rigid in several respects.
First, definition (1) is valid for all positive real ¢ which
means that the scaling exists for all scales or dilation{fac
tors ranging from0to . Equivalently, one can say, look
ing at (5), that the scaling relation holds whatever the
value of the scaling factor. In actual real world data, seal
ing can naturally exist only within a finite range of scales
and will typically only be approximative. Moreover, one
may find evidence for scaling only in the asymptotic re
gions, i.e., only within the very large (or the very small)
scales. Second, self-similarity implies (see (2)) that scall
ing holds for each moment orderq (provided it exists),
with scaling exponentgH . In empirical data, moments of
different orders may have scaling exponents that are not
controlled by a single parameter, and some moments may
simply not exhibit scaling at all. Even worse, the empirical
moments might be misleading when the theoretical mo

MAY 2002

ments of the true distribution do not exist at all, as is the
case with stable laws. In the case of traffic data, most often
scaling models with a single parameter are appropriate at
large scales, but at small scales more parameters are re
quired. In rarer cases, definitive evidence for scaling is
lacking altogether. Infinite moments can play a role for
quantities such as TCP connection durations, butin term
of scaling models, those most commonly used are of the
finite (positive) moment type.

The remainder of this section details more flexible
models that enable such deviations from exact self-simi
larity. We first explore those that concentrate on scaling in
second-order statistics, that is, involving autocovariance
functions and spectra or power spectral densities. RPro
cesses whose spectra obey a power law within a given
(and sufficiently wide) range of frequencies (scales) are
often referred to asl/ f processes:
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Long-Range Dependence

I_(:t {Y(),t R} denote a second-order stationary
tochastic process andr, and , its covariance
function and spectral density. We will say that the pro-
cess{Y(),t R} is LRD if either

r()~cl| . (@) (@)
or

X)~¢l|, G (03, 8
with ¢, 2(2) ()sif(1 ) / R ¢ .In most practi-

cal situations, r, is regularly varying or even asymptoti
cally monotone, in which case these relations are
equivalent.

With this definition, the autocovariance function
decreases so slowly, the past is so weighty, that its sum
diverges, i.e., foranyA 0O,

()d

() Coll, ||

m M

The two special cases where the scale range is semi-infi-
nite, either at small frequencies, , 0 (equivalently,
large scales) or at large frequencies,, (small
scales), define two interesting models, namely those of
long- range dependent processes (see “Long-Range De-
pendence”) and monofractal processes (see “Local
Hoélder Regularity™).

Long-Range Dependence

Long-range dependence (LRD) or long memory [5]is a
model for scaling observed in the limit of the largest scales
and is defined in terms of second-order statistics (see
“Long-Range Dependence”). LRD is usually equated
with an asymptotic power-law decrease of the
autocovariance function, which should be compared to
the exponential one encountered in more classical models
(like ARMA processes). An exponential behavior im
plies, by definition, a characteristic time while a power
law, in contrast, is naturally scale invariant.

All processes with exact self-similarity exhibit LRD.
Indeed, let X be a H-sssi process with finite variance.
Then it follows from (6) that, asymptotically, the
covariance function of its incrementy¥ reads

ry (90 EY(t 3Y() ?*H2H )1 ")

S
which shows that, for1/2 H 1, the increments are
LRD processes with 2H 1

LRD is often theoretically and practically studied
through the technique of aggregation. As explained and
illustrated in “Temporal Burstiness in Traffic,” aggrega
tion consists of studying windowed average versions of
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the data as a function of the window widthT. The
covariance functions of the aggregated LRD processes
converge to the form given in (4) for the fractional
Gaussian noise (the increment process of fBm), which is
itself invariant under aggregation. This explains its ea
nonical role in analyzing long-range dependence in em
pirical time series. The variance of the aggregated LRD
process also behaves as a power law of the aggregation
length with an exponent controlled by (“Temporal
Burstiness in Traffic”). This property provides the basis
for simple time-domain estimators for the exponent (see,
e.g., [34]). For traffic data, LRD models have been the
most widely used. For example both the Ethernet data of
“Temporal Burstiness in Traffic” and the TCP data of Fig.

1 exhibit strong LRD.

Fractal Processes
Local Holder regularity (see “Local Holder Regularity”)
describes the regularity of sample paths of stochastic pro

Local Holder Regularity

et{X(),t R denote asecond-order stationary sto-
hastic process, whose autocovariance function

has the cusp-like behaviorEX} Xt )~
(2/29(1 €|*) (with h O)when 0. This implies
that small step increments of X satisfy

Xt ) xx~ f o )

This relation gives an information on the regularity
of Xsince the condition h 0guarantees mean-square
continuity, whereas differentiability can only be
achieved if h 1 In other words, within the range
0 h 1 sample paths of X are everywhere continuous
and nowhere differentiable.

The description of such “wild” trajectories can be
made more precise by referring to Holder exponents.
A signal X( ) is said to be of Holder regularity h 0in t,
if one can find a local polynomial R, () of degree
n h and a constant K 0 such that

IX(9) R(X K|t §"Inthecasewhere0 h 1 the
regular part of X(9) reducestoR, () X ), leading to
the simpler relation, based on increments only

Xt ) XD| K]

and the largest such value of his the H6lder exponent.

Holder regularity is also closely connected to the
algebraic behavior (9) of the increments variance,
and even in the case of nonstationary processes, pro-
vided they have stationary increments. Stochastic
processes that present a local Holder regularity that is
constant along their sample paths are often referred
to as monofractal processes. More sophisticated situ-
ations can be encountered, where the Holder expo -
nent is no longer unique, but can vary from point to
point. This is especially the case in multifractal situa-
tions (see “Multifractals”).

h
’

(10)
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cesses by means of a local comparison against a power-

law function and is therefore closely related to scaling in
the limit of small scales [9]. The exponent of this
power-law, h(t), is called the (local) HOlder exponent
and depends typically on both time and the sample path
of X. Processes for which the Holder exponet(t) is the
same for allt, such as fractional Brownian motion, ex
hibit constant regularity along their sample paths; they
are often referred to as monofractal processes. The
Holder exponent h(t) provides a measure of local
path-regularity or roughness which generalizes the no
tion of differentiability: sample paths exhibit more and
more variability ash is decreased fronl to 0. This is
clearly seen for fractional Brownian motion in the top
row of Fig. 5.

While a rigorous proof is hard, it is easy to convince
oneself of the monofractal character of fractional
Brownian motion exploiting its H -sssi property com
bined with the centered nature of the Gaussian marginals.
Indeed, from (8) the autocovariance of the incrementg
of a second orderH -sssi procesX behaves as
2 ‘ ‘2 H

gyl Exe ) x|

which is independent oft. In “Local Holder Regularity”

we find in (9) an asymptotically equivalent property for
some stationary processes with a certain autocorrelation
function. Let us add the assumption that our procesX is
Gaussian, i.e., restricX to fractional Brownian motion.
Since the Gaussian distribution is well centered, meaning
that most samples are within a few standard deviations
from the mean, the netresultis that the oscilla-

The wavelet transform closely
reproduces the scaling properties
that exist in data, be it
self-similarity, long-range
dependence, or monofractality.

enough regularity, the processX is said to be
multifractional or, when Gaussian, locally self-similar.
This meansthatlocally around time, X(t) is very much
like a fBm with parameterH h(t) (see [25] for de-
tails). Such a multifractional model clearly no longer
has stationary increments, since their distributions de
pend by definition on the deterministically changing
h(t). Also such a model is not multifractal in the true
sense: although locally fractal with a varying exponent
h(t), it suffers from two deficiencies. First, the local i
regularity h(t) at a given timet is “deterministic,”
meaning that it is the same for almost all realizations,
whereas it is random for truly multifractal processes.
Second, h(t) varies very slowly or “smoothly” while
true multifractal processes exhibit a full range of differ-
ent valuesh(t) in any time interval, however small. For
these two reasons, multifractional models really aim at
describing a form of nonstationarity. Network traffic,
however, can exhibit rich, true multifractal behavior
(see Figs. 1 and 2).

tions of X over intervals of length are
roughly of the size " / [X?(] . Indeed, it
can be shown that for anyh H (and for no
h H) almost all sample paths satisfy (10) at
eacht ;. Thus, the variability (oscillations) of
fBm are of equal strength everywhere, cen
firming its monofractal character which it is
entirely controlled by H . Another heuristic ar
gument uses self-similarity to rescale time and
space throughX(ct) c" X ) (see (1)) with
the same ratio between time and space at “all”
times. Similar as for long-range dependence,
also local Hdélder regularity is often studied
through the increments of the process, accord
ing to relation (9).

Moving beyond monofractality, one could
think of allowing the exponent h in relation
(9) to be a function of time:

1 Sample Path

50 Sample Paths

Ext ) xm~ay 1.

H=0.25 H=0.75

1 Sample Path

H=0.25 H=0.75

50 Sample Paths

Such a process clearly could describe data
which have locally fractal properties which
evolve slowly and fairly smoothly over time.

If 0 h(t) 1lisa deterministic function with
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5. Hurst and Hdlder in fractional Brownian motion. The larger the Hurst expo -
nent H, the smoother the sample path (top row). The Holder characterization
of roughness can be visualized by binding together a number of realizations

at some arbitrary point, and by superimposing (in red) the right-hand side of
(10), with h  H and K 3 (bottom row).
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Multifractals
When the regularityh(t) is itself a highly irregular function

of t, possibly even a random process rather than a constant

or a fixed deterministic function, the procesX is said to be
multifractal. In such situations, the fluctuations in regularity
along paths are no longer described in terms of a function
h(t) but through the so-called multifractal spectrunD (h)
(see “Multifractals” and [9] and [29]). Teletraffic time se-
ries, for example those in Figs. 1 and 2, in fact often have-lo
cal Holder exponentsh(t) which change erratically with
location t. Such behavior is loosely termed multifractal. A
model class which is rich enough to capture multifractal
properties is that of multiplicative cascades. One of the most
celebrated examples is that of the binomial casca¥e de-
fined here for convenience of0, ] through:

Multifractals

Lit{X( ), t R} denote a stochastic process. The le
al Holder exponent h(9 of the process at time sis
a random variable defined pathwise as the largest
h Osuchthat|X() R(Y K|t B'.Here,P(}isthe
local polynomial of degree n  h asin “Local Holder
Regularity.” If the Taylor polynomial of degree n ex-
ists, then this polynomial is necessarily that Taylor
polynomial; but in general the path of X might not
have n derivatives.

In the case where the local polynomial P, is con-
stant then h(9 is the largest h such that

X(s ) XX¥

holds. Note that h(9 may very well be larger than one,

as is the case with all cascades. A simple argument
yields [31] the more useful dual statement: if the larg -

est h satisfying (10) is noninteger, then the local poly -

nomial P, is necessarily constant and h(s can be

computed using (12).

Fig. 5 demonstrates the simple scaling structure of
fractional Brownian motion; for almost every path and at
any time instance one finds the same local scaling expo-
nent: h(f) H. In real-world data such as network traffic
the local scaling h(t) changes erratically and randomly in
time. The multifractal spectrum D of a process X provides
amean to capture this complexity; itis defined path-wise
and is, thus, random. Denoting the Hausdorff dimension
of a set E by dim( B the spectrum is

D(a): dm{t R I} 2 .

The multifractal spectrum of cascades and self-
similar processes is the same for almost all paths. In
particular, for fBm it consists of only one point:
D(H) 1 whileit has aninverted-U shape for multipli -
cative cascades.

While estimating D from traces is very hard, there
exist almost sure upper bounds which are easier to es-
timate (see “Wavelet-Based Multifractal Formalism”).
For an overview see [31].

K| |" (12)

(13)
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X((2k D/2"Y X2M 2" CMIEX(k X 2
X(k/ 2)

n1

ML (X X(0)

i1l
(11)

Here the M‘k are independent positive random vari
ables called the multipliers such that “siblings” add up to
one: M, ' M. 1 Thus, (11) “repartitions” the in-
crements ofX iteratively. SettingX(Q) Oand X (1) 1(for
convenience) defines the process §B ] . This is a partic
ular incarnation of a general approach to the generation
of multifractal processes, namely the iteration of a mutti
plicative procedure. Note that all increments are positive
and that the aspect ratios, given by th1, , depend ex
plicitly on the location where the rescaling'is done. Thisis
in stark contrast to the scaling of fractional Brownian me
tion and the relation (5) for self-similarity and is the most
immediate reason for the multifractal structure of cas
cades. An illustration of this construction procedure as
well as an example of resulting sample path is shown on
Fig. 6. Comparing by eye with the network time series of
Figs. 1 and 2, a clear visual agreement is evident. A disad
vantage of binomial cascades is that they are not even sec-
ond order stationary. Stationary multifractal models are
only just appearing in the literature [20].

One of the major consequences of multifractality in
processes lies in the fact that quantities usually called par-
tition functions present power-law behaviors in the limit
of small scales:

1/ q
S(@  [M(k3,)]
k1
1/

IX(k 1) XK "¢ 1 .0
€1 (14)

For instance, for the binomial cascade above, assum
ing that all multipliers in (11) are identically distributed,
(14) holds (and also (19)), at least for lags 1 2" and
with (¢ log EM 9. For processes with stationary incre
ments, the time averageS (q/ can be seen as estima
tors for the statistical averageg X (9| °. Therefore,
relation (14) above is highly reminiscent of the funda
mental equation (2) implied by self-similarity. A major
difference, however, lies in the fact that the exponen{o)
need not a priori follow the linear behavior gH of
self-similarity. In other words, to describe cascades using
one single exponent or parameter is impossible and an-en
tire collection of exponents is needed. The measurement
of the (g exponents offer, through a Legendre trans
form, a useful way to estimate the multifractal spectrum
(see “Wavelet-Based Multifractal Formalism” and [31]).

Beyond Power Laws
Multifractal scaling offers an extension to self-similarity
insofar as the scaling of moments is no longer governed
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Infinitely Divisible Cascades

If-similarity implies that the probability density func -

ion (pdf) p of the increments X at scale , is a dilated
version of the pdf of those at a larger scale =
p(x) (¥ ) p( A ) where the dilation factor is
unique: , ( / ') ".Inthe cascade model, the key ingre-
dient is that there is no longer a unique factor but a collec -
tion of dilation factors  ; consequently p will result from a
weighted sum of dilated incarnations of p :

X

p(x» G (n)Xp X dn

The function G  is called the kernel or the propagator
of the cascade. A change of variable shows that the defini-
tion above relates the pdfs p and p of the log-incre-
ments In| X | at different scales through a convolution with
the propagator:

p(njx) G (In) p(In[x In ) ¢

1
(G *p)(in ). &

Infinite divisibility implies by definition that no scale be -
tween and plays any specific role, i.e., if scale lies be-
tweenscales and thenG G * G .Thisconvolutive
property implies that propagators can be written in terms of
an elementary function G, convolved with itself a number of
times, where that number depends on  and

G, (In) [G(In )" 7.

Here, G™" denotes n fold convolution of G with itself.

Using the Laplace transformG (g of G, this can be
rewritten as G (9 exp{H q(%) € )}, with
H(g InG(g. Thisyields (compare with eq. (20)): the fol -
lowing relations, fundamental for the analysis [39]:

In X[ HQE) K (16)
In |X|* m@mamp p 17)
H(p) '

A possible interpretation of this relation is that the
function G, defines the elementary step of the cascade
whereas the quantity n( ) n( ) quantifies the number
of times this elementary step is to be applied to proceed
fromscales to .The derivative ofnwith respectto de-
scribes in some sense the speed of the cascade at scale .
When the function ntakes the specificformn( ) In ,the
infinitely divisible cascade is said to be scale invariantand
reduces to multifractal scaling. The exponents (q) asso-
ciated to the multifractal spectrum are then related to the
Laplace transform of the propagator through (g H(9
(see “Infinitely Divisble Cascades”). As detailed in the
text, self-similarity is also included as an even more spe-
cial case. For further details on infinitely divisible cascade,
see [39].

Mo
0 1
1,0
1,2k +1 M1 Mg
0 0.5 1
K =1
2 1,10
2,4k +1 Dy aky +2 Djr2,ak,+3 s 1o Mo Mo Mg
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6. Binomial cascade. (a) Dyadic tree-based construction, (b) first three intermediate stages (values of the measure on coarsest inter-

vals), and (c) a sample path.
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by one single exponentd but by a collection of expe G astheln( / )-fold self-convolution of an elementary
nents. However, it maintains a key feature: moments be  propagatorG , which describes a “unit change of scale.” For
have as power laws of the scales. When analyzing actualcomparison, we note:

data, it may very well be observed that this is not the case,  Self-similarity

see, e.g., [39]. To account for those situations, the ini

nitely divisible cascade (IDC) model provides anextrade B X (9] * ¢] ' ¢ exp dir) (18)
gree of freedom. ) )
The concept of IDCs was first introduced by Castaingin Multifractal scaling
6] and rephrased in the wavelet framework in [4]. “Infi-
Ligely Divisible Cascades” briefly recalls its defin[iti]on, con BXO° ¢ o G &xp)lrm) (19)
sequences, and relations to other models. The central and Infinitely divisible cascade
defining quantity of an IDC is the propagator or kernel
G . Infinite divisibility generalizes the concept of self-simi g x (| ¢ c,exp K M) (20)

larity; it simply says that the marginal distributions at differ
ent scales are related to each other through a simple where the functionn( ) is not necessarilyn , just as the
convolution with the propagatorG; thus,G completely cap function H () is not a priori qH.

tures and controls the multiscale statistics. Leaving details to
“Infinitely Divisible Cascades,” let us be explicit in the case
of self-similarity where the propagator takes a particular
simple form due to (1): G is a Dirac function. In more
precise terms, the distribution at scale is obtained by
convolving the distribution at scale with

G (In) (In  Hin(/ ))). Since the Laplace trans
form reads ass (9 exp{gHIn( / )} we may interpret

Wavelets for Analysis and Inference

We saw from the previous section that diverse signatures
of scaling can be observed both with respect to time (reg
ularity of sample paths, slow decay of correlation furc
tions,...), or to frequency/scale (power-law spectrum,
aggregation, zooming, small scale increments, etc). This

A Wavelet Primer

ol b B dl iR (X

I n contrast to the Fourier transform which analyzes sig-  X() ok

nals in terms of oscillating sinusoidal waves e’ ", the k iio K

38

wavelet transform conducts a local Fourier analysis by
projecting the signal X() onto locally oscillating wave-
forms, referred to as “wavelets.” A wavelet (1) is a
bandpass function which oscillates with some central fre-

quency f,. Scaling (by dilating or compressing) and shift-
ing the wavelet:

LD 27 (27t R

moves its central frequency to 2 'f, and shifts its time cen-
ter by 2'k.
Besides the wavelet

(21)

(1), a wavelet decomposition

 ~~—]
~W
\N

Wavelets from a length-8 Daubechies filterbank.
From top to bottom: (1), 5(t), 5(1).

makes use of a companion low-pass function (1) (referred
to as a scaling function) which can be scaled and shifted in
the same way. Just as a signal can be built up from a sum of
weighted sinusoids, it can be built up from a sum of
weighted scaling functions and wavelets

IEEE SIGNAL PROCESSING MAGAZINE

(22)
The c,( j,. k) are called the scaling coefficients and the
d,(j,k) the wavelet coefficients. The first term recon-
structs a coarse-resolution approximationto X( ). The sec-
ond term adds in detail information at finer and finer
scales (higher and higher frequencies) as | .By care
ful design, the wavelet and scaling functions can be con-
structed to be orthogonal, meaning we can compute the
wavelet and scaling coefficients as simple inner products:

Uik (X ) (iR (X )

As an extension to the band-pass requirement (i.e.,
has zero mean), a further property of any wavelet is its
number of vanishing moments, i.e., the largest number
N 1such that

(23)

t“ () dt 0k OLK,N 1 (24)

There are large families of orthogonal wavelets and
scaling functions. The Daubechies-8 wavelets pictured left
(for which N 4) are but one example.

From a practical point of view, the scaling and wavelet co-
efficients are related by a filterbank. To create c,( j,k),
d,(j,k), we passc,(j 1Kk) atthe next finer scale through
both a low-pass and a high-pass discrete-time filter and then
downsample by skipping every other sample. The filter re-
sponses are elegantly related to the continuous-time scaling
and wavelet functions. This algorithm is applicable also to
discrete-time signals and is extremely efficient (O( n) time to
compute all available scales of a n point signal).
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suggests that to identify and characterize scaling an-ap
proach which combines time and frequency/scale, and
which formalizes properly the idea of a simultaneous
analysis at a continuum of scales, should be taken. In
this respect, wavelet analysis appears as the most ratu
ral framework.

By definition, wavelet analysis (see ‘A Wavelet Primer”
for basics and [18] for a comprehensive survey) acts as a
mathematical microscope which allows one to zoom in
on fine structures of a signal or, alternatively, to reveal
large scale structures by zooming out. Therefore, when a
signal or a process obeys some form of scale invariance,
some self-reproducing property under dilation, wavelets
are naturally able to reveal it by a corresponding self-re
producing property across scales. Moreover, the time-de
pendence of the wavelet transform allows for a
time-localization of scaling features.

In its discrete version operating on dyadic scales, the
wavelet transform (WT) is arigorous and invertible way
of performing a multiresolution analysis, a splitting of a
signal into a low-pass approximation and a high-passde
tail, at any level of resolution. Iterating the procedure,
one arrives at a representation which consists of a
low-resolution approximation and a collection of details
of higher and higher resolution. From the perspective of
more classical methods used for scaling data, iterating
low-pass approximations, at coarser and coarser resolu-
tions, is an implicit way of aggregating data, whereas
evaluating high-pass details, as differences between ap-
proximations, is nothing but a refined way of comput-
ing increments (of order N for a wavelet with N
vanishing moments). Combining these two key ele-
ments makes of multiresolution a natural language for
scaling processes.

As explained earlier, self-similarity is the canonical ref
erence model for scaling behavior. Self-similar processes
with stationary increments are traditionally analyzed
through their increments, however, reasons for resorting
to wavelets are at least threefold:

1) Scaling Due to its built-in scaling structure, the
wavelet transform reproduces any scaling present in the
data, with a geometrical progression of all (existing) mo
ments across scales, as

E‘dx(j,k)‘q E‘dX(Q Hq Qla(H 1/2) 25)

2) Stationarization Due to the bandpass nature of ad

Wavelet Analysis of Second-Order Scaling

S?Iing processes (be they LRD1/ f-type, mono- or
ultifractal) share the property of exhibiting
power-law spectra in some frequency range, whence
the idea of estimating scaling exponents from a spec-
tral estimation. The wavelet transform offers an alter-
native to classical spectrum analysis [2], based on a
power-law behavior of the wavelet detail variances
across scales
Eld,(j.k)f ~C2', (26)
reminiscent of (25) with g 2 for self-similarity, (28) for
long-range dependence, and (30) for monofractality.
These are all suggestive of a linear relationship
log, d.(j,k)>~ | Cinalog-log plot.

The stationarization property together with the al -
most decorrelation property (see points 2 and 3 in
text) justify that the variance involved in (26) can be ef -
ficiently estimated on the basis of the simple empirical
estimate:

L dyGke,

1

J. (27)
jk
where n; is the number of coefficients available at oc-
tave j. The graph oflog, ; against j (together with
proper confidence intervals) is referred to as the (sec-
ond-order) logscale diagram (LD) [3]. Examples are
given in Fig. 7. Straight lines in such diagrams can be
understood as evidence for the existence of scaling in
analyzed data, while the range of scales involved gives
information on its precise nature (self-similarity, long
memory). Estimation of scaling exponents can be car-
ried out from such graphs via weighted linear-fit tech -
niques (see [3], [38], and [1] for details). The possibility
of varying the number of vanishing moments of the
mother wavelet bring robustness to the analysis pro -
cedure against nonstationarities.

N being the number of vanishing moments of the wavelet.

Under the mild condition N H 1/ 2, global LRD exist-

ing among the increments ofH -sssi processes can thus be

turned, at each scale, into short-range dependence.
Another advantage is that, due to the frequency inter

pretation of wavelets, wavelet analysis can serve as a basis

for useful substitutes for spectral analysis. Indeed, it can

missible wavelets, sequences of wavelet coefficients canbe shown that for stationary processeX with power

be seen as (filtered) increment processes at different

spectrum , ), we have

scales: this makes the analysis extensible to nonstationary

processes with stationary increments (liké -sssi pro

cesses), resulting in stationary sequences at each scale.
3) Almost decorrelatiotWhereas direct manipulation

of LRD processes is hampered by slowly-decaying corre

lations, it turns out that [11], [37]

Ed, (J,Rd (i k M~ €)f [m*" 2 | m
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Ed, (i,R*  O)2] (29 *d.

When in addition X is along range dependent process,
this yields

Eld (1K~ c2/, | 28
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for which Holder exponents h(t) remain constant along
The wavelet transform rep|aces sample paths, we have the following relation:

one single poorly behaved time _
g p y E‘dx(j,k)‘z"‘ C 2i(zh 1), ] ,

series by a collection of much (30)
better behaved sequences to be compared to (25) and (28).
amenable to standard statistical To summarize, the wavelet transform closely reproduces

the scaling properties that exist in data, be it self-similarity,
long-range dependence, or monofractality, and, at the same
time, replaces one single poorly behaved (nonstationary,

. . LRD) time series by a collection of much better behaved se
o o e S s 00eces oy SRD) menabl o andad stsica
N /2 tools. There_fore, secpnd—order statlstlc_al spahng properties
' . . can be efficiently estimated from marginalized scalograms
Wavelet coefficients are also useful to study Holder . ared wavelet coefficients averaged over time), circim

regularity. This relies on the fact that ifX is Holder con-

_ O venting the difficulties usually attached to scaling processes.
tinuous of degreeh(t) att then the wavelet coefficients &t Using this idea, “Wavelet Analysis of Second-Order

tools.

decay as Scaling” details the steps leading to an estimation of the-ex
ponent of second order scaling, in a log-log plot known as
ld(j N 2i(h(H) 12) (29) the logscale diagram.
Examples of such second-order analysis are given in
as the interval§k2’,(k 227 close inont (j ). Un- Fig. 7 for two synthesized time series and three series

der certain conditions, the bound is asymptotically tight from traffic data, as detailed further in the caption. The
[13], [7]. For monofractal processes, that is for processes plots grouped in the box are two different time series ex-

9 -5 32
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y(j) = loga(mu;) - 9(J))

7. Second-order logscale diagrams. For each of five different time series, scaling behavior is identified over the range fitted in red, as
described in “Wavelet Analysis of Second-Order Scaling.”(a) and (b): a LRD series with scaling at large scales, and a self-simila r pro-
cess, where the scaling is seen across all scales. (c) and (d) are from the same “pAug” Ethernet trace as “Temporal Burstiness in  Traf-
fic.” Left: discrete time series of IP packet interarrival times showing LRD; right: the bytes per bin data of “Temporal Burstiness in
Traffic,” showing empirical self-similarity. Far right plot: Interarrival time series of TCP connections (see Fig. 1), showing an abrupt
change point separating two apparently different scaling behaviors, at a characteristic time scale of about 1s. These two scali ng re-
gimes can be linked via the IDC model.
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tracted from the same celebrated Ethernet trace [14] dis
cussed in “Temporal Burstiness in Traffic.” Series from
this trace provided one of the first clear indications of
long-range dependence in traffic. The advent of wave
let-based analysis added precision and completeness to
the study of the empirical scaling, and to the correspord
ing measurements of the Hurst parameter [3], [38], as
well as estimates of the prefacto€ (28), of importance

in applications. Crucially, it also helped settle controversy
as to the interpretation of the discovery, by showing that
the observed scaling in the time series was not the result
of corrupting nonstationarities, but actually corre
sponded to long-range dependencies.

The diversity of behavior in the examples of Fig. 74l
lustrates an important advantage of a semiparametric
analysis framework, such as the wavelet approach-de
scribed here. The analysis need not make any a priori as
sumption about the range of scales over which scaling
may exist. The range is rather inferred from the analysis it
self, leading to an identification of the scaling type, such
as LRD at large scales and/or multifractality at small
scales, prior to any estimation phase. Indeed, the
rightmost plot shows two different scaling regimes for a
series derived from Internet data, which (from a purely
second order viewpoint) requires two independent esti-
mations. In contrast, parametric methods can easily give
very misleading results if the data is not close to the as-
sumed model class, making them unsuitable for the ex-
ploration of real, and complex, data. The comments of
the previous paragraph could be expressed as “robustness
with respect to model class.” Another form of robustness
enjoyed by wavelets is their insensitivity to deterministic
trends which may be superimposed onto a process of in-
terest, with undesirable consequences. These include in
validating the stationarity property of the LRD process
under study or mimicking LRD correlations when added
to a short-range dependent process [1]. Wavelets are a
versatile solution to this crucial issue, since they offer the
possibility of being blind to polynomial trends. Recall
that any admissible wavelet has zero mean. This is equiva
lent to having a zeroth-order vanishing moment, or in
other words, to be orthogonal to constants. In factN
vanishing moments implies that the wavelet is blind to
polynomials up to order p N 1. Trends which are
“close” to polynomial can be effectively eliminated in this
manner [3], and the advantage of being able to do so
without even testing for their presence is an important
one when making sense of real data, and in particular
when trying the distinguish nonstationarity from scaling
behavior. Building on the advantages of the wavelet ap
proach, a statistical test for the constancy of a scaling ex
ponent can be defined [40] which helps resolve this
difficult issue.

Finally, the analysis of scaling processes is often faced,
and particularly so in the case of teletraffic, with enormous
guantities of data, thereby requiring methods which are ef
ficient from a computational point of view. Because of
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Wavelet-Based Multifractal Formalism

The wavelet-based partition function

s(a R diRlf, (31)

constitutes the wavelet counterpart of the traditional
partition function (14). It can be bounded from below
by summing only over a subset of indices k, say those
for which |2 ""?d,(j,k)|~2". For the sake of argument
we assume that this marks the locations where the
Holder regularity of the path is indeed h (compare
(29)). It follows then from box-counting methods, a
standard technique in fractal geometry, that the num -
ber of such indices grows asymptotically at least as
2 °™ implying that S;( g grows at least as2'(™" °").
Since the choice of h was arbitrary, we arrive at the as-
ymptotic bound

inf, (j(gh D( h))
S(g 2™ ,

(32)

which is provably tightin the limit 2! 0using a steep-
est descent argument. Estimating () from the decay
of estimates of the moments S,( 9~ 2’ ‘*’, we arrive at
an asymptotic estimate

D(h D7(hH

where g'(x) inf,(xy ¢ y) denotes the Legendre
transform of a function g. Note that applying the trans-
form twice yields the concave hull g™ of g. Itis notable
that the statistically and numerically robust global esti-
mator  provides information on the delicate local
properties captured in D(h), which would be almost
impossible to access directly.

In practice, (0 is estimated as the least square
slope of a log-log plot of the partition sum against
scale, i.e.,log(S,( q) against log 2!. Comparing with
“Wavelet Analysis of Second-Order Scaling,” this dem
onstrates quite explicity how multifractal analysis
goes beyond second-order statistics. Fig. 8 shows ex
amples. This wavelet-based estimator can be further
developed using the wavelet maxima method [23], [4]
which addresses in particular the invertibility of (29).

*(h)

(33)

their multiresolution structure and the related ability to be
implemented as a filter bank, wavelet-based methods are
associated with fast algorithms, out performing FFT-based
competitors with a complexity of onlyO(n) in computa-
tion (compared to O(nlog(n)) ) and O(log(n)) in memory,

for ndata points. These advantages hold not only at second
order, but more generally, including for the more advanced
types of analysis we now discuss.

Beyond Second-Order Analysis
As explained earlier, scaling may involve statistics beyond
second order, which if observed in the limit of small
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scales, calls for a multifractal interpretation. Multifractal
analysis provides a “finger print” of local scaling proper
ties of the paths of a procesX through the multifractal

spectrumD(h), and the multifractal formalism provides a
powerful approach to numerically estimating it. Just as

Fig. 8 depicts log-log plots ofS (g against2’ for a
real-world trace (the LBL-TCP3 trace of [24]) and a syn
thetic cascade which has been designed to match the-sec
ond moments of the series on all dyadic scales. It is
notable that also the sample moments of orders

for second-order scaling analysis, estimates can be based 32 q 32 agree closely. Consequently, the functions

on increments of the process or time series; however,

(9) and the estimated spectrurd(h) " are very close.

from arguments close to those developed at second order, This is demonstrated in Fig. 9 where the spectrum of an
wavelet coefficients offer themselves as an ideal alterna additive tree model is added for comparison. This additive

tive. Notably, tuning the number of vanishing moments

model matches the same second-order moments as the cas

of the mother wavelet allows the analysis of processes cade, but it is Gaussian in nature with only little variation

with Holder exponents larger than one. “Wavelet-Based
Multifractal Formalism” gives a more detailed pictures of
this wavelet based multifractal analysis.
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8. Superimposed log-log plots, at several values of g, of the
partition sum against scale for a time series of bytes per bin of
TCP traffic (taken from the LBL-TCP3 trace [24]) (a), and a
matched binomial cascade (b).

in its local Holder exponents and consequently shows a
narrow spectrum different from the real trace. This exam
ple again shows that in numerous computer network time
series, scaling occurring at small scales cannot be described
by a single exponent but require an entire family. Current
research focusses on its impact on performance evaluation,
network design and control [8], [28].

The infinitely divisible cascade model, introduced in
“Infinitely Divisble Cascades” using increments for sim
plicity, can also be rephrased in wavelet terms [4], [39]
with, again, many advantages similar to those detailed
above for the second order case. “Extracting an Infinitely
Divisible Cascade” illustrates the analysis, estimation,
and verification procedure of this more practical wavelet
incarnation. The time series is that of Fig. 1, the list of
successive interarrival times of TCP connections. The
study of the nature of such a series gives us direct insight
into the statistical genesis of TCP connections in a hetero-
geneous environment. The series was extracted from ex-
ceptionally precise TCP/IP trace made available by the
WAND group at the University of Waikato. This archive,
the “Auckland II” traces, are taken from both directions of
the access link of the University of Auckland to the exter-
nal Internet [22]. As detailed in “Extracting an Infinitely
Divisible Cascade,” an infinitely divisible cascade model
provides a relevant description of the analyzed time series
on a wide range of scale2® 2' 2. The key observa
tion is that no other scaling model could have been ap

1
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9. Multifractal spectrum of local Holder exponents estimated
via the Legendre transform.
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Extracting an Infinitely Divisible Cascade

e IDC model is used here to analyze the TCP connection

interarrival time series of Fig. 1. The top left plot shows that

the third-order moments of the wavelet coefficients do not behave as power laws of scale over the full range of scales,

disallowing a self-similar or even a multifractal model over this r

ange. The top right plot shows that relative power laws do

exist over the full range for the (for example, fifth order) moments, suggesting an IDC model can apply. Note the confi -
dence intervals in both directions, as estimates are plotted on both axes. The middle plots show, respectively, the estimates

of the functions n(2') and H( q), defining the IDC propagator. T
functions of the wavelet coefficients at scales 2° to 2'*. In the

he bottom left plot shows the estimated probability density
bottom right plot, those densities have been numerically

“propagated” through the cascade, using the estimated propagator. The collapse of the curves illustrates the

meaningfulness of the fitted Infinitely Divisible Cascade mode

I, as well as the accuracy of the estimated propagator.

40 T T T
35 ‘
& & & TSy
~ ~ < H : H
g g
30
NI 45
N N ~ N N N
: : : SN : : : : : : : : : : :
25 : y : : : : : : : :
2 4 6 8 10 12 14 18 20 22 24 1 3 5 7 9 11 13
loga(2) loga(S2) log,(2/)
0 o 0
o «o;:*:';'ﬂ':?":g':' . ﬂ
Oo 4 :Oq:» Vieao ¥
o *» O ¥ v — 'é’
— o t v 4 % v =
T 22 S TRy e T 1B * %
= 5 o tw L R .| B = b
% 2 4 o4 v %+’ m M - s
= Q v . =~ o 4
= =2 - wv o w v 87 -4 & ? .
R E © , % 0@ - '%
—6 + ° + Ll a (o)
o % ¥ o Vv
v
) -6 & ‘;z
-8 7 a
8 10 12 14 8 9 10 11 1 13
log T log T

Scaling for a TCP/IP connection interarrival time series.

plied over the full range, because of the change in
behavior at the change point at aroundg, .

Here as in many other series extracted from Internet
traces,j, corresponds to a characteristic time of2.5t0 3.5
s, in keeping with findings in [10], and of our own mea
surements of round trip times of TCP/IP connections. In
deed, when examining individual log-log plots such as
the top left in “Extracting an Infinitely Divisible Cascade”
(or the far right in Fig. 7), without the IDC framework
one would be forced to conclude that two entirely differ
ent scaling models apply, over two different scaling
ranges. Using the IDC formalism it is possible to note
that the change is restricted to(2 '), the wavelet counter
part of the n( ) function introduced in “Infinitely Divisble
Cascades,” whereald (q) is typically observed to be close
to linear. We can therefore integrate the observations into
a single scaling picture over the full range of scales and in
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terpret the piecewise-log form ofn(2') as an abrupt
change of speed of some underlying multiplicative meeh
anism, described byH (q), which is itself unchanged. Al
though “only statistical” such a specific hypothesis leads
us to search for causal explanations, in traffic sources,net
works themselves and their protocols, that could be capa
ble of generating effects of this type. Using infinitely
divisible cascades to model a variety of time series-de
scribing different aspects of the same raw Internet data, is
a starting point for ongoing modeling work, some early
results of which can be found in [39] and [32].

Selected Applications
of Multiscale Traffic Models

A triumph of multiscale analysis techniques in networking

has been the discovery of strong scaling phenomena as well
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as convincing evidence pointing to causes behind it: ret

working mechanisms, protocols, source characteristics,
and so on. But the multiscale concept is applicable to ret

work-related problems beyond the mere analysis of traffic
traces. In this section, we briefly outline some applications
that directly leverage the multiscale framework.

Multiscale Queuing Analysis

Since the construction of network routers consists largely
in combining queues (buffers), queuing analysis plays a
crucial role in their design and performance. In the sim
plest queuing analysis, an aggregate traffic inpt(t) is
fed into a single-server queue of sizBbytes with service
rate s bytes/s, and we wish to determine information
about Q(t), the queue size in bytes at time For example,
we might desire the average queue size or the probability
that the queue will overflow, the tail queue probability
P(Q B. Queuing analysis in general is extremely diffi
cult, owing to the inherent nonlinearities associated with
a queue emptying (few packet arrivals) and overflowing
(too many packet arrivals).

A distinct advantage of the classical Poisson traffic
model for X(t) is the existence of analytic formulae for
P(Q B [17]. But the fact that real traffic is not Poisson
renders these results of limited utility in real-world situa-
tions. Another approximate approach is to study only the
so-called critical time scale that dominates queue overflow.

But as we have seen, real traffic is not typically domi-
nated in a simple way by a single time scale. Real traffic is
multiscale, and so we should study the queue sigxt) at
multiple time scales and fuse the results into a single sta-
tistic. A multiscale model for X (t) (such as fBm or a bino-
mial cascade) facilitates the investigation of the
distribution of Q(t) at multiple scales, incorporating the
full multiscale structure. In this framework, the distribu
tions of the wavelet coefficients of the fBm model, or
multipliers in the cascade models, are combined into a
simple formula that provides a close approximation to the
tail queue probability. See [27] for more details.

Multiscale Path Probing

To understand and predict the performance of

end-to-end protocols such as TCP and modern streaming
protocols, it is crucial to understand the dynamics of the
end-to-end paths through a network. In particular, we

end-to-end packet delay process implicitly involves med
elling the cross-traffic, since large delays are caused by
large traffic flows along the path.

A typical Internet end-to-end path can easily pass
through 15 or more queues, which complicates analysis
and modelling considerably. Fortunately, in certain cases,
an end-to-end path can be replaced by single “bottleneck”
queue that is driven both by the probe traffic and an “effec
tive cross-traffic” stream that models the contributions of
all competing traffic along the path. Our fundamental ob
servation for this bottleneck queue model is as follows: the
delay spread at the receiver between two probe packets
transmitted closely spaced in time corresponds directly to
the amount of cross-traffic along the path.

Inherentin any probing scheme is an uncertainty prin
ciple, or “accuracy/sparsity tradeoff.” The volume of
cross-traffic entering the bottleneck queue between the
two probes can be computed essentially exactly from the
delay spread of the two packets at the receiver provided
the queue does not empty in between. Unfortunately, this
emptying will certainly occur unless the probes are spaced
very closely. Even worse, long probing trains of closely
spaced packets will overwhelm the very network we are
trying to model. If the probes are spaced far apart, then
the queue can empty in between, which results in uncer-
tainty in the cross-traffic measurement.

Again, help is on the way with a multiscale model.
Modeling the cross-traffic as a multiscale process (fBm or
binomial cascade for example), we can transmit a stream
of packets that probes simultaneously at several time
scales. For example, by spacing the packets exponentially
(two packets with small spacingl followed by a packet
every2T, k 1,2,K), we probe the bottleneck queue at a
multitude of dyadic scales.

This so-called “chirp packet train” balances the accu
racy/sparcity trade-off by being highly accurate initially
and highly sparse at the end [28]. Packet chirps allows us
to estimate the cross-traffic volume (or equivalently delay
distribution) at any dyadic scale of interest. The algo
rithm works quite well in simulation studies; currently it
is under more exhaustive testing on real networks.

Conclusions

In this article, we have seen that the complexity and rieh

could have interest in the delays and losses experienced byness of teletraffic is well matched by the multiscale analy

packets transmitted end-to-end. Here we focus on delay
rather than loss.

Information on packet delay can be obtained either by
actively probing the path with packets or by passively
monitoring packets as they pass a fixed point. We will fo
cus on an active strategy. The delay a packet will incur is
bounded below by the “speed of light” from the transmit
ter to receiver. However, it can be considerably larger if
there is significant cross-traffic that forces the packet to
waitin a buffer before it is serviced. Clearly, modelling the
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sis and modeling frameworks of self-similarity,
long-range dependence, fractals, multifractals, and infi
nitely divisible cascades. These frameworks not only al
low us to confirm and formalize the presence of
multiscale behavior in traffic, but also point to possible
causes of multiscale structure in the physical networking
infrastructure. The choice of framework, from a simple
fBm to a more complicated multifractal or cascade,
clearly depends on the application and the data at hand.
But whatever the framework, the multiscale wavelet
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transform provides a parsimonious and efficient domain
for processing.

Finally, we note that the tools overviewed here have
found a home in numerous other areas of science and-en
gineering, including turbulence and percolation, among
many others. MATLAB routines implementing the anal
ysis/estimation procedures described throughout this
text are available at www.emulab.ee.mu.oz.au/~darryl
and www.dsp.rice.edul/.
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