P. Abry and F. Sellan, The Wavelet-Based Synthesis for Fractional Brownian Motion Proposed by F. Sellan and Y. Meyer: Remarks and Fast Implementation, Applied and Computational Harmonic Analysis, vol.3, issue.4
DOI : 10.1006/acha.1996.0030

P. Abry, S. Jaffard, and B. Lashermes, <title>Revisiting scaling, multifractal, and multiplicative cascades with the wavelet leader lens</title>, Wavelet Applications in Industrial Processing II, pp.103-117, 2004.
DOI : 10.1117/12.581234

A. Arneodo, B. Audit, N. Decoster, J. Muzy, C. Vaillant et al., Wavelet Based Multifractal Formalism: Applications to DNA Sequences, Satellite Images of the Cloud Structure, and Stock Market Data, pp.27-102, 2002.
DOI : 10.1007/978-3-642-56257-0_2

A. Arneodo, E. Bacry, S. Jaffard, and J. Muzy, Oscillating singularities on cantor sets: A grand-canonical multifractal formalism, Journal of Statistical Physics, vol.2, issue.1-2, pp.179-209, 1997.
DOI : 10.1007/BF02181485

A. Arneodo, E. Bacry, and J. Muzy, The thermodynamics of fractals revisited with wavelets, Physica A: Statistical Mechanics and its Applications, vol.213, issue.1-2, pp.232-275, 1995.
DOI : 10.1016/0378-4371(94)00163-N

J. Bardet, G. Lang, G. Oppenheim, A. Philippe, and M. S. Taqqu, Generators of long-range dependent processes: a survey, P. Doukhan, G. Oppenheim, and M. S
URL : https://hal.archives-ouvertes.fr/hal-00127929

. Taqqu, Long-Range Dependence: Theory and Applications, pp.579-623, 2003.

J. Aubry and S. , Random Wavelet Series, Communications in Mathematical Physics, vol.227, issue.3, pp.483-514, 2002.
DOI : 10.1007/s002200200630

URL : https://hal.archives-ouvertes.fr/hal-00012098

J. Barral and S. Seuret, From multifractal measures to multifractal wavelet series, preprint, 2005.

H. Brezis, Analyse fonctionelle, 1983.

G. Brown and G. Michon, On the multifractal analysis of measures, Journal of Statistical Physics, vol.59, issue.2, pp.775-790, 1992.
DOI : 10.1007/BF01055700

A. B. Chhabra, C. Meneveau, R. V. Jensen, and K. R. Sreenivasan, Direct determination of the f(??) singularity spectrum and its application to fully developed turbulence, Physical Review A, vol.40, issue.9, pp.5284-5294, 1989.
DOI : 10.1103/PhysRevA.40.5284

E. Chassande-mottin and P. Flandrin, On the Time???Frequency Detection of Chirps1, Applied and Computational Harmonic Analysis, vol.6, issue.2, pp.252-281, 1999.
DOI : 10.1006/acha.1998.0254

A. Cohen and R. Ryan, Wavelets and multiscale signal processing, 1995.
DOI : 10.1007/978-1-4899-4425-2

I. Daubechies, Orthonormal bases of compactly supported wavelets, Communications on Pure and Applied Mathematics, vol.34, issue.7, pp.909-996, 1988.
DOI : 10.1002/cpa.3160410705

P. Deheuvels and D. M. , Functional Laws of the Iterated Logarithm for the Increments of Empirical and Quantile Processes, The Annals of Probability, vol.20, issue.3, pp.1248-1287, 1992.
DOI : 10.1214/aop/1176989691

A. Fraysse, Résultats de généricité en analyse multifractale, 2005.

A. Grossmann and J. , Transforms associated to square integrable group representations. I. General results, Journal of Mathematical Physics, vol.26, issue.10, pp.2473-2479, 1985.
DOI : 10.1063/1.526761

T. Halsey, M. Jensen, L. Kadanoff, I. Procaccia, and B. Shraiman, Fractal measures and their singularities: The characterization of strange sets, Physical Review A, vol.33, issue.2, pp.1141-1151, 1986.
DOI : 10.1103/PhysRevA.33.1141

S. Jaffard, Exposants de Hölder en des points donnés et coefficients d'ondelettes, C. R. Acad. Sci. Sér. I Math, vol.308, pp.79-81, 1989.

S. Jaffard, Pointwise smoothness, two-microlocalization and wavelet coefficients, Publicacions Matem??tiques, vol.35, pp.155-168, 1991.
DOI : 10.5565/PUBLMAT_35191_06

URL : http://ddd.uab.cat/record/40280

S. Jaffard, Multifractal Formalism for Functions Part I: Results Valid For All Functions, SIAM Journal on Mathematical Analysis, vol.28, issue.4, pp.944-998, 1997.
DOI : 10.1137/S0036141095282991

S. Jaffard, Oscillation spaces: Properties and applications to fractal and multifractal functions, Journal of Mathematical Physics, vol.39, issue.8, pp.4129-4141, 1998.
DOI : 10.1063/1.532488

S. Jaffard, Wavelet techniques in multifractal analysis, Fractal Geometry and Applications: A Jubilee of Beno??tBeno??t Mandelbrot, M. Lapidus et M. van Frankenhuijsen Eds, Proceedings of Symposia in Pure Mathematics, AMS, pp.91-152, 2004.

S. Jaffard, On Davenport expansions, Fractal Geometry and Applications: A Jubilee of Beno??tBeno??t Mandelbrot, M. Lapidus et M. van Frankenhuijsen Eds, Proceedings of Symposia in Pure Mathematics, pp.273-303, 2004.

S. Jaffard, Pointwise regularity associated with function spaces and multifractal analysis, Approximation and Probability, 2004.
DOI : 10.4064/bc72-0-7

S. Jaffard and C. Melot, Wavelet Analysis of Fractal Boundaries. Part 1: Local Exponents, Communications in Mathematical Physics, vol.109, issue.3, pp.513-565, 2005.
DOI : 10.1007/s00220-005-1354-1

URL : https://hal.archives-ouvertes.fr/hal-01071366

S. Jaffard and Y. Meyer, Wavelet methods for pointwise regularity and local oscillation of functions, Mem. Am, Math. Soc, vol.123, p.587, 1996.

J. Kahane, Some Random Series of Functions, 1985.

J. Kahane and J. Peyrì-ere, Sur certaines martingales de Benoit Mandelbrot, Advances in Mathematics, vol.22, issue.2, pp.131-145, 1976.
DOI : 10.1016/0001-8708(76)90151-1

URL : http://doi.org/10.1016/0001-8708(76)90151-1

P. Kestener and A. Arneodo, Three-Dimensional Wavelet-Based Multifractal Method: The Need for Revisiting the Multifractal Description of Turbulence Dissipation Data, Physical Review Letters, vol.91, issue.19, 2003.
DOI : 10.1103/PhysRevLett.91.194501

K. Lau, K. , and S. Ngai, Multifractal Measures and a Weak Separation Condition, Advances in Mathematics, vol.141, issue.1, pp.45-96, 1999.
DOI : 10.1006/aima.1998.1773

B. Lashermes, P. Abry, and P. Chainais, NEW INSIGHTS INTO THE ESTIMATION OF SCALING EXPONENTS, Multiresolution and Information Processing, pp.497-523, 2004.
DOI : 10.1142/S0219691304000597

W. Li, Small ball probabilities for Gaussian Markov processes under the Lp-norm, Stochastic Processes and their Applications, vol.92, issue.1, pp.87-102, 2001.
DOI : 10.1016/S0304-4149(00)00072-7

W. Li and Q. Shao, Gaussian processes: Inequalities, small ball probabilities and applications, Stochastic processes: Theory and methods
DOI : 10.1016/S0169-7161(01)19019-X

S. Mallat, A Wavelet tour of signal processing, 1998.

S. Mallat and W. L. , Singularity detection and processing with wavelets, IEEE Transactions on Information Theory, vol.38, issue.2, pp.617-643, 1992.
DOI : 10.1109/18.119727

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

B. Mandelbrot, Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier, Journal of Fluid Mechanics, vol.15, issue.02, pp.331-358, 1974.
DOI : 10.1063/1.1693226

C. Melot, Oscillating singularities in Besov spaces, Ser. 83, pp.367-416, 2004.
DOI : 10.1016/j.matpur.2004.01.001

URL : https://hal.archives-ouvertes.fr/hal-01071363

C. Meneveau, Analysis of turbulence in the orthonormal wavelet representation, Journal of Fluid Mechanics, vol.30, issue.-1, pp.469-520, 1991.
DOI : 10.1017/S0022112078001846

C. Meneveau and K. R. Sreenivasan, The multifractal spectrum of the dissipation field in turbulent flows, Nuclear Physics B - Proceedings Supplements, vol.2, pp.49-76, 1987.
DOI : 10.1016/0920-5632(87)90008-9

Y. Meyer, F. Sellan, and M. Taqqu, Wavelets, generalized white noise and fractional integration: The synthesis of fractional Brownian motion, The Journal of Fourier Analysis and Applications, vol.21, issue.4, pp.465-494, 1999.
DOI : 10.1007/BF01261639

Y. Meyer and H. Xu, Wavelet Analysis and Chirps, Applied and Computational Harmonic Analysis, vol.4, issue.4
DOI : 10.1006/acha.1997.0214

URL : http://doi.org/10.1006/acha.1997.0214

D. Monrad and H. , Small values of Gaussian processes and functional laws of the iterated logarithm, Probability Theory and Related Fields, vol.3, issue.2, pp.173-192, 1995.
DOI : 10.1007/BF01375823

L. Olsen, A Multifractal Formalism, Advances in Mathematics, vol.116, issue.1, pp.92-195, 1995.
DOI : 10.1006/aima.1995.1066

G. Parisi and U. Frisch, On the singularity structure of fully developed turbulence; appendix to Fully developed turbulence and intermittency, by U. Frisch, Proc. Int. Summer school Phys. Enrico Fermi, pp.84-88, 1985.

R. Riedi, An Improved Multifractal Formalism and Self-Similar Measures, Journal of Mathematical Analysis and Applications, vol.189, issue.2, pp.462-490, 1995.
DOI : 10.1006/jmaa.1995.1030

URL : http://doi.org/10.1006/jmaa.1995.1030

K. R. Sreenivasan, Fractals and Multifractals in Fluid Turbulence, Annual Review of Fluid Mechanics, vol.23, issue.1, pp.539-600, 1991.
DOI : 10.1146/annurev.fl.23.010191.002543

W. Stute, The Oscillation Behavior of Empirical Processes, The Annals of Probability, vol.10, issue.1, pp.86-107, 1982.
DOI : 10.1214/aop/1176993915