Wavelet leaders in multifractal analysis

Abstract : The properties of several multifractal formalisms based on wavelet coefficients are compared from both mathematical and numerical points of view. When it is based directly on wavelet coefficients, the multifractal formalism is shown to yield, at best, the increasing part of the weak scaling exponent spectrum. The formalism has to be based on new multiresolution quantities, the wavelet leaders, in order to yield the entire and correct spectrum of Hölder singularities. The properties of this new multifractal formalism and of the alternative weak scaling exponent multifractal formalism are investigated. Examples based on known synthetic multifractal processes are illustrating its numerical implementation and abilities.
Type de document :
Chapitre d'ouvrage
T Qian, M. I; Vai, X. Yuesheng. Wavelet Analysis and Applications, Birkhäuser Verlag, pp.219--264, 2006, 978-3-7643-7777-9
Liste complète des métadonnées

Littérature citée [49 références]  Voir  Masquer  Télécharger

https://hal-ens-lyon.archives-ouvertes.fr/ensl-00195088
Contributeur : Patrice Abry <>
Soumis le : mardi 11 décembre 2007 - 23:20:23
Dernière modification le : jeudi 19 avril 2018 - 14:54:03
Document(s) archivé(s) le : lundi 12 avril 2010 - 06:41:12

Fichier

JaffardLashermesAbry05.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : ensl-00195088, version 1

Citation

Stéphane Jaffard, Bruno Lashermes, Patrice Abry. Wavelet leaders in multifractal analysis. T Qian, M. I; Vai, X. Yuesheng. Wavelet Analysis and Applications, Birkhäuser Verlag, pp.219--264, 2006, 978-3-7643-7777-9. 〈ensl-00195088〉

Partager

Métriques

Consultations de la notice

300

Téléchargements de fichiers

420