M. Ayoub and D. Mather, Effectiveness of selective genotyping for detection of quantitative trait loci: an analysis of grain and malt quality traits in three barley populations, Genome, vol.45, issue.6, pp.1116-1124, 2002.
DOI : 10.1139/g02-089

C. Bidenne, B. Blondin, S. Dequin, and F. Vezinhet, Analysis of the chromosomal DNA polymorphism of wine strains of Saccharomyces cerevisiae, Current Genetics, vol.8, issue.1, pp.1-7, 1992.
DOI : 10.1007/BF00351734

A. Blomberg, during adaptation to saline conditions: questions, some answers and a model, FEMS Microbiology Letters, vol.182, issue.1, pp.1-8, 2000.
DOI : 10.1111/j.1574-6968.2000.tb08864.x

R. Brem, G. Yvert, R. Clinton, and L. Kruglyak, Genetic Dissection of Transcriptional Regulation in Budding Yeast, Science, vol.296, issue.5568, pp.752-755, 2002.
DOI : 10.1126/science.1069516

A. Deutschbauer and R. Davis, Quantitative trait loci mapped to single-nucleotide resolution in yeast, Nature Genetics, vol.350, issue.12, pp.1333-1340, 2005.
DOI : 10.1038/ng1674

P. Dunlop and R. Roon, L-Asparaginase of Saccharomyces cerevisiae: an extracellular enzyme, J Bacteriol, vol.122, pp.1017-1024, 1975.

B. Dunn, R. Levine, and G. Sherlock, Microarray karyotyping of commercial wine yeast strains reveals shared, as well as unique, genomic signatures, BMC Genomics, vol.6, issue.1, pp.53-74, 2005.
DOI : 10.1186/1471-2164-6-53

P. Giudici and C. Zambonelli, Biometric and genetic study on acetic production for breeding of wine yeast, Am J Enol Vitic, vol.43, pp.370-374, 1992.

A. Goldstein and J. Mccusker, Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae, Yeast, vol.15, issue.14, pp.1541-1553, 1999.
DOI : 10.1002/(SICI)1097-0061(199910)15:14<1541::AID-YEA476>3.3.CO;2-B

V. Hatzimanikatis, M. Emmerling, U. Sauer, and J. Bailey, Application of mathematical tools for metabolic design of microbial ethanol production, Biotechnology and Bioengineering, vol.10, issue.2-3, pp.154-161, 1998.
DOI : 10.1002/(SICI)1097-0290(19980420)58:2/3<154::AID-BIT7>3.0.CO;2-K

C. Hennequin, A. Thierry, G. Richard, G. Lecointre, H. Nguyen et al., Microsatellite Typing as a New Tool for Identification of Saccharomyces cerevisiae Strains, Journal of Clinical Microbiology, vol.39, issue.2, pp.551-559, 2001.
DOI : 10.1128/JCM.39.2.551-559.2001

P. &. Henschke and V. Jiranek, Yeasts ? metabolism of nitrogen compounds, Wine Microbiology and Biotechnology (Fleet GH, pp.76-164, 1993.

K. Kim, J. Kamerud, D. Livingston, and R. Roon, Asparaginase II of Saccharomyces cerevisiae. Characterization of the ASP3 gene, J Biol Chem, vol.263, pp.11948-11953, 1988.

S. Lafon-lafourcade, C. Geneix, and P. Ribereau-gayon, Inhibition of alcoholic fermentation of grape must by fatty acids produced by yeasts and their elimination by yeast ghosts, Appl Environ Microbiol, vol.47, pp.1246-1249, 1984.

E. Lander and D. Botstein, Mapping mendelian factors underlying quantitative traits using RFLP linkage maps, Genetics, vol.121, pp.185-199, 1989.

J. Legras, O. Ruh, D. Merdinoglu, and F. Karst, Selection of hypervariable microsatellite loci for the characterization of Saccharomyces cerevisiae strains, International Journal of Food Microbiology, vol.102, issue.1, pp.73-83, 2005.
DOI : 10.1016/j.ijfoodmicro.2004.12.007

M. Lynch and B. Walsh, Genetics and Analysis of Quantitative Traits, 1998.

P. Marullo, M. Bely, I. Masneuf-pomarede, M. Aigle, and D. Dubourdieu, Inheritable nature of enological quantitative traits is demonstrated by meiotic segregation of industrial wine yeast strains, FEMS Yeast Research, vol.4, issue.7, pp.711-719, 2004.
DOI : 10.1016/j.femsyr.2004.01.006

P. Marullo, M. Bely, I. Masneuf-pomarède, M. Pons, M. Aigle et al., Breeding strategies for combining fermentative qualities and reducing off-flavor production in a wine yeast model, FEMS Yeast Research, vol.6, issue.2, pp.268-279, 2006.
DOI : 10.1111/j.1567-1364.2006.00034.x

J. Mccusker, K. Clemons, D. Stevens, and R. Davis, Genetic characterization of pathogenic Saccharomyces cerevisiae isolates, Genetics, vol.136, pp.1261-1269, 1994.

M. Murat, I. Masneuf, P. Darriet, V. Lavigne, T. Tominaga et al., Effect of Saccharomyces cerevisiae yeast strains on the liberation of volatile thiols in sauvignon blanc wine, Am J Enol Vitic, vol.52, pp.136-140, 2001.

J. Navarro-avino, R. Prasad, V. Miralles, R. Benito, and R. Serrano, A proposal for nomenclature of aldehyde dehydrogenases inSaccharomyces cerevisiae and characterization of the stress-inducibleALD2 andALD3 genes, Yeast, vol.251, issue.10A, pp.829-842, 1999.
DOI : 10.1002/(SICI)1097-0061(199907)15:10A<829::AID-YEA423>3.0.CO;2-9

F. Remize, E. Andrieu, and S. Dequin, Engineering of the Pyruvate Dehydrogenase Bypass in Saccharomyces cerevisiae: Role of the Cytosolic Mg2+ and Mitochondrial K+ Acetaldehyde Dehydrogenases Ald6p and Ald4p in Acetate Formation during Alcoholic Fermentation, Applied and Environmental Microbiology, vol.66, issue.8, pp.3151-3159, 2000.
DOI : 10.1128/AEM.66.8.3151-3159.2000

F. Remize, J. Sablayrolles, and S. Dequin, Re-assessment of the influence of yeast strain and environmental factors on glycerol production in wine, Journal of Applied Microbiology, vol.59, issue.3, pp.371-378, 2000.
DOI : 10.1016/0043-1354(76)90154-8

P. Romano, G. Soli, G. Suzzi, L. Grazia, and C. Zambonelli, Improvement of a wine Saccharomyces cerevisiae strain by a breeding program, Appl Environ Microbiol, vol.50, pp.1064-1067, 1985.

P. Romano, G. Suzzi, L. Turbanti, and M. Polsinelli, wine yeasts, FEMS Microbiology Letters, vol.118, issue.3, pp.213-218, 1994.
DOI : 10.1111/j.1574-6968.1994.tb06830.x

URL : https://hal.archives-ouvertes.fr/hal-01441150

A. Rose and J. Harrison, The Yeasts. Metabolism and Physiology, 1989.

T. Rossignol, L. Dulau, A. Julien, and B. Blondin, Genome-wide monitoring of wine yeast gene expression during alcoholic fermentation, Yeast, vol.277, issue.16, pp.1369-1385, 2003.
DOI : 10.1002/yea.1046

F. Saint-prix, L. Bonquist, and S. Dequin, Functional analysis of the ALD gene family of Saccharomyces cerevisiae during anaerobic growth on glucose: the NADP+-dependent Ald6p and Ald5p isoforms play a major role in acetate formation, Microbiology, vol.150, issue.7, pp.2209-2220, 2004.
DOI : 10.1099/mic.0.26999-0