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Abstract. We report an experimental study of the sound produced by the bursting of a thin liquid film,
which initially closes an overpressurized cylindrical cavity. There is a need for a deep understanding of
the phenomenon, which can be very useful in numerous practical cases. For instance, in the nature, the
volcanologists observe the bursting of large, elongated, gas-bubbles at the surface of lava lakes and record
the associated sound emission. One can wonder which pieces of information they can get from such acoustic
measurements. For a didactic purpose, we provide also the reader with all the theoretical background
necessary for the understanding of the physical processes that govern the various characteristics of the
acoustic signals: the cavity geometry governs the frequency; the viscous dissipation and the radiation are
responsible for the damping; the acoustic energy informs about the characteristic time associated with the
film-rupture more than about the energy initially loaded in the cavity.

PACS. 68.15.+e Liquid thin films – 43.20.Mv Waveguides, wave propagation in tubes and ducts – 43.20.Ks
Standing waves, resonance, normal modes – 91.40.Yt Remote sensing of volcanoes

1 Introduction

The sound produced by the quick opening of an under- or
overpressurized cavity is a common phenomenon. It can
be encountered in many situations, from everyday life to
large-scale natural systems.

One of the most well-known examples is certainly the
characteristic ‘pop’ sound when opening a champagne bot-
tle: the pressure inside the bottle, initially larger than
the atmospheric pressure, drops down when the cork is
released. Excited by the sudden change in pressure, the
free volume close to the bottleneck resonates. In addi-
tion, the initial overpressure is due to a large amount of
gas dissolved in the liquid, which, once the pressure has
decreased, escapes the system as the famous champagne
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bubbles: by listening carefully to a glass full of champagne
(or whatever ‘bubbling’ liquid), one can notice the soft
popping sound generated by each bubble-bursting at the
liquid surface. In this latter case, the resonators are the
bubbles themselves.

To date, the studies of the sound emission have limited
to the bursting of bubbles at the free surface of a newto-
nian fluid [1] in which, because of the rounded shape of the
bubble reaching the free surface, the resonator consists of
a liquid lens, the depth comparing with the bubble diam-
eter [2]. By contrast, the body of a bubble rising in a non-
newtonian fluid is likely to be strongly elongated along
the vertical because of specific fluid rheological proper-
ties [3]. One can wonder about the characteristics of the
sound emission in this latter case, which is relevant in vari-
ous practical situations. For instance, the bursting of elon-
gated bubbles can be observed in the kitchen, when cook-
ing sauces [4]. Volcanoes are large-scale natural systems
which exhibit very similar phenomena; a large amount of
dissolved gas is released while lava rises up the magmatic
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conduit [5]; bursting of large gas bubbles is sometimes ob-
served at the surface of lava lakes or at vents. The char-
acteristics of the acoustic signal beeing likely to provide
useful pieces of information on the system geometry or
dynamics, geophysicists have long been recording sound
produced by volcanoes [6,7]. Because of the gas release,
lava at the surface forms a foam having non-newtonian
rheological properties. We can guess that one observes,
at the surface of lava lakes, the bursting of bubbles that
are elongated along the vertical.

One can then wonder what pieces of information can
be extracted from acoustic measurements. We thus per-
formed preliminary experiments in polymeric solutions
and observed that, in some cases, the bursting of the thin
film that initially closes the bubble at the free surface ex-
cites the elongated bubble body, which does not deform
significantly during the sound emission and resonates like
a tube [8]. We also observed a puzzling dependence of
the acoustic energy on the bubble volume as well as, in
the same experimental conditions, a large scatter of the
acoustic energy. In order to account for the observations,
it is fundamental to deeply understand the sound emit-
ted as the consequence of the bursting of a well-controlled
thin-film which initially closes an overpressurized cavity
of well-defined geometry. Thus, we consider a resonating
cavity consisting of a simple cylindrical-tube, closed at the
bottom, which is excited by the bursting of a soap film at
the top (Fig. 1). Previous studies of soap film bursting
show that the typical film rupture is very fast [9], usually
faster than all the physical processes inside and outside
the cavity (acoustic resonance, radiation and sound wave
propagation). Therefore, immediately after bursting, the
characteristics of the sound waves, recorded inside and
outside the resonating tube, depend generally on the tube
geometry only. With this very simple experiment, we want
to analyze the different physical mechanisms responsible
for the temporal and spectral characteristics of the signal.
We pay special attention in describing carefully the ex-
perimental procedures and propose in appendices all the
theoretical tools and references necessary for the under-
standing of the phenomenon. We intend thus to provide
the reader with useful and didactic material which, we
hope, depending on his own interest, will help him in the
interpretation of more complex systems, from the crack-
ling of the champagne bubbles to the bursting of giant
elongated bubbles on volcanoes.

2 Experimental setup and procedure

The experimental setup consists of a vertical tube (diame-
ter φ = 6, 8 or 10 mm) drilled in a Plexiglass block (Fig. 1).
The head of a first microphone (microphone ATM33a,
Audio-Technica + preamplifier Eurorack UB802) is lo-
cated d = 5 cm away from the upper-output plane and
oriented at α ∼ 45◦ from the system axis. At bottom,
the system is either closed by means of a solid rod or by
a second microphone (microphone 377A10 + preamplifier
426B03 + amplifier 482A16, PCB Piezotronics Inc.). Both

Fig. 1. Sketch of the experimental setup. The experimental
setup consists of a tube (inner diameter φ) drilled in a plex-
iglass block. The length L of the cavity is tuned by changing
the position of the microphone 2 (or rod) at bottom. The pres-
sure difference δP across the film is controlled by means of a
syringe pump and a pressure sensor. After the film bursting,
the sound emitted outside the cavity is recorded with the help
of the microphone 1 whereas the pressure at the bottom, which
results from the standing waves inside the cavity, is monitored
by using the microphone 2.

the rod and the microphone at bottom are movable, in or-
der to tune the cavity length L, from the output plane to
the lower wall (from 2 to 23 cm).

At the top, an initially-flat soap-film is produced by
stretching a droplet of a water-soap mixture (Quix Limón)
with the help of a razor blade. Then, a capillary con-
nected to the main vertical tube makes it possible to in-
troduce a chosen volume of air from a syringe pump into
the cavity limited by the lower wall and the film. A differ-
ential pressure transducer (PX277-01D5V, OMEGA En-
gineering Inc.) is used to measure the resulting pressure-
difference, δP , across the soap film which then takes the
shape of a part of sphere. In addition, the system can be
imaged either from top or side with the help of a fast-
camera (HiSIS 2002, KSV Instruments Ltd).

Subjected to gravity, the film thins (drainage, [10])
and, after a few tens of second, spontaneously bursts [11],
which produces a characteristic sound. A digital oscillo-
scope (54602B, Hewlett Packard) is used to monitor and
digitize the signals from the microphones (Fig. 2) and to
transfer the raw data to a computer through the HPIB
interface. Subsequent analysis is performed numerically
(Matlab, The MathWorks, Inc. and Igor Pro, Wavemet-
rics, Inc.).

Thus, the experimental setup makes possible the anal-
ysis of the sound emission associated with the bursting of
a curved soap film, which initially ends an almost cylin-
drical cavity of length L and diameter Φ filled with air
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Fig. 2. Left: signals P (t) from the microphones. Right: corresponding energy spectra. The typical signals from the two
microphones exhibit, immediately after bursting of the film (t > 0), damped oscillations (left-hand-side). Note that the higher
harmonics are damped faster in the signal from microphone 1. One can notice that their amplitude, relative to that of the
fundamental, is larger outside (microphone 1) than inside (microphone 2) the cavity: even noticeable on the raw signals,
this feature is clearly demonstrated by the energy spectra (see Appendix D for definition) displayed on the right-hand-side
(δP = 13.1 Pa, Φ = 10 mm, L = 8 cm, microphone 2 at the bottom, sampling rate 20 kHz).

at the overpressure δP above the pressure of the outside
atmosphere. We shall report our experimental results and
interpretations in the following Section 3 and draw conclu-
sions in Section 4. The theoretical background necessary
for the interpretation of our observations is presented in
Appendices A to D.

3 Experimental results and interpretation

In the present section, we report our experimental obser-
vations, starting with the spectral analysis of the sound
emitted after the bursting of the film (Sect. 3.1). We
then discuss the temporal evolution of the amplitude
(Sect. 3.2), focusing on the physical processes causing the
temporal damping of the signal. In Section 3.3, we show
that the analysis of the initial amplitude of the harmonics
provides us with interesting pieces of information about
the film rupture. Finally, the last Section 3.4 is dedicated
to the energy balance.

3.1 Resonant frequencies νn

3.1.1 The fundamental frequency ν0

From the experimental signals P (t) provided by the mi-
crophone 1, we measure easily the fundamental frequency

ν0 of the acoustic wave in air, which corresponds to the
lowest-frequency peak in the power spectrum (for in-
stance, ν0 � 1 kHz in Fig. 2). In order to analyze the
effect of the cavity geometry, we shall report the results
in terms of the associated wavelength λ0, defined to be
λ0 ≡ c/ν0. Note that the velocity of sound in air, c, de-
pends on the temperature T according to [12]:

c(T ) =

√
γRT

M
(1)

where γ = 1.4, R = 8.14 J K−1 mol−1, and M =
29 g mol−1. In our experimental conditions, the room tem-
perature is about T � 298 K and c � 346 m s−1.

Let us now tune the length L by changing the position
of the microphone 2 (or rod) and determine the corre-
sponding wavelength λ0 of the fundamental. We observe
that λ0 depends linearly on L according to:

λ0 = ξ(L + δL) (2)

where ξ = 4.00±0.05 (Fig. 3) whatever the tube diameter
Φ in our experimental range (6 to 10 mm). On the other
hand, the length correction, δL, is observed to depend
on the tube diameter Φ: for instance, we measure δL =
(4.2 ± 0.1) mm in the case Φ = 10 mm.

The tube, open at one end, constitutes a resonator
which is excited by the pressure drop associated with the
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Fig. 3. Fundamental wavelength λ0 vs. tube length L. The
fundamental frequency ν0 exhibited by the system after break-
ing of the soap film is associated with the wavelength λ0, which
is found to depend linearly on the tube length L according to
equation (2) with δL � 0.42 cm (∆P = 10 Pa, Φ = 10 mm,
rigid wall at the bottom, sampling rate 20 kHz).

sudden breaking of the soap film (Sect. A.5). What one can
hear in air is the acoustic wave radiated outside the cavity
(Appendix B) that selects the frequency (Appendix A). In
a first approximation (Sect. A.1), we expect the pressure
in the output plane to continuously equal the outside pres-
sure (thus, a pressure node). At the bottom, we expect a
velocity node and, accordingly, a pressure antinode. In this
case, the cavity length equals one fourth of the fundamen-
tal wavelength and λ0 = 4L. The experimental slope ξ
is in fairly good agreement with this theoretical expecta-
tion (Fig. 3). However, the correction length δL is finite,
as the pressure node does not exactly locate in the out-
put plane. Indeed, because of the radiation of the acoustic
wave in the output plane, one must consider the effective
tube length L′ = L + δL where one expects δL = 4Φ/3π
in the case of a flanged aperture [13,14] (Eq. (A.11)). One
obtains a similar correction δL = 0.3 Φ, which is only
slightly smaller than the latter, in the case of an unflanged
aperture [13,15]. Experimentally, the correction length is
found to be in fairly good agreement with the correction
expected for a flanged aperture (we measure δL � 0.42 cm
for Φ = 10 mm).

3.1.2 Higher-order harmonics νn (n �= 0)

We point out that, in the theory (Sect. A.2.2), the cor-
rection δL is expected not to depend on the wavelength
λ, so that the larger resonant frequencies νn are harmon-
ics of the fundamental ν0, νn = (2n + 1)ν0 associated
with λn = 4L′/(2n + 1), where L′ = L + δL. The pre-
diction is well satisfied experimentally. Indeed, we observe
clearly that the higher harmonics have frequencies that
are odd multiples of the fundamental frequency: 3ν0, 5ν0,
7ν0, . . . (Fig. 4).

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

A
co

us
tic

 e
ne

rg
y 

(a
.u

.)
 

80006000400020000

Frequency (Hz)

5078 Hz3046 Hz1015 Hz 7110 Hz

Fig. 4. Energy spectrum (microphone 1). We report, in log
scale, the data from microphone 1 (Fig. 2). The vertical dashed
lines clearly point out that the harmonics frequencies satisfy
νn = (2n + 1)ν0 (δP = 13.1 Pa, Φ = 10 mm, L = 8 cm,
microphone 2 at the bottom, sampling rate 20 kHz).

3.1.3 Conclusion on the resonant frequencies

The characteristic frequencies of the sound wave emitted
after the film bursting depend on the geometry of the
resonant cavity only. Indeed, the signal recorded by the
microphone 1 mainly contains the several harmonics of
the fundamental ν0, which is associated with the effective
length L′ = L + δL: L is the length of the cavity, from
the bottom to the aperture plane, and δL a length correc-
tion, due to the radiation at the open end, which mainly
depends on the tube diameter φ. In the next Section 3.2,
we discuss the temporal envelope of the signal and, more
specifically, how the amplitude of each of the harmonics
vanishes.

3.2 Amplitude-damping characteristic-times τn

3.2.1 Qualitative observation

As can be seen on the signals P (t), especially from micro-
phone 1 (Fig. 2), the amplitude of harmonics associated
with larger frequencies decreases faster. Indeed, the signal
clearly contains several harmonics at short time (typically
t < 8 ms) and only the fundamental afterwards (typically
t > 8 ms). Measurements performed with a long enough
cavity make it possible to determine with accuracy the
characteristic time τn, over which the amplitude of the
harmonic n vanishes, as a function of the corresponding
frequency νn.

3.2.2 Analysis procedure

The analysis procedure is as follows: from the position of
the peaks in the power spectrum (Fig. 4), we determine
the fundamental resonant frequency ν0. We then write the
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signal from microphone 1 for t > 0:

P (t) =
∞∑

n=0

An sin (ωnt + φn) exp (−t/τn) (3)

where ωn = 2π(2n + 1)ν0. The interpolation of the ex-
perimental data with equation (3) provides us with the
characteristic damping-time, τn, of each of the harmonics
that exhibits a significant amplitude (thus generally up
to n = 2). The agreement between equation (3) and the
experimental data is excellent as shown, as an example,
in Figure 5.

3.2.3 Experimental results

Each of the τn gives the experimental value of the charac-
teristic damping time, τd, at the corresponding frequency
ν = (2n + 1)ν0. Collecting the whole set of experimental
measurements obtained for the various hamonics and dif-
ferent tube lengths L, we obtain the experimental τd as a
function of the frequency ν. We checked that the exper-
imental data reported in Figure 6 do not depend on the
initial overpressure δP .

3.2.4 Discussion

The radiation at the open end alone would lead to τd ∝
ν−3 (Sect. A.2.3), which is not observed experimentally,
especially for small frequencies. We have evaluated other
possible sources of dissipation [among them, the partial
reflection at the closed end (Sect. A.3) and the thermal
and viscous dissipation in the boundary layer at the ver-
tical wall of the cavity (Sect. A.4)]. We estimated that,
in the case of a rigid wall at bottom (rod), the damping
of the acoustic wave due to the partial reflection at the
closed end is negligible (this contribution must be taken
into account when microphone 2 is placed at the bottom).
Thus, taking into account only the radiation at the open
end and the viscous and thermal dissipation in the bound-
ary layer at the vertical wall of the cavity, we estimate the
characteristic damping-time to be:

1
τd

= 2

√
πη[1 + (γ − 1)P− 1

2
r ]

Φ
ν1/2 + 2π2 Φ2

c2

ν3

2n + 1
(4)

where η = 1.5 × 10−5 m2 s−1 denotes the kinematic
viscosity of air, Pr � 0.7, the Prandtl number, and
γ = 1.4, the specific-heat ratio. Equation (4) gives, with-
out any adjustable parameter, the characteristic damping-
time which we find to be in rather good agreement with
our experimental measurements (Fig. 6).

The damping of the standing wave inside the cavity is
mainly governed by both the viscous and thermal dissi-
pation at the wall, which dominates at small frequencies,
and the radiation at the open end, which dominates at
large frequencies. Whatever the dominant dissipation pro-
cess, the harmonics having larger frequencies are damped
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the contribution of the radiation alone obtained from equa-
tion (4) with η = 0 (δP = 18 Pa, Φ = 8 mm, rigid wall at the
bottom).

faster. This is the reason why the sound, recorded outside,
contains several harmonics right after the bursting of the
film whereas only the fundamental is sensed later.

At this point, we know that the frequencies recorded
by the microphone correspond to the resonant frequen-
cies of the cavity and how the amplitude of the various
harmonics vanishes when time increases. In the following
Section 3.3, we discuss how the resonator is excited by
the pressure drop associated with the film bursting and
we show that a detailed analysis of the acoustic signal
makes it possible to determine accurately the character-
istic time of the resulting pressure drop in the aperture
plane.
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Fig. 7. Signals P (t) from the microphones (top: microphone 1, bottom: microphone 2). Left: in the case of a short rupture-time,
one observes that the overpressure at the closed end of the cavity goes from δP to −δP immediately after bursting of the film.
Right: if the rupture time is larger, the energy repartition among the acoustic modes is different, and the overpressure does
not drop to −δP immediately after bursting. Accordingly, the amplitude of the acoustic signal outside is smaller (δP ∼ 13 Pa,
Φ = 10 mm, L = 8 cm, microphone 2 at the bottom, sampling rate 20 kHz).

3.3 Spectral analysis of the pressure drop associated
with the film bursting

In this section, we obtain, from the detailed analysis of
the coefficients An and φn which appear in equation (3),
values of the Laplace transform of the pressure drop in
the output plane and, consequently, the associated char-
acteristic time, τ .

3.3.1 Qualitative observations

For identical initial conditions (given L, φ and δP ), val-
ues of the initial amplitude of the acoustic signal can be
very scattered. Even if the resonant frequencies are not af-
fected, the acoustic signal varies significantly both in am-
plitude and shape, inside and outside the cavity (Fig. 7).
This feature points out the fundamental role of the film
breaking process in the excitation of the acoustic waves.

Using the fast camera, we observe the dynamics of the
soap-film breaking, when not too fast, and we monitor the
acoustic signal. We report in Figure 7, the acoustic signals
obtained for two very different characteristic times of the
film rupture. If the film rupture time is short, short enough
for the soap film to disappear in the time between two im-
ages (1/4000 s), the amplitude of the signal inside the cav-
ity initially drops down from +δP to −δP (Fig. 7, left).
We note that this case corresponds to the rupture of a
very thin film, which has reached the minimum accessible
thickness [common black film (CBF, [10]) in our experi-
mental conditions] before bursting. If the film rupture time
is longer (in the same experimental conditions but, here,

the drainage is not complete when the film breaks), the
amplitude of the acoustic signal inside the cavity, right
after bursting, does not drop down to −δP anymore. Ac-
cordingly, the amplitude of the acoustic signal outside is
smaller (Fig. 7, right).

In order to point out the variability of the amplitude of
the acoustic signal from one experiment to another if one
performs the experiment without controlling the thickness
of the soap film when it breaks, we report measurements
of the initial amplitude of the acoustic signal inside the
cavity for two sets of experiments performed in the same
experimental conditions (Fig. 8). One observes that the
amplitude of the first oscillation is often much smaller than
δP , especially for the shorter cavity.

In the next Section 3.3.2, we report experimental re-
sults obtained for the bursting of CBFs. In this latter case,
the measurements are reproducible and we report a thor-
ough analysis of the signal and draw conclusions.

3.3.2 Spectral analysis

The theoretical analysis (Sect. A.5.4) demonstrates that
the amplitude and phase of the acoustic signal inside the
cavity are related to the Laplace transform of the pressure
drop P (t) in the output plane which results from the film
bursting. In what follows, we define f̂(s) ≡ L[P (t)/δP −1]
where L denotes the Laplace transform. As the acoustic
wave outside the cavity results from the radiation at the
open end of the acoustic wave inside (Sect. B), we can
estimate that the amplitude An and the phase φn of the
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signal from the microphone 1, located outside, satisfy:

An ∝ ωn

∣∣∣f̂(jωn)
∣∣∣ (5)

φn = arg[f̂(jωn)] − ωn

(
t0 +

d

c

)
(6)

where d denotes the distance between the microphone and
the output plane [we introduce the time delay t0 as, ex-
perimentally, the origin of time is taken when the signal
exceeds a given threshold value and not when the film
breaks. We thus expect t0 to be of the order of magnitude
of the signal period 2π/ω0].

From the interpolation of the acoustic signal outside,
we measure An and φn and, then, report the amplitude
(Fig. 9) and the phase (Fig. 10) of f̂(jw) as a function of
the frequency ω. At small frequency, both the amplitude
and the phase are constant, whereas the amplitude de-
creases significantly (like ω−k with k � 5) above a typical

-6

-4

-2

0

θ 
(j

ω)
 (

ra
d

)

6 7 8 9

10
4

2 3 4 5 6 7

ω (rad/s)

1/τ

Fig. 10. Phase θ(jω) ≡ arg[f̂(jωn)] as a function of ω. The
experimental data set is the same as in Figure 9. In order to
get a constant phase θ for ω < 1

τ
, we take t0 = 2.3 × 10−4 s

(δP = 18 Pa, Φ = 8 mm).

value 1/τ of the frequency ω. We observe a decrease in the
phase θ ≡ arg[f̂(jωn)] around the value 1/τ but the scat-
ter of the experimental data at large frequency avoids an
accurate determination of the limit reached when ω → ∞.
Nevertheless, the experimental results clearly exhibit a
characteristic time τ associated with the pressure drop
at the open end. We estimate τ ∼ 40 µs.

At this point, one could be tempted to recover the
characteristic time τ in the signal recorded at the closed
end of a long cavity. However, because of the dissipation
at the side walls (Sect. A.4) which leads to a dispersive
propagation (the harmonics have different velocity), the
width of the initial pressure front, generated by the burst-
ing of the soap film, increases during the propagation
toward the closed end. As a consequence, the temporal
behavior of the pressure from microphone 2 does not im-
age what happened at the open end. As an experimental
proof, we report results obtained for two different cavity-
lengths (8 and 23 cm) and different viscosities of the soap
film (Fig. 11).

The viscous soap films are obtained by mixing water,
soap, sugar and glycerine. We observe with the fast cam-
era that the characteristic rupture time is, at least, 2 to 3
times larger in this case. However, the first pressure drop
measured at the closed end of the cavity looks very similar
in the cases of the regular and viscous soap films, in the
case of the longest cavity (L = 23 cm): the initial pres-
sure drop associated with the film bursting is “hidden” by
the widening of the pressure front during the propagation
towards the closed end. Note also that the initial ampli-
tude of the signal does not depend on the characteristic
time τ of the pressure drop as, because of the choice of
a long cavity, τ remains smaller than 1/ω0. Making use
of a different cavity length (L = 8 cm), we estimate from
the data reported in Figure 11 the widening rate to be
ζ ∼ 15 µs/cm.

Even if the pressure drop at the bottom does not ex-
actly image the pressure drop at the open end, we can get
an estimate of the rupture time τ in the case of a short
cavity. For each signal, we determine the time τdrop nec-
essary for the pressure at the bottom to reach the first
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Fig. 12. Initial relative-pressure amplitude vs. estimated rup-
ture time τ . The initial acoustic-signal amplitude is normalized
to δP . The rupture time τ is estimated from the pressure drop
at the bottom. In this experiment, 1/ω0 ∼ 43 µs (L = 2 cm,
Φ = 10 mm).

minimum. We estimate τ to be about (τdrop − ζL)/2. We
report in Figure 12 the initial amplitude of the pressure
signal, normalized to δP , as a function of the estimated τ .
We observe, whatever the initial δP , a drastic decrease
of the amplitude when the rupture time increases, which
proves that the scattering of the data observed in Figure 8
is due to the variability of the rupture time.

Finally, we can compare the characteristic time τ mea-
sured in the experiment to an estimate of the typical time,
τtyp, expected for the opening of a film stretched over an
aperture of radius Φ/2. The opening of the film is driven
by the surface tension and is limited either by the viscous
dissipation [16] or by the inertia, this latter case being
relevant in our experimental conditions. As a simple de-
termination of the opening velocity appeared to be rather
subtle [11], we detail here the model [17]. Let us now con-

Fig. 13. Sketch of the opening pore.

sider a pore of radius r which grows with the velocity v
from the center of a frame (diameter φ/2, Fig. 13). The liq-
uid, initially located in the central disk of radius r, forms
a rim of mass m = πr2eρ, which grows with time (e stands
for the film thickness and ρ for the density of the liquid).
One could be tempted, at this point, to write the energy
conservation by simply balancing the gain of surface free
energy 2Γπr2 (Γ � 30 ± 2 mN/m stands for the surface
free energy of the liquid-air interface, the surface energy
of the film is twice larger) with the kinetic energy 1/2mv2.
However, if one considers the problem in the frame of ref-
erence of the rim (Fig. 13, inset), one can see that kinetic
energy is continuously injected in inner flows (these flows
are likely to be damped by the viscous dissipation but it is
not nessecary to solve the hydrodynamical problem inside
to go farther). We can easily see that the amount of ki-
netic energy which is introduced per unit time in the rim
writes 2πerv×1/2ρv2 (2πerv corresponds to the volume of
liquid, having the kinetic energy 1/2ρv2 per unit volume,
which enters the rim per unit time). As a consequence,
the energy balance must be written:

2Γ × 2πrv =
d

dt

(1
2
mv2

)
+ 2πerv × 1

2
ρv2. (7)

Taking into account the dependence of m on r, we obtain
the constant velocity of the rim v =

√
2Γ/ρe. Note that

one half of the energy is dissipated and that an estimate
of the velocity obtained without introducing the dissipa-
tion would be wrong by a factor

√
2 [11]. Assuming that

τtyp corresponds to the time the torus needs to reach the
edge of the aperture, we get τtyp = Φ

2

√
ρe/2Γ . We can

make use of τtyp = τ = 40 µs to determine an estimate of
the unknown film thickness. We get e = 5.7 nm, which is
small but of the order of magnitude of the CBF thickness
reported in the literature. We do not expect a quantita-
tive agreement between τtyp and τ as, first, there is no
experimental proof that the bursting of the soap film cor-
responds to the opening of a pore at the center; second, as
the relation between the dynamics of the pore opening and
the associated pressure drop can be rather complex; and,
finally, because the initial curvature of the soap film is not
taken into account. Nevertheless, we note that τtyp and τ
are, at least, of the same order of magnitude, which is
an indication that the acoustic measurements do provide
a realistic estimate of the characteristic time associated
with the pressure drop at the open end.
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3.4 Energy transferred to the acoustic wave

The sudden breaking of the soap film produces a pres-
sure drop inside the cavity. The total potential energy Ep

released can be evaluated by considering the adiabatic ex-
pansion of the volume V = π(Φ/2)2L of gas when the in-
ner pressure drops down by δP . One obtains Ep = 1

2
V δP 2

ρc2 .
In the present section, we report how the energy Ep is

transferred to the acoustic signal after the bursting of the
soap film. Before reporting our experimental results, we
discuss in Section 3.4.1 what the microphone 1 senses. The
behavior of the total energy is analyzed in Section 3.4.2.

3.4.1 Preliminary remarks

The microphone 1 senses the acoustic signal P (t) at a
given point outside the cavity. As the acoustic wave out-
side the cavity is produced by a source of finite spatial
extension (the surface area of the open end), the acoustic
intensity I is likely to depend on the position of the mi-
crophone (distance and orientation) in a rather complex
way.

Experimentally, the microphone is located at a finite
distance d = 5 cm from the open end. One could worry
the distance between the open end and the microphone
to alter the amplitude of the various harmonics relative
to each other. However, in our experimental conditions,
the wavelength associated with the resonant frequencies
is large compared to the cavity diameter and, as shown in
Section B.1, the far field approximation applies. Thus, the
amplitude associated with each of the modes decreases like
1/d where d is the distance to the open end, independent of
the frequency. Moving the microphone toward or outward
the tube end only rescales the power spectrum (as 1/d2)
and does not modify the shape of the envelope.

On the other hand, the microphone is oriented at
about 45 degrees from the cavity axis and we could also
worry the spatial structure of the acoustic wave to al-
ter the measurements. We show in Section B.2, that the
angular dependence of the acoustic wave outside the cav-
ity leads to a slight dependence of the acoustic intensity
on the frequency for a given orientation of the micro-
phone [Eq. (B.5)]. However, the correction is less than
10% in all our experimental conditions (Φ < 10 mm,
ν < 10 kHz). In addition, we estimate from the first zero of
the form factor that the modes having frequencies higher
than about 40 kHz will not be sensed by the microphone.

The microphone is located at a finite distance from the
tube aperture. One must, in principle, consider the spher-
ical nature of the acoustic wave outside when estimating
the acoustic energy from the pressure signal P (t) provided
by the microphone 1. However, we show in the appendix
(Sect. A.5.7) that the total acoustic energy measured out-
side the cavity is given, to within better than 2.5% in all
our experimental conditions, when neglecting the curva-
ture of the wave front.

Finally, the typical lateral size of the experimental
setup is less than d. It seems reasonable to assume that the

spatial structure of the outside wave is a sphere and, thus,
that the acoustic intensity is constant on the sphere of ra-
dius d. As a consequence, we estimate the total acoustic
energy outside Eout

T to be simply given by

Eout
T ≡ 4πd2

ρc

∫ ∞

t=0

P 2(t)dt, (8)

where P (t) is the pressure signal from the microphone 1.
We expect the main source of error to be the integration
over the sphere which leads to the prefactor 4π. Even if
the potential error is there difficult to estimate, we can
guess that Eout

T cannot overestimate the acoustic energy
by more than 15% as we checked experimentally that the
amplitude of the acoustic signal does not depend signif-
icantly on the angle α the microphone makes with the
cavity axis, up to α � 135◦.

3.4.2 Measurements and discussion of the energy balance

We already noticed that the soap film is likely to burst
before having reached its minimum accessible thickness
which leads to a scatter in the initial amplitude of the
acoustic signals. We measured the acoustic energy Eout

T for
different initial δP and report the data obtained when the
film has reached its minimum accessible thickness (CBF)
before bursting. In this case, the energy is maximum and
the measurements are reproducible (Fig. 14).

We observe that Eout
T ∝ δP 2 for small δP in agree-

ment with Ep ∝ δP 2. However, we note a departure from
the quadratic law for larger δP . This feature is qualita-
tively explained by a change in the geometry of the film.
Indeed, the film is almost flat at small δP and its burst-
ing results in an almost-planar pressure-front propagating
toward the cavity. In this case, the geometry of the front
matches that of the planar modes inside the cavity and
the energy transfer is efficient. By contrast, at large δP ,
the film bends significantly and its bursting results in a
curved pressure-front propagating toward the cavity. The
geometry of the front does not match that of the planar
modes inside the cavity anymore and the efficiency of the
energy transfer drops down.

More precisely, in the appendix A.5.7, we determine
the input transmission coefficient for the energy:

Ti =

∣∣∣∣∣1 −
(

x

6j + x

) (
1 − cos θ0

1 − ejx tan
θ0
2

)∣∣∣∣∣
2

(9)

where θ0 is defined by δP = (8Γ/Φ) sin θ0 and x = Φ/λ.
The dependence of Ti on δP accounts for the non-trivial
behavior of Eout

T . Indeed, from the dynamics of the pres-
sure drop at the open end and from Ep, the total en-
ergy transferred to the resonant modes inside the cavity,
Ein

T , can be obtained by taking into account the trans-
mission of each of the harmonics. In addition, we expect
Eout

T ∝ Ein
T , provided that only δP is varied. We observe

that the dependence of Eout
T on δP , predicted from Ti,

compares nicely with the experimental observations (lines
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Fig. 14. Total acoustic energy outside Eout
T vs. initial over-

pressure δP . Whatever the cavity diameter Φ, the acoustic en-
ergy scales like δP 2 for small δP whereas a departure from
the quadratic law is observed for large δP . The bending of the
film accounts nicely (lines) for the experimental observations
(L = 5.5 cm). Black arrows indicate the maximum δP = 8Γ/Φ
for each of the diameters. In inset is plotted the percentage of
energy we would measure outside (from the fit of the experi-
mental points in this figure), as a function of the percentage
of the energy expected to be measured, when excluding the
geometrical effects. Note the good agreement between theory
and the experimental observations.

in Fig. 14). The agreement proves that the geometry of
the film is responsible for non-trivial dependence of the
acoustic energy on the initial overpressure.

To go farther, we deduce from the interpolation of the
experimental data the fraction β = (1/Ti)Eout

T /Ep of the
total energy Ep, that would be transferred to the acoustic
modes outside the cavity in absence of the geometrical
effects due to the bending of the film. Measured values
βm are reported in Table 1.

We can compare βm to another estimate of β obtained,
in addition, by considering the viscous dissipation and ra-
diation only. On the one hand, assuming that the burst-
ing of the film results in an exponential decrease of the
pressure in the output plane with the characteristic time
τ , one can estimate the amount of energy initially trans-
ferred to the acoustic modes inside the cavity (Sect. A.5.3)
in absence of geometrical effects:

Ein
T =

[
1 − 2ω0τ

π
tanh

( π

2ω0τ

)]
Ep ≡ βτEp. (10)

Note that the fraction βτ depends on the rupture time τ ,
which explains the scatter of the experimental data ob-
tained when the film thickness is not controlled. In the
case of a common black film, we estimated τ ∼ 40 µs for
Φ = 8 mm, which leads to βτ � 0.75. As we expect τ to
depend linearly on Φ, we can also report estimates of βτ

for Φ = 6 and 10 mm in Table 1.
On the other hand, the total acoustic energy recovered

outside, Eout
T , corresponds to the part of the energy Ein

T
which is radiated and not dissipated at the walls. One can
show that the fraction τZ

n /(τZ
n +τv

n) of the energy initially
transferred to the mode n inside the cavity is dissipated

Table 1. Percentages β. Data in bold font are experimental
values, whereas other data are estimates (see text).

Φ 6 mm 8 mm 10 mm

βτ 81% 75% 68%

βv 16% 30% 46%

βe 13% 22% 31%

βm 14% 23% 26%

at the cavity wall. We remind that τv
n and τZ

n are the
characteristic times associated with the dissipation at the
wall and with the radiation at the open end, respectively.
Defining βv = Eout

T /Ein
T and summing the contribution of

all the harmonics, we obtain the expected value of βv for
Φ = 8 mm. Taking into account the scaling behaviors of
τv
n and τZ

n on Φ, we get the estimates reported in Table 1
for Φ = 6 and 10 mm.

Thus, from the dissipation at the wall and from the
finite rupture time τ , we expect, in absence of the geomet-
rical effects due to the bending of the film, Eout

T � βeEp,
with βe = βτβv, which compares nicely to βm (see in-
set Fig. 14). However, note that the agreement must be
considered with caution, considering the uncertainty in
measuring the characteristic time τ and in the surface of
integration in equation (8).

As a conclusion of the energy study, we would like to
underline again the strong influence of the film rupture
time on the energy conversion. Hence, direct measure-
ments of the acoustic energy do not provide any infor-
mation on the energy initially loaded inside the cavity if
the film rupture is unknown. Any attempt to do so would
lead to false interpretations.

4 Conclusion and perspectives

We reported an experimental study of the acoustic signal
associated with the bursting of a thin liquid film at the
open end of a cylindrical cavity.

Let us first explain qualitatively why the signals from
microphones 1 and 2 look so different. The radiation at the
open end and the propagation inside the cavity are respon-
sible for the drastic differences in the signals recorded at
the bottom of the cavity and outside. Indeed, the trans-
mission coefficient associated with the radiation is propor-
tional to the frequency νn so that, at a given time t, the
amplitude of the harmonic n, relative to that of the fun-
damental, is (2n + 1) times larger outside than inside the
cavity. Moreover, the propagation along the cavity length
makes the relative phase of two successive harmonics ro-
tate by the angle π, so that, while in phase at the bottom,
they have opposite phase in the output plane. The har-
monics are thus clearly visible in the signal outside the
cavity while they are hardly distinguishable in the signal
recorded at the bottom. In addition, the harmonics are
only observed at short times as they are damped faster
mainly because of the radiation.
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Our experimental findings can be summarized as fol-
lows:

• The acoustic signal exhibits a well defined fundamen-
tal frequency ν0 which is mainly governed by the cav-
ity length L. However, because of the radiation at the
open end, the resonant length L′, associated with the
fundamental frequency ν0, does not exactly equal the
cavity length L but L + δL where δL is a fraction of
the tube diameter Φ.

• For long cavities, we observe a banded spectrum, with
frequency peaks νn = (2n + 1)ν0, where ν0 is the fun-
damental frequency.

• Because of the radiation at the open end and of the
thermal and viscous dissipation at the cavity walls,
the acoustic signals we record inside and outside the
cavity are damped in time. The associated character-
istic times, we measure experimentally, are in fairly
good agreement with the theoretical predictions with-
out any adjustable parameter.

• The spectral content of the acoustic signals depends on
how the cavity is opened. As a consequence, the care-
ful analysis of the acoustic signal recorded outside the
cavity makes it possible to determine accurately the
characteristic time associated with the initial pressure
drop at the open end of the cavity.

• The total amount of energy recovered in the acoustic
signals depends drastically on the film curvature and
on the dynamics of the film bursting.

We would like to emphasize once again the didactic goals
of the work we reported herein. We were only aiming at the
deep understanding of all the physical processes that gov-
ern the acoustic signals associated with the sudden open-
ing of an under- or overpressurized cavity.

Focusing on one experimental situation, we can con-
clude that we can make use of the resonant cavity for
performing the spectral analysis of the pressure drop asso-
ciated with the film bursting. We are taught, for instance,
that the bursting of a common black film, stretched over
an 8 mm-in-diameter aperture, is associated with a char-
acteristic time of about 40 µs.

Generalizing to other application fields, we can make
use of our findings to better understand acoustic signals
recorded in the nature. For instance, our study provides
useful tools for the interpretation of the acoustic signals
recorded on field by the volcanologists. First, the spec-
tral content (frequencies) gives direct access to pieces of
information about the geometry of the system: the res-
onant length relates to the bubble length whereas, from
the surface, only the diameter of the bubble head or of
the conduit can be observed. In the case of large bubbles
bursting at the surface of a lava lake, the aspect ratio of
the bubble depends on the rheological properties of the
lava so that listening to the volcano makes it possible to
access some rheological properties of the fluid. We point
out that our experimental geometry is also relevant for
interpreting the acoustic signal from the bursting of a gi-
ant elongated bubble at the top of a volcanic vent [7].
In this case the resonant length informs us about the con-
duit length and the damping characteristic-time about the

processes that lead to the energy loss in the system, which
gives constraints for modeling the resonant cavity [viscos-
ity of the medium in which the acoustic wave propagates
(gas or magma), material present at the closed end (either
magma or solid rock from the reflection coefficient), etc.].
On the other hand, we point out some limitations of the
acoustic methods: as they drastically depend on the film-
rupture characteristic-time, which is neither a controlled
nor a measured quantity in the field, the acoustic-signal
amplitude and/or energy cannot be used to measure the
total energy released during the bursting of a single bub-
ble. Any attempts to do so would lead to misinterpretation
of the field data.
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Appendix A: Theoretical background

A.1 The perfect resonant cavity

Let us denote P (r, t) the pressure field associated with the
acoustic wave (P does not include the constant pressure
Pa of the atmosphere). Denoting c the velocity of sound in
air, we write the general equation governing an acoustic
wave:

∆P − 1
c2

∂2P

∂t2
= 0. (A.1)

The particle velocity v, associated with the pressure field
P (r, t), obeys the relation:

ρ
∂v
∂t

= −∇P. (A.2)

Let us consider the cylindrical cavity [length L (x ∈
[−L, 0]), diameter Φ] initially (t < 0) filled with air at
the pressure Pa + δP . We are aiming at the description of
the evolution of the pressure field inside the cavity result-
ing from the opening of the cavity at one end (x = 0). We
limit our study to the planar waves, P (r, t) = P (x, t), that
can propagate in the cavity and ignore the higher-order,
non planar, modes that could exist in the cavity but that
are not relevant for our purpose [18].

Denoting P̂ (x, s) the Laplace transform of P (x, t), de-
fined to be [19]

P̂ (x, s) =
∫ ∞

0

P (x, t)e−stdt, (A.3)
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we obtain from the general equation (A.1),

∆P̂ (x, s)− s2

c2
P̂ (x, s) = − s

c2
P (x, 0)− 1

c2

∂P

∂t
(x, 0). (A.4)

Taking into account the initial condition P (x, 0) = δP ,
∀x ∈ [−L, 0[, the general solution to equation (A.4) satis-
fies

P̂ (x, s) = A+e
sx
c + A−e−

sx
c +

δP

s
(A.5)

where the constants A+ and A−, which are functions of s,
are given by the boundary conditions at both ends.

Assuming that the reflection of the sound wave at the
closed end (plane x = −L) occurs without any loss, the
particle velocity along the x-axis, vx(−L, t) = 0 (∀t). From
the Laplace transform of equation (A.2),

sv̂x(x, s) − vx(x, 0) = −1
ρ
∇P̂ (x, s), (A.6)

and from the initial condition, vx(x, 0) = 0 (∀x ∈ [−L, 0[),
we get ∇P̂ (−L, s) = 0 (∀s). As a consequence, A+ = A−
and, thus,

P̂ (x, s) = A(s) cosh
[s(x + L)

c

]
+

δP

s
(A.7)

where the amplitude A, which is a function of s, is given
by the boundary condition at the open end.

In a first approximation, once the cavity is opened, the
overpressure at x = 0 instantaneously vanishes so that
P (0, t) = δP (t < 0) and P (0, t) = 0 (t > 0) (we thus
consider in this section that the output impedance at the
open end is zero). As the consequence, the Laplace trans-
form of the pressure at the open end P̂ (0, s) = 0 and, from
equation (A.7),

P̂ (x, s) =
δP

s

{
cosh

[
s
cL

] − cosh
[

s
c (L + x)

]
cosh

[
s
cL

]
}

. (A.8)

The solution for the pressure field P (x, t) is obtained
by calculating the inverse Laplace transform of P̂ (x, s).
The resonant frequencies are associated with the poles,
sn = j(2n + 1) πc

2L (n integer ranging from −∞ to +∞),
which cancel the denominator cosh

[
s
cL

]
in equation (A.8).

Thus, the perfect cavity (reflection without any loss at the
closed end and zero output impedance) exhibits a series of
resonant frequencies ωn ≡ (2n+1) πc

2L which are associated
with the wavelengths λn ≡ c

νn
= 4L

2n+1 .
Once the resonator has been excited due to the opening

of the cavity at one end, one could expect to hear the res-
onant frequencies ωn outside the cavity. However, as the
frequencies ωn correspond to perfectly resonant modes, by
definition, the amplitudes of these modes do not decrease
with time and, accordingly, no acoustic wave can exist
outside the cavity. This conclusion, which contradicts the
experimental observations, is the consequence of the spe-
cific boundary condition at the open end that we chose in
this section: we considered that the pressure in the output

plane is zero for t > 0 (zero output impedance). As dis-
cussed in Appendix B, this assumption is not experimen-
tally satisfied and the resonant modes can indeed escape
the cavity, producing the acoustic wave that we can hear
outside. In the next Section A.2, we will consider a more
realistic boundary condition at the open end and analyze
the consequences on the resonant modes inside the cavity.

A.2 Effect of the radiation at the open end

A.2.1 Introduction

Let us now assume that the output acoustic impedance,
Zr, is finite (Appendix B) and that there exists acoustic
waves inside and outside the cavity. Writing the continuity
of the pressure and velocity fields in the output plane (x =
0), we get:

P̂ (x, s) =
δP

s
×

{
1− cosh

[
s
c (L + x)

]
cosh

[
s
cL

]
+ Zr(s)

ρc sinh
[

s
cL

]
}

(A.9)

which reduces to equation (A.8) in the limit Zr(s) → 0.

A.2.2 Resonant frequencies

The resonant modes are again obtained by determining
the poles of P̂ (x, s). Using the expression (B.7) of the
acoustic impedance Zr determined in the case of a flanged
aperture, we get the poles sn which satisfy

1
tanh

[
sn

c L
] = −Zr(sn)

ρc
= − 4Φ

3πc
sn +

Φ2

8c2
s2

n. (A.10)

Neglecting the second order term in equation (A.10), we
obtain the corresponding wavelengths

λn =
4

2n + 1

[
L +

4
3π

Φ
]

(A.11)

where n is an integer ranging from 1 to ∞.
Thus, to the first order in Φ/L, the radiation at the

open end leads to a slight increase in the wavelength λn

and, accordingly, to a slight decrease in the frequency
ωn = 2πc/λn. In the case of a flanged aperture [20], the
effective resonant length of the cavity is L′ = L + 4

3π Φ
[Eq. (B.7)]. In the same way, we obtain L′ = L+0.3 Φ for
an unflanged aperture [Eq. (B.8)].

A.2.3 Damping of the resonant modes

Taking into account the second order term in equation
(A.10) and defining τZ

n by sn ≡ jωn − 1/τZ
n , we get

τZ
n =

8cL

Φ2ω2
n

= 4π
c2

Φ2

2n + 1
ω3

n

. (A.12)
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One can notice that τZ
n independently depends on the

cavity length L and on the harmonic in consideration (i.e.
on n).

The radiation leads to the damping of the harmonic
n, having the frequency ωn, with a characteristic time τZ

n ,
which scales like ω−3

n . Equation (A.12) holds true in the
case of a flanged aperture. In the case of an unflanged
aperture [13], the characteristic time associated with the
radiation is expected to be twice longer, 2τZ

n [the real part
of the output impedance is twice smaller, Eq. (B.8)].

A.2.4 Pressure field

By calculating the inverse Laplace transform of P̂ (x, s)
given in equation (A.9), we can write an approximate so-
lution for the pressure field inside the cavity:

P (x, t) =
4δP

π

×
∞∑

n=0

(−1)n

2n + 1
cos

[ωn

c
(L + x)

]
cos(ωnt) exp

[
− t

τZ
n

]

(A.13)

in which we neglect terms having amplitudes smaller
than or of the order of (φ/L)2δP . Note that, from equa-
tion (A.13), P (x, 0) = δP, ∀x ∈ [−L, 0[.

Equation (A.13) describes the inner pressure field in
the case of an instantaneous opening of the cavity. In-
deed, we consider the initial condition of constant pres-
sure inside the cavity for t < 0 (the output impedance
Z is thus infinite for t < 0) and assume that the out-
put impedance is Zr for t > 0. Thus, we assume that the
output impedance drops down from the infinity to Zr in
an infinitely short time. We shall discuss the effect of the
characteristic time of the cavity opening in Section A.5.
However, at this point, we do prefer to analyze first two
additional physical processes which lead to the damping of
the resonant modes inside the cavity: the partial reflection
at the closed end (Sect. A.3) and the viscous dissipation
at the cavity walls (Sect. A.4).

A.3 Effect of partial reflection at the closed end

A.3.1 Pressure field

Up to now, we considered that the reflection at the closed
end of the cavity occured without energy loss. However,
because of finite acoustic impedance of the material the
frame is made of or, especially, when using the micro-
phone 2 at the bottom, part of the acoustic energy is lost
in the plane x = −L.

Let us assume that a planar wave propagating toward
the closed end is reflected partially as a planar wave prop-
agating toward the open end with the reflection coefficient
r0. Assuming zero output impedance at the open end, we

get:

P̂ (x, s) =
δP

s

×
{

1 − cosh
[

s
c (L + x)

]
+ 1+r0

1−r0
sinh

[
s
c (L + x)

]
1 cosh

[
s
cL

]
+ 1+r0

1−r0
sinh

[
s
cL

]
}

.

(A.14)

Note that equation (A.14) reduces to equation (A.8) in
the limit r0 → −1.

A.3.2 Damping of the resonant modes

Defining τr0
n such that sn ≡ jωn − 1/τr0

n we get, from the
real part of the poles, ωnτr0

n = π
2

1−r0
1+r0

(λn � Φ). Thus,
the harmonics amplitude decreases exponentially with the
characteristic time

τr0
n =

1 − r0

1 + r0

1
4νn

. (A.15)

Note that, assuming that r0 is real, the reflection at the
closed end does not affect the resonant frequencies.

A.4 Effect of dissipation at the cavity walls

The shear viscosity of air is small and the damping of the
acoustic wave due to viscous dissipation can usually be
neglected. Indeed, the characteristic damping length for
an acoustic wave in air is of about 300 m. However, the
planar waves propagating inside the cavity are not com-
patible with the condition of zero velocity along the x-axis
at the side walls and dissipation occurs in the boundary
layer, in which air is subjected to important shear.

A.4.1 Physical background

The dynamical equation including the kinematic viscos-
ity η writes

∂v
∂t

= −1
ρ
∇P + η∆v (A.16)

which reduces to equation (A.2) in the limit η = 0. In
cylindrical coordinates, let us consider that the velocity
along the x-axis (r = 0) oscillates at the frequency ω with
the amplitude v∞. Assuming that the thickness of the
boundary layer, Lbl, is much smaller than the cavity di-
ameter Φ, one can neglect the curvature of the walls and
write the velocity along the x-axis

vx(r) = v∞

{
1 − exp

[
− (1 + j)(Φ

2 − r)
Lbl

]}
(A.17)

where Lbl =
√

2η/ω (η = 1.5 × 10−5 m2 s−1 stands for
the kinematic viscosity of air). From equation (A.17), one
can estimate the viscous stress applied by the side walls to
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the fluid and write the force balance in the cross section
of the cavity:

ρ
∂vx

∂t
= −∂P

∂x
− ρβvx (A.18)

where β = 1/Φ
√

8ωη(1 + j) and vx stands for the mean
particle velocity along the x-axis in the cross section of the
cylindrical cavity (note that Eq. (A.18) holds true only in
the limit Lbl 
 Φ and in the harmonic regime).

A.4.2 Modified wave equation and pressure field

We can rewrite, from the dynamical equation (A.18) and
from the mass conservation,

∂ρ

∂t
+

∂(ρvx)
∂x

= 0, (A.19)

the wave equation

∂2P

∂t2
− c2 ∂2P

∂x2
= −β

∂P

∂t
(A.20)

which takes into account the viscous dissipation in the
boundary layers at the side walls. Accordingly, the
pressure field inside the cavity, assuming zero output
impedance and reflection without loss at the closed end,
can be written

P̂ (x, s) =
δP

s

{
cosh

[
KL

] − cosh
[
K(L + x)

]
cosh

[
KL

]
}

(A.21)

where c2K2 ≡ s2 + βs. Note that, in the limit β → 0,
K = s/c and equation (A.21) reduces to equation (A.8).

A.4.3 Damping of the resonant modes

Seeking for the damped oscillatory-modes, we write s =
jω − 1/τ and determine the resonant frequencies ωn and
the corresponding viscous-damping characteristic-times
τv
n cancelling the denominator in equation (A.21).

Thus, assuming that the reflection at the closed end
occurs without energy loss and zero output impedance,
we estimate that the dissipation within the boundary layer
slightly affects the resonant frequencies and, in addition,
leads to the damping of the mode n inside the cavity over
the characteristic time

τv
n � Φ√

2ωnη
. (A.22)

The shear in the boundary layer induces temperature
gradients. The associated thermal losses at the walls
are accounted for by replacing η in equation (A.22) by

η[1 + (γ − 1)P− 1
2

r ] where Pr � 0.7 stands for the Prandtl
number and γ = 1.4, the specific-heat ratio [20].

A.5 Response of the resonant cavity to a pressure
jump at the open end

A.5.1 Introduction

In this section, we discuss how the energy initially loaded
in the cavity is transferred, immediately after bursting of
the soap film, to the resonant modes. In order to under-
stand the behavior of the system, before generalization, we
determine the solution in the simple case of an exponential
decay of the pressure at the open end with the character-
istic time τ . We assume P (0, t) = δPe−

t
τ (∀t > 0).

The Laplace transform of the pressure at the open end
is given by P̂ (0, s) = τδP

1+sτ so that, from equation (A.7),

P̂ (x, s) =
δP

s

{
1 − cosh

[
s
c (L + x)

]
(1 + sτ) cosh

[
s
cL

]
}

. (A.23)

A.5.2 Pressure field

The solution is obtained from the poles of equation (A.23),
which are s = −1/τ and sk = j(2k + 1) πc

2L (k integer
ranging from −∞ to +∞). After some algebra, we get:

P (x, t)
δP

=
cosh(L+x

cτ )
cosh( L

cτ )
e−

t
τ

+
∞∑

n=0

an cos
[ωn

c
(L + x)

]
sin

[
ωnt + θn

]
(A.24)

where we define the frequency ωn, amplitude an and phase
φn of the mode n:

ωn ≡ (2n + 1)
πc

2L
, (A.25)

an ≡ 4
π

ω0

ωn

(−1)n√
1 + (ωnτ)2

, (A.26)

tan(θn) ≡ 1
ωnτ

, φn ∈ [0,
π

2
[. (A.27)

In the limit τ → 0, we recover equation (A.13) excluding
the radiation at the open end (i.e. τZ

n → ∞).
The first term in equation (A.24) corresponds to an

exponential decrease of the pressure, at each position x in
the cavity, with the characteristic time τ . This contribu-
tion does not correspond to a resonant mode but to the
mean gas flow which escapes the cavity. By constrast, the
terms in the sum correspond to the resonant modes. The
amplitude an decreases when n increases and depends on
the characteristic time τ : if ωnτ 
 1, an ∝ ω−1

n and, if
ωnτ � 1, an ∝ (ω2

nτ)−1. The change in regime occurs at
the characteristic frequency ωc = 1/τ .

A.5.3 Energy injected in the resonant modes

The total amount of acoustic energy inside the cavity once
opened, Ein

T , corresponds to the contribution of the terms
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in the sum in equation (A.24). We remind that the den-
sity of acoustic energy equals 1

2ρ(v2 + P 2

ρ2c2 ). After simple
algebra, taking into account the relation (A.26) and inte-
grating over the inner volume V , we get

Ein
T =

1
2

V δP 2

ρc2

[
1 − 2ω0τ

π
tanh

( π

2ω0τ

)]
. (A.28)

In the limit τ → 0, Ein
T = 1

2
V δP 2

ρc2 . Note that Ein
T corre-

sponds to the work necessary for increasing adiabatically
the pressure inside the cavity by δP (χaρc2 = 1, where
χa is the adiabatic compressibility of air [13]). Thus, if
the typical duration of the pressure drop τ is short com-
pared to the period 2π/ω0 associated with the fundamen-
tal frequency ω0, the total amount of potential energy ini-
tially loaded in the cavity is transferred to the acoustic
modes. To the contrary, when the typical opening time
τ increases, the energy transferred to the acoustic modes
decreases according to equation (A.28) in the case of an
exponential decay of the pressure in the output plane.

A.5.4 Generalization

The result reported in Section A.5.2 can easily be gener-
alized to any behavior P (0, t) of the pressure at the open
end if one considers only the resonant modes.

Let us first define the functions g(x, t) ≡ P (x, t)/δP−1
and f(t) ≡ g(0, t). From equation (A.7), we get

ĝ(x, s) = f̂(s)
cosh[ s

c (L + x)]
cosh[ s

cL]
. (A.29)

One can determine the solution g(x, t) by calculating the
inverse Laplace transform of ĝ(x, s). Aiming solely at the
description of the resonant modes, we consider the poles
of 1/cosh[s/cL] and not the poles of f̂(s) that correspond
to a non-resonant part of the pressure field. Limiting thus
our study to the oscillatory part of the pressure field, we
write

g(x, t) =
∞∑

n=0

an cos
[ωn

c
(L + x)

]
sin(ωnt + θn) (A.30)

together with

an =
4ω0

π
(−1)n

∣∣∣f̂(jωn)
∣∣∣ (A.31)

θn = arg[f̂(jωn)]. (A.32)

Note that equation (A.30) reduces to the sum in equa-
tion (A.24) for f(t) = exp(− t

τ ) − 1.
The amplitude and phase of the various harmonics are

governed by the pressure drop at the open end: measuring
the amplitude and phase of several harmonics makes it
possible, in principle, to determine the Laplace transform
P̂ (0, s) of the pressure drop at the open end and, then,
the pressure in the ouput plane P (0, t) as a function of
time. Finally, note that, if we denote Ein

T any value of the

initial energy in the acoustic modes inside the cavity at
t = 0, we obtain that f̂(s) satifies the condition

∞∑
n=0

∣∣∣f̂(jωn)
∣∣∣2 =

π2ρc2

4V ω2
0

1
δP 2

Ein
T . (A.33)

A.5.5 Radiation and damping of the resonant modes

The radiation at the open end (Sect. A.2), the partial
reflection at the closed end (Sect. A.3) and the viscous
dissipation at the cavity walls (Sect. A.4) lead the damp-
ing of the resonant mode in time. The partial reflection at
the closed end and the viscous dissipation are not affected
by the opening of the cavity for t ≥ 0. To the contrary,
the bursting of the soap film affects the evolution of the
pressure at the open end with time and, thus, governs the
characteristic time τ (the output impedance drops down
from the infinity to Zr during the opening of the film).
The phenomenon can hardly be described in the theory
and, seeking for simplicity, we will assume that the out-
put impedance is Zr for t ≥ 0 and that the opening of
the film only governs the characteristic time τ . We expect
such an approximation to be valid as long as τ is smaller
than the time needed by the acoustic wave to go back and
forth from the open end to the closed end. This is to say
as long as τ < 2L/c or ω0τ < π, which is generally the
case in our experimental conditions.

In this framework, we suggest to write from equa-
tion (A.30), the pressure field associated with the acoustic
modes inside the cavity

P (x, t)
δP

=
∑∞

n=0 an cos
[ωn

c
(L + x)

]
(A.34)

× sin (ωnt + θn) exp
[
− t

τd
n

]

where an and φn are given by equations (A.31) and (A.32).
The frequencies ωn are associated with the modified wave-
lengths λn which takes into account the effect of the ra-
diation [Eq. (A.11), we neglect here the slight shift of the
resonant frequency due to the viscous dissipation at the
cavity walls]. The damping characteristic-time τd

n , which
appears in equation (A.34), is given by

1
τd
n

=
1

τZ
n

+
1

τr0
n

+
1
τv
n

(A.35)

where the various characteristic times τn are from Sec-
tions A.2 to A.4.

A.5.6 Acoustic wave outside the cavity

From the solution inside the cavity [Eq. (A.34)], we can
calculate the particle velocity in the output plane and
thus, from equation (B.1), the pressure field, P out(r, t),
outside the cavity (Sect. B). We first assume that the
microphone is located far from the output plane, at a
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distance d large enough (d � Φ) for the far field ap-
proximation to be valid (Sect. B.1). Second, we assume
that the wavelength λn, associated with the harmonics
we consider, is large compared to the cavity diameter Φ
so that the pressure field outside has the spherical ge-
ometry (Sect. B.2). Finally, the damping of the mode n
is supposed to be slow enough for considering that the
amplitude is constant over one period (i.e. ωnτd

n � 1). In
this framework, equation (B.1) can be used (the imaginary
parts of ω and k are small and can be neglected) and the
integration over the output plane reduces to a multiplica-
tion by the surface area of the cross section. Calculating
the velocity vx from the solution inside the cavity, we get

P out(r, t)
δP

=
Φ2

4Lr

×
∞∑

n=0

ωn

∣∣∣f̂(jωn)
∣∣∣ sin

[
ωn

(
t − r

c

)
+ θn

]
exp

[
− t

τd
n

]
.

(A.36)

We remind that θn = arg[f̂(jωn)].
Thus, listening to the sound outside the cavity makes

it possible to determine the amplitude and phase of the
Laplace transform of the pressure drop in the output plane
and, then, the pressure drop itself. Finally, we point out
that the conclusion holds true only for the harmonics
which satisfy the condition ωnτd

n � 1. Considering the
radiation only (τd

n = τZ
n ), we can rewrite this latter condi-

tion (2n+1) 
 1/π(4L/Φ)2. The equality leads to n = 10
for the shortest and widest cavity we use in the experi-
ments whereas we only sense harmonics up to n = 3. We
can thus consider that equation (A.36) gives a fairly good
estimate of the pressure field outside the cavity in our
experimental conditions.

A.5.7 Total energy in the acoustic wave outside the cavity

Assuming that the pressure and, thus, velocity fields out-
side the cavity are spherical, we can write the general ex-
pression of the total acoustic energy that crossed a sphere
of radius r from t = 0 to ∞

Eout
T = 4πr2

∫ ∞

t=0

Idt (A.37)

= 4πr2

∫ ∞

t=0

P out(r, t)vout(r, t)dt

where I stands for the acoustic intensity. By principle,
this integral must be independant of r.

Consider then first that r is much larger than the wave-
length of the fundamental (we point out here that this is
not experimentally the case as the microphone 1 is not lo-
cated far enough from the output plane). In this case, the
acoustic wave is locally planar so that the acoustic inten-
sity reduces to I = P out2/(ρc). Calculating the integral in
equation (A.37), one obtains the general expression of the

total energy in the acoustic wave outside as a function of
f̂(s)

Eout
T =

πΦ4

16L2
δP 2

∞∑
n=0

τd
nω2

n

∣∣∣f̂(jωn)
∣∣∣2. (A.38)

The result must be independant of the distance r and
Eout

T is the total amount of acoustic energy that crosses
any surface surrounding the cavity aperture.

Equation (A.38) applies whatever the physical origin of
τd
n . If the radiation is the only source of damping, τd

n = τZ
n

and equation (A.38) reduces to

Eout
T =

πΦ2

4L
cδP 2

∞∑
n=0

∣∣∣f̂(jωn)
∣∣∣2 = Ein

T (A.39)

where the second equality is obtained by using the condi-
tion (A.33). Thus, if the acoustic waves are only radiated
at the open end, without any source of dissipation, the
total amount of energy in the acoustic wave outside the
cavity Eout

T equals the total amount of acoustic energy
Ein

T initially loaded inside the cavity at t = 0. We recover
here the energy conservation.

At last, we already noticed that the microphone 1 is lo-
cated at a distance d from the open end which is not large
in comparison to the wavelength λ0 of the fundamental.
As the microphone only provides us with the local pres-
sure and not with the particle velocity, let us define an
estimate of the total acoustic energy by

Eapprox
T ≡ 4πd2

ρc

∫ ∞

t=0

[
P out(d, t)

]2

dt (A.40)

from equation (A.37) and assuming that the acoustic
impedance is that of a planar wave. One can show that
Eapprox

T = Eout
T [1 + O(π2Φ2/64Ld)]. Thus, we estimate

that Eapprox
T differs from Eout

T by less than 2.5% in all
our experimental conditions (Φ ≤ 1 cm, L ≥ 2 cm and
d = 5 cm).

Appendix B: Radiation at the open end

Let us consider a planar wave which propagates inside the
cavity toward the open end. When crossing the output
plane x = 0, the sound wave can invade the whole half-
space x > 0. Thus, the planar wave is diffracted at the
open end. The phenomenon has been widely studied [14],
and we will summarize below the main results, obtained
in the “piston” approximation, that we need for discussing
our experimental findings.

Assuming the pressure field depends on time like ejωt,
we can decompose, at the open-end, the incident planar-
wave into an infinite number of infinitesimal source ele-
ments of the form

dP (r) = jωρ
vx

2π

e−jk|r−r′|

|r − r′| dS (B.1)
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where vx is the axial component of the velocity field as-
sociated with the planar wave inside the cavity, r′ the
position of the source element in the aperture plane and
dS an infinitesimal surface element around the source. In-
tegration of equation (B.1) over the whole surface of the
aperture leads to the pressure field outside the cavity.

B.1 Near field — far field regions

Consider first a point located on the x-axis. We get by
integration the pressure amplitude

|P (r)|
∣∣∣∣∣

y=0
z=0

= 2ρcvx

∣∣∣sin{1
2
kx

[√
1 +

( Φ

2x

)2

− 1
]}∣∣∣.

(B.2)
Thus, along the x-axis, the amplitude of the pressure wave
oscillates when the open end is approached from large val-
ues of x. Moving toward the cavity, one encounters the
first local minimum in the pressure amplitude at x0 which
satisfies

4x0

Φ
=

Φ

λ
− λ

Φ
. (B.3)

The distance x0 is a convenient demarcation between the
near field region, in which the behavior of the pressure
field is complicated, and the far field region, in which the
pressure amplitude decreases monotically along the x-axis.
Note that x0 < 0 for λ > φ, which means that, in this case,
there is no near field region. In our experimental condi-
tions, the length L of the cavity is always much larger than
the diameter φ. As a consequence there is no near field re-
gion, at least for the fundamental and several harmonics
having low enough frequency.

B.2 Spatial structure of the radiated wave

Consider now a point located far away from the aperture
(|r| � Φ). We get by integration, to the leading order
in Φ/r,

|P (r)|
∣∣∣∣∣
|r|�Φ

= j
ρc

8
vx

Φ

r
kΦ e−jkrH(θ) (B.4)

where r = |r| and H(θ) denotes the dependence of the
pressure amplitude on the angle θ (cos θ ≡ x · r) given by:

H(θ) = 2
J1(kΦ

2 sin θ)
kΦ
2 sin θ

. (B.5)

In equation (B.5), J1 denotes the first-order Bessel func-
tion of the first kind [19]. Thus, even in the far field ap-
proximation, the pressure field outside the cavity strongly
depends on the angle θ. However, in our experimental con-
ditions λ � Φ and, as discussed in the text (Sect. 3.4.1),
our measurements do not depend on the angular position
of the microphone 1.

B.3 Output impedance

We can make use of the “piston” approximation for eval-
uating the acoustic impedance at x = 0 of the acoustic
wave outside the tube. To do so, we can calculate the
pressure field in the plane of the aperture by integration
of equation (B.1). A second integration makes it possi-
ble to estimate in the case of a flanged pipe, as done
by Rayleigh [14,21], the mean value

〈
P

〉
, in the aperture

plane, of the pressure P associated with the acoustic wave

〈
P

〉
= 2jρcvx

∫ ∞

0

[
J1(ξk Φ

2 )
]2

ξ
√

ξ2 − 1
dξ. (B.6)

In the limit λ � Φ, we get the acoustic impedance asso-
ciated with the radiation at the open end in the case of a
flanged pipe

Zr

ρc
=

〈
P

〉
ρcvx

� 1
8
(kΦ)2 +

4
3π

jkΦ. (B.7)

Similar calculations by Levine and Schwinger [15] in the
case of an unflanged pipe lead to a similar, but numerically
different, expression

Zr

ρc
=

〈
P

〉
ρcvx

� 1
16

(kΦ)2 + 0.3 jkΦ. (B.8)

Because of the radiation, the acoustic impedance at the
open end is non-zero.

B.4 Transmission coefficient

From the continuity of the pressure and velocity fields in
the aperture plane, we can estimate energy transmission
coefficient at the open end [13]. One obtains

T =
1
2

k2Φ2

[1 + 1
8k2Φ2]2 + [ 4

3π kΦ]2
, (B.9)

in the case of a flanged aperture. In the limit kΦ 
 1,
the transmission coefficient reduces to T � 1/2k2Φ2 (the
approximation is better than 10% up to kΦ = 0.5). Note
that T is an increasing function of the frequency as long
as λ > Φ.

Appendix C: Input impedance

C.1 Qualitative analysis

The rather complex behavior of the total energy ET as
a function of the overpressure δP can be understood by
considering the geometrical structure of the initial config-
uration (film shape). Indeed, before bursting, the soap film
is spherical-shaped (radius R) and the pressure difference
is δP = 4Γ/R where Γ denotes the surface free-energy
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associated with the liquid-air interface (the surface free-
energy of the soap film is 2Γ whereas the total curvature
of the film is 2/R).

Qualitatively, for small δP , the film is almost flat and
its bursting results in a pressure drop along an interface
which has the geometry of the planar standing-waves in-
side the cavity; as a consequence, the planar front associ-
ated with the pressure drop penetrates easily the cavity
and the energy ET is proportional to δP 2 as one would
expect (limit δP → 0 in Fig. 14). When δP is increased,
the center of curvature of the soap film approaches the
aperture plane. The spherical geometry of the front dif-
fers from that of the planar modes inside the cavity; as
a consequence, the spherical modes associated with the
pressure drop hardly enter the cavity and the total energy
transferred to the cavity ET decreases.

C.2 Input impedance

In order to account for the whole behavior of ET as a func-
tion of δP , consider first the initial geometry sketched in
Figure C.1. We will work in spherical coordinates centered
in O, the center of the spherical film. The initial pressure
distribution, which writes δP (r) = δP for r < R and
δP (r) = 0 for r > R, can be written as a sum of spheri-
cal modes centered in O. In the sake of simplification, we
further assume that the film bursting leads to an homoge-
neous change in the pressure or velocity along the surface
of the film. One can thus first consider one pressure mode
propagating toward the cavity,

δP̂ (r, s) = δP̂ 0(s)
R

r
e

s
c (r−R), (C.1)

and the corresponding velocity-mode:

v̂(r, s) = −δP̂ 0(s)
ρc

(
1 − c

sr

)R

r
e

s
c (r−R). (C.2)

Note that P̂ 0(s) denotes the Laplace transform of the pres-
sure drop associated with the film bursting. From equa-
tions (C.1) and (C.2), we can calculate, in the plane of the
open end, the mean pressure:

〈
∆P̂

〉
(s) = 8δP̂ 0(s)

Rc

sΦ2

[
1 − e−

sR
c (1−cos θ0)

]
(C.3)

and velocity along the x-axis:

〈v̂〉 (s) = −8
δP̂ 0(s)

ρc

R

sΦ2

[
cos θ0 − e−

s
c R(1−cos θ0)

]
. (C.4)

where R sin θ0 = Φ/2. We deduce from (C.3) and (C.4),
the input impedance Zi, which is associated with the ho-
mogeneous variations of the pressure and velocity in the
plane of the open end:

Zi(s)
ρc

= − 1 − e−
s
c R(1−cos θ0)

cos θ0 − e−
s
c R(1−cos θ0)

. (C.5)

Fig. C.1. Sketch of the initial geometry.

C.3 Consequence — Transmission coefficient

Let us now consider that a fraction of the incident wave
is transferred to a planar wave propagating toward the
closed end (acoustic impedance −ρc) while the remaining
part is diffracted leading to a wave propagating away from
the cavity [acoustic impedance in the plane of the open
end, Zr (Eq. B.7)]. Doing so, we implicitely assume that
the characteristic time associated with the pressure drop is
short compared with the time needed for the acoustic wave
to go back and forth along the cavity length. Denoting P̂c

the amplitude of the wave transferred to the cavity and
writing the continuity of the pressure- and velocity-fields
in the plane of the open end, we get after some simple
algebra:

P̂c(jw) = P̂ 0(jw)

[
1 − x

6j + x

1 − cos θ0

1 − ejx tan
θ0
2

]
(C.6)

where x ≡ ωΦ
2πc = Φ

λ . We remind that δP = 4Γ
R = 8Γ

Φ sin θ0

so that the transmission coefficient:

Ti ≡
∣∣∣∣∣
P̂c(jw)
P̂ 0(jw)

∣∣∣∣∣
2

=

∣∣∣∣∣1 − x

6j + x

1 − cos θ0

1 − ejx tan
θ0
2

∣∣∣∣∣
2

(C.7)

is a function of the overpressure δP through θ0(δP ).

Appendix D: Energy spectrum

Let us now consider one damped harmonics which gives,
directly from the microphone, the voltage V (t) of the form:

V (t) = V (ω) cos (ωt) e−
t
τ (D.1)

Let us denote tk ≡ k/νs the time samples with νs the sam-
pling frequency. By definition, the fast Fourier transform
of the signal writes:

FFT [V ](n) ≡ 1
N2

N−1∑
k=0

V (tk) e2πj kn
N . (D.2)

In what follows, we assume that the number of samples
N is large (i.e. N � νsτ). We define the value of the
energy spectrum Π(ωn) at the frequency ωn ≡ 2π n

N νs

by Π(ωn) ≡ 2|FFT [V ](n)|2. The spectrum Π , associated
with the voltage given in equation (D.1), exhibits a max-
imum at:

ωn = ω

[√
1 +

4
ω2τ2

− 1
ω2τ2

]
. (D.3)
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Thus, in the limit τ → ∞, ωn = ω. In the presence of
damping, in the limit ωτ � 1, the maximum is slightly
shifted to a higher value ωn such that δω

ω ≡ ωn−ω
ω � 1

ω2τ2 .
The corresponding maximum value of the power spectrum
is then given by:

Π(ωn) = V
2
(ω)

ν2
s τ2

4N2

[
1 +

√
1 +

4
ω2τ2

]

∝ 1
2

ν2
sτ2

N2
V

2
(ω) (ωτ � 1). (D.4)

Note that, from its definition, Π depends on the acquisi-
tion time N/νs. In the limit τ → ∞, the acquisition time
is smaller than τ and one must take τ = N/νs in order to
recover the expected value Π = 1/2V

2
(ω). In our exper-

imental conditions, we choose the acquisition time to be
large in comparison to τ and equation (D.4) applies.
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