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ABSTRACT

A new profile-based anomaly detection and characteriza-
tion procedure is proposed. It aims at performing prompt
and accurate detection of both short-lived and long-lasting
low-intensity anomalies, without the recourse of any prior
knowledge of the targetted traffic. Key features of the al-
gorithm lie in the joint use of random projection techniques
(sketches) and of a multiresolution non Gaussian marginal
distribution modeling. The former enables both a reduction
in the dimensionality of the data and the measurement of
the reference (i.e., normal) traffic behavior, while the latter
extracts anomalies at different aggregation levels. This pro-
cedure is used to blindly analyze a large-scale packet trace
database collected on a trans-Pacific transit link from 2001
to 2006. It can detect and identify a large number of known
and unknown anomalies and attacks, whose intensities are
low (down to below one percent). Using sketches also makes
possible a real-time identification of the source or destina-
tion IP addresses associated to the detected anomaly and
hence their mitigation.

Categories and Subject Descriptors

C.2 [Computer Systems Organization]: Networking and
Information Technology—Network Operations; J.8 [Compu-
ter Applications]: Internet Applications—Traffic analysis

General Terms

Anomaly, Measurement, Security
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1. INTRODUCTION
A hot topic for Internet security lies in detecting attacks

promptly and accurately and in defining mitigation poli-
cies. Often, anomaly detection and characterization is an
involved task. First, one needs to detect attacks while they
are still at very low intensities, hidden amongst large vol-
umes of regular traffic. Second, anomalies to be detected
show an extreme diversity in nature (DDoS, flooding, flash
crowds, worm outbreaks,...), in duration (from very bursty
or short lived to long lasting ones), in targets and goals.
Furthermore, new varieties of anomalies are constantly ap-
pearing every day. As a result, designing filters (based on
a characteristic time scale for instance) that match a given
known anomaly quickly turns obsolete. Last but not least,
regular traffic in itself exhibits a wild variability (heavy tails
and long range dependence) [19], which significantly impairs
the detection of anomalies.

In the case (of interest in the present work) of a single-
point measurement performed over a transit or backbone
link, extra complications can be listed. Traffic on such links
is likely to be strongly asymmetric because of the multi-
homed nature of the network. This forbids the use of tech-
niques relying on the observation of bidirectional patterns
(SYN, SYN/ACK,...). Also, tools making use of joint spatial
network-wide information (Origin-Destination patterns) are
excluded [14, 15, 22]. Backbone links aggregate at very high
levels a large variety of traffic of different natures, with new
types of regular applications constantly appearing, hence
yielding extra regular variabilities. This implies an increase
in the likeliness of simultaneous occurrences of anomalies,
and of undergoing known major anomalies such as worm
outbreaks and intensive large scale attacks, as well as of ob-
serving unknown anomalies (i.e., zero-day attack). Facing
such a diversity requires the use of as little as possible prior
information, regarding the nature of the anomalies. More-
over, the huge volume of traffic precludes to store long (or
even short) term traces, and calls for the use of low com-
putational cost, possibly on-line, real-time and on-the-fly
techniques.

Anomaly detection methods are broadly classified into two
complementary categories: signature-based vs. anomaly-
based detections. The anomaly detection procedure pro-
posed here belongs to the second class which relies on char-



acterization of statistical profile of anomalies to detect them.
It is based on combining two key ingredients: Sketches (or
random projections) and a non Gaussian multiresolution (or
multiscale) statistical modeling. The former is used on a
hashing key such as source IP or destination IP, dividing a
set of traffic data into sub-groups, or sketches. The latter ex-
tracts the shape parameter of the marginal distributions of
the traffic for each sketch and each aggregation level, and ac-
curately captures the short-time correlation structures of the
traffic. This enables their comparisons amongst sketches, by
means of Mahalanobis distance, and hence the detection of
anomalous behaviors. The use of multiple random projec-
tions gives the means to identify efficiently (by the reversing
of hash functions) the attributes (IPsrc or IPdst) associ-
ated to the detection and hence involved in the anomaly or
attack. The proposed method does not require any prior
knowledge of the traffic as it compares the behaviors of
sketches within the same data set. It works whatever the
volume or characteristic time-scale of the tracked anomalies,
and thus, is able to detect low-intensity and/or long-lasting
anomalies, even within a one-way highly aggregated traf-
fic. Our algorithm uses only IP addresses and packet arrival
times so that no deep packet inspection is necessary. It is
designed for real-time processing at a single measurement
point in a backbone. The precise procedures are defined in
Section 3 where validation issues are addressed. It is com-
pared to and motivated from other approaches discussed in
Section 2.

This detection procedure is used to blindly explore the
large scale MAWI packet trace database [7] in order to label
the traces with anomalies, and to promote further research
on them. This database stores daily packet traces from a
trans-Pacific transit link over more than 6 years. The task
of anomaly identification and labeling had not been previ-
ously done on this database, except for only rare prominent
or huge anomalies. Results reported in Section 4 show that
our procedure enables to detect and characterize anoma-
lies, found to be in (unexpectedly) large number and vari-
ety. Also, our tool performs meaningful detections despite
the fact that most anomalies have low intensities (below 1%
in packet number), are hidden amongst many aggregated
flows and often occur simultaneously. Identification of the
targeted or faulty IP addresses is also fully operational so
that prompt reaction and mitigation is possible. The pro-
posed detection relies on little prior (network or statistical)
information, hence is robust against significant traffic evo-
lution along the years. Moreover, it enables not only the
detection of known anomalies but also the discovery of a
number of unknown and unexpected traffic flows, be their
nature legitimate or not remains an open issue.

2. RELATED WORK
Anomaly-based detection through statistical profile is an

active field of research, tracing back to [2, 5, 8]. To keep the
amount of data manageable, a number of contributions make
use of only high-level traffic measurements, e.g., SNMP data
[2], or IP Flow data (often sampled NetFlow or FlowScan
router reports) [2, 14]. This may imply losses of potentially
important information. Therefore packet level information
(IP packet (or volume) count process [8], or IP and/or TCP
header [12]) can be preferred, enabling shorter reaction time
(down to the packet arrival time, to be compared to the 5
min. based flow report) and avoiding the recourse to po-

tentially ineffective information (as with SNMP-MIB). Our
procedure works at the packet level.

The existence of statistical anomalies such as DoS and the
possibility of their detection through their statistical impact
has been reported previously, e.g. [5, 17], before general tax-
onomies of existing, relevant statistical anomalies in inter-
net traffic have been proposed [9, 16] (sometimes completed
by a corresponding classification of detection methodology
in [16]). Among statistical anomalies, a prominant class be-
sides DoS is the Flash Crowd phenomena which can be detri-
mental, especially to web server [11]. The present work deals
with the detection of all these kinds of statistical anomalies
and we will use the classification of these works so as to
describe the classes of anomalies found in the database.

To deal with the large amounts of data of internet traf-
fic, anomaly detection procedures are nowadays more and
more often relying on dimensionality reduction tools. In
the context of network-wide measurements, Principal Com-
ponents Analysis (PCA) [14], non linear manifold learning
[20] are often used. This assumes that measurements over
many points of the network are jointly available together
with a centralized collection of data (as in [20]). This can
be inefficient to react against sudden and localized attacks.
Moreover, in the present work, we are interested in detection
performed from the monitoring of a single transit or back-
bone link. Inspired by research on data streaming, the use of
random projections or sketches has been put forward in [13,
18] for change detection, information condensation or heavy
hitter identification (see also [15]). In the present contribu-
tion, elaborating on [1], we make use of sketch procedures
to split data into sub-traces and search for deviations in a
statistical multiresolution modeling amongst the collection
of sketches. Another major benefit of the use of sketch pro-
cedures lies in the possibility of identifying the attributes
(e.g., IPsrc or IPdst) associated to the detected anomalies
by reversing the hash function [18].

A central issue in anomaly-based detection lies in per-
forming a proper statistical characterization of profiles of
anomalies, as advocated in [2], so that detection necessarily
consists of two steps: Model or predict an average reference
traffic (with its naturally wild variability); Apply a decision
rule to detect when the analyzed traffic departs from the
reference. Often, reference traffic is obtained as a prediction
from past observations, (using, for instance, Holt-Winters
forecasting [5, 13, 24], or Kalman filtering [22]) or direct ob-
servation [8]. Also, reference may be obtained from multi-
link measurements when available [14, 22]. Framed in this
methodological scheme, our contribution is original insofar
as the reference traffic is determined from a single link mea-
surement as an average over sketched time series, hence used
as independent surrogate data. This avoids the recourse to
traffic prediction, a highly difficult task because of its nat-
ural variability and its reported long range correlations (see
for instance [19]).

Single-link measurement profile-based detections have of-
ten been based on a specific statistical characteristic of the
traffic such as spectral density [6] or covariance [10], wavelet
coefficients [2, 8], temporal features extracted from PCA,
to list but a few (cf. [1, 21] and references therein). These
works have the limitation of choosing a priori a particu-
lar time-scale (of frequency) of representation and look af-
ter anomalies operating over this time. Also, the use of
non Gaussian statistics has been put forward to relevantly



symbol description
n ∈ 1...N sketch number (N = number of hash functions)
m ∈ 1...M sketch output number (M = size of hash table)

∆j aggregation time scale j ∈ J
Xn,m

∆j
(t) aggregated hashed time series for scale ∆j

αn,m
∆j

estimated α of Gamma law fit for Xn,m
∆j

(t)

Dαn,m Mahalanobis distance for α (output m vs. Ref.)
λ threshold value

Table 1: Analysis and Detection Parameters.

seize the characteristics of normal traffic [19]. Going one
step further, we recently promoted the use of non Gaus-
sian statistics jointly over a large range of aggregation levels
[21]. This multiresolution non Gaussian modeling is specif-
ically tailored to design an anomaly detection procedure.
Another originality of the present work consists of the fact
that anomalies are not defined a priori, neither from a net-
work mechanism nor from a matched statistical pattern. An
anomaly is hence defined here as a statistical change in the
correlation structure of the traffic in one sketch compared
to that of other sketches at the same time. This original
use of the sketch method enables the discovery of anomalies
that are not known beforehand, and may never have been
observed previously.

3. ANOMALY DETECTION METHOD
The proposed anomaly detection procedure (see schematic

in Fig. 1) consists of the following steps.

Step 1: Random projections (or sketches). Packets
are analyzed within sliding time-windows of duration T . For
each time-window, let {ti, {xi,l, l = 1, ...4}} denote the usual
5−tuple (arrival time stamp, IPsrc, IPdst, sPort, dPort)
for each packet i = 1, ..., I. Let hn, n ∈ {1, ..., N} denote
N independent k−universal hash functions, generated from
different random seeds. Such hn are constructed using the
fast-tabulation method presented in [23]. Let M stands for
the (identical) size of the hash tables. Let Ai denotes the
hashing key (here, Ai = IPdsti or Ai = IPsrci). For each hn,
the original trace {ti, {xi,l, l = 1, ...4}, i = 1, ..., I} is split
into M sub-traces, {ti, mn,i = hn(Ai) = m, i = 1, ..., I}n,m.

Step 2: Multiresolution Aggregation. The sub-traces
{ti, mn,i = m, i = 1, ..., I}n,m are aggregated jointly over a
collection of levels ∆j , j = 1, ..., J to form the Xn,m

∆j
(t) time

series.

Step 3: Non Gaussian modeling. In a former work,
we showed [1, 4, 21] that the marginal distributions f∆(x)
of aggregated traffic time series can be satisfactorily de-
scribed using Gamma laws Γα∆,β∆

, i.e., non Gaussian distri-
butions for positive random variables, defined as Γα,β(x) =

1
βΓ(α)

“

x
β

”α−1

exp
“

− x
β

”

, where Γ(·) is the usual Gamma-

Euler function. The scale parameter β mostly acts as a
multiplicative factor (if X is Γα,β , then γX is simply Γα,γβ).
The shape parameter α controls the evolution of Γα,β from
a highly asymmetric stretched exponential shape (α → 0)
to a Gaussian shape (α → +∞). More precisely, 1/α can be
read as a measure of the departure of Γα,β from the normal
distribution N (αβ, αβ2). Furthermore, Γα,β distributions

are stable under addition: Let X and X ′ denote two inde-
pendent Γα,β and Γα′,β RVs, then X + X ′ is Γα+α′,β . This
is of particular interest when related to the aggregation pro-
cedure: X2∆(t) = X∆(t) + X∆(t + ∆). Indeed, should X∆

be well modeled with a Γα∆,β∆
, then, it is expected that

X2∆ could be well modeled with Γα2∆,β2∆
. Independence

between X∆(t) and X∆(t + ∆) would imply α∆ = α0∆ and
β∆ = β0. Due to the correlations that exist amongst X∆j

(t)
and X∆j

(t+∆j), departures of α∆ and β∆ from α∆ = α0∆
and β∆ = β0 are ascertained. Therefore, the Gamma de-
scription combined at various resolutions accounts not only
for the marginal distributions of the aggregated traffic but
also for its short-time statistical dependencies along time.

From the Xn,m
∆j

(t), the corresponding collection of param-

eters {(αn,m
∆j

, βn,m
∆j

), j = 1, ..., J} are estimated (estimations

being performed by means of standard sample moment pro-
cedures).

Step 4: Reference. For each hn, average behaviors and
typical variabilities are estimated as: αm,R

∆j
= 〈αn,m

∆j
〉m and

σ2
m,α,∆j

= 〈〈αn,m
∆j

〉〉m, where 〈·〉m and 〈〈·〉〉m denote the

standard sample mean and variance estimators, respectively,
computed from m = 1, ..., M .

Step 5: Statistical distances. Anomalous behaviors of
the {(αn,m

∆j
, βn,m

∆j
), j = 1, ..., J} with respect to ∆j , are mea-

sured by computation of statistical distances from the ref-
erence behavior αm,R

∆j
. Many different statistical distances

can be used, cf. [3] for a review. Here, we use the Ma-
halanobis distance Dαn,m that gives identical weight to all
scales, defined as:

(Dαn,m)2 =
1

J

J
X

j=1

“

αn,m
∆j

− αm,R
∆j

”2

σ2
m,α,∆j

. (1)

When Dαn,m ≤ λ, Xn,m
∆j

(t) consists of normal traffic; when

Dαn,m > λ, Xn,m
∆j

(t) is said to contain one (or more) anoma-

ly(ies), where λ is the detection threshold to be chosen. Let
us put the emphasis of the fact that the use of a multires-
olution distance implies that the detection procedure is not
based on a change in volume of the traffic but rather on
a change in its short-time correlation structure. Identical
procedures are obtained for β, mutatis mutandis. However,
detection based on this distance is not used in this paper.

Step 6: Anomaly Identification by Sketch Combi-
nation. To finish with, reversing the hashing procedures
enables to identify the hashing keys associated to the de-
tected anomaly(ies). When detections are performed in the
m-th output of the n-th hash function, the corresponding
attributes Ai are registered in a detection list An

i . Combin-
ing the N functions hn and taking the intersection of the
An

i yields a final list of attributes Ao
i that correspond to de-

tected anomaly(ies). In this respect, the use of k-universal
hash functions, with k ≥ 2, plays a key role as it guaran-
tees that the average number of collisions between attributes
Ai diminishes exponentially fast with N , a collision consist-
ing of the fact that any given pair of Ai chosen at random
amongst all possible falls within the same outputs mn for
each of the N hn. If Ai = IPdsti and NIP is the total num-
ber of IP addresses observed in the analyzed traffic, the aver-
age number of collisions reads: #C = NIP M−2N . Moreover,
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Figure 1: Analysis and Detection Procedure. This schematic illustrates the steps of the detection procedure for one
hashing function, going from IP packets (on the left), to aggregated times series of hashed traffic (step 2), then using multiscale
Non-Gaussian modeling of marginal laws (here, for scales 1, 3 and 8) – reference is taken as a mean across the outputs (only
4 outputs are represented here); in step 5, the distance (here displayed as a function of the scales j) is used to decide if there
is an anomaly or not in each output. Step 6 is not represented as it uses the decision made combining several hash functions.

choosing k ≥ 4 ensures that the variance of #C remains also
small. Obviously, to lower the probability of random colli-
sions and hence ensure relevant detections, we need to have
this #C ≪ 1. In Section 4, we observe that using only N = 8
hash functions is enough to ensure a correct identification of
IPdst or IPsrc. Therefore, the procedure proposed here not
only performs the detection of an anomaly (and provides the
time windows in which it occurs), but also enables the iden-
tification of its Ai attribute. This is a key feature allowing
for the identification and classification, hence mitigation, of
anomalies.

Performance and Validation. The validation and the
assessment of the performance of the detection procedure
described above raise two issues of different natures.

First, statistical detection procedures always face the false
positive/false negative trade-off, which, in the present con-
text, is controlled by the choice of λ. Decreasing λ amounts
to allow detection when distances are smaller: This results
in a increase of the correct detection rate, at the price of an
increase of false negative, and vice versa. To assess such de-
tection performance in terms of false positive/false negative
scores, also referred to as receiver operational curves (ROC),
we need to use a validation database, with known anomalies
occurring at known times. Therefore, we created our own
database consisting of actual traffic traces containing real
anomalies [4]. They were generated by ourselves, in a con-
trolled and reproducible manner, using real network tools
such as trin00, tfn2k,... and mostly consisted of mixed flood-
ing DDoS attacks. These experimental set-up and database
allowed us to show that the proposed tool exhibits very sat-
isfactory ROC, even for anomalies whose volume is in the
order of percent of the total traffic volume. The reader is
referred to previous works [1, 4] for details.

Second, when applying detection tools to a database for
which anomalies are unknown, one cannot compute false
positive/false negative scores. Therefore, validation requires
an a posteriori manual inspection of traffic. This is detailed
in Section 4.

4. MAWI DATABASE ANOMALIES

4.1 MAWI database
The MAWI traffic repository of the WIDE project has

been archiving raw packet traces collected over six years
(from 2001-2006) at one of the trans-Pacific links (samplepoint-
B, 18Mbps CAR) between Japan and the United States [7].
It is an academic network and the traffic on this link is
mostly international commodity traffic to and from several
Japanese universities. The database consists of 15-minutes-
long traffic traces captured at 2pm, Japan time, by tcpdump
and an IP-address anonymization tool. The traces amount
to more than 2,000 traces or 600GB in size.

Analyses indicate that, for most of the days, the traffic
on this link had been almost saturated. Also, they show
that traffic is asymmetric in some periods, mostly because
of route changes, and that some include major virus out-
breaks. This study constitutes a first step towards the la-
beling of anomalies contained in this database, and explores
data from weekdays, one day per two weeks from 2001 to
2006. Traces have been analyzed independently for each di-
rection, so as to study asymmetry and differences between
the US to Japan and Japan to US anomalies.

4.2 Analysis methodology
The parameters of the detection procedure are set to:

N = 8, M = 32, ∆0 = 5ms, ∆j = ∆02
j , with j = 1, ..., J ,

and J = 8 ; λ = 0.5 (see also Table 1). Robustness of the
results described below with respect to variations of these
parameters has been checked. Let us note first that the
choice of N, M results from a trade-off: Increasing the num-
ber of sketch outputs M reduces the number of sketches N
that are necessary for identification, hence diminishes the
computational cost; However too large M may result in too
low aggregated volume of traffic per sketch, hence in a fail-
ure of the multiresolution gamma modeling. The choices of
∆0 and J are motivated by previous work [1, 4, 21] showing
that the relevant time scales for anomalies range from 1ms
to 1s. The choice of the threshold λ is motivated by previ-
ously obtained ROC (cf. [1, 4]). For a complete trace of 15
min, the whole analysis and detection procedure takes less
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Figure 2: Case study 1: Aggregated traffic (Japan to
USA, Oct. 11, 2005) vs. time (in min.) split by protocols,
aggregated over 1s. Protocol split is shown for convenience,
but not actually used for detection.

than 1 minute of computing time on a standard desktop PC
(CoreDuo 2 GHz, 2 Gb of RAM) to probe both IPdst and
IPsrc hashing keys, with 8 sketches of 32 outputs.

The use of a detection tool on a database where anoma-
lies are not labeled requires a posteriori validations. On the
one hand, we have verified for all studied traces that, when-
ever a (collection of) attribute(s) is detected as associated
to an anomaly, this corresponds to either of the two follow-
ing situations. First, inspection of the packets sharing this
attribute(s) reveal well-known anomalies or attacks (DDoS,
flooding, portscan,...). Second, there are instances where the
detection is associated to unexpected traffic features that
correspond to an activity that cannot be identified (new
protocol, dysfunctions, in some cases elephants, and maybe
new attacks). In any case, traffic associated to alarms is not
habitual and we conclude from this that false alarms are few
at most. On the other hand, all flows carrying more than
1% of the total volume of the traffic are looked into by man-
ual inspection of the traces by a network expert; those ap-
pearing as being meaningfull anomalies from their signature
(e.g., flooding, scans, use of IP spoofing,...) are retained
and compared to the anomalies detected by the proposed
method. The conclusion of this systematic analysis is that
we have not been able to identify anomalies excepted for
the one that were detected by the procedure. Indeed, when
choosing at random sketch outputs with low distance (i.e.,
where no detection is made), no anomaly amongst those
flows carrying more than 1% of the total volume of the traf-
fic can be identified. The conclusion is that there are few
(maybe none) false detection amongst those flows. Hence,
detection performance in terms of false positive and false
negative is satisfactory, and this completes the validation
step of the method mentioned above, using a database with
known, controlled anomalies [1]. The remainder of this sec-
tion details the analysis of two representative case studies,
and describes general results about anomalies obtained from
the database.

4.3 Case study 1: low-intensive long-lasting
spoofed flooding

We first demonstrate the ability of detecting low-intensive
long-lasting anomalies in a trace. Fig. 2 shows the aggre-
gated time series of a 15-min sample trace, split by protocols
to illustrate that no obvious anomaly can be seen (by eye),
even with such a representation. Note however that detec-
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Figure 3: Case study 1: Distances for two different

hash functions. Left: (αn,m
∆j

−αm,R
∆j

)/σm,α,∆j
vs. j curves;

most curves, but two (top plot) or three (bottom plot),
fall within the ±λ normality band for all j. Right: sorted
Dαn,m,m∈1,...,M . One sees that several sketch outputs have
distances outside ±λ. Combining sketches, one raises alarms
by retaining only IPdst whose distances remain consistently
outside thresholds for all hash functions. Here, circles, tri-
angles and diamonds mark the sketch outputs containing
the mixed flooding attack, the DNS anomaly and the SSH
transfer, respectively.

tion is made without this split by protocol, IPdst is used as
the hashing key. Fig. 3 shows distances for the M = 32
outputs for two given hash functions. One sketch output
(left plots, circle) is constantly (for all j) above the detec-
tion threshold λ, systematically yielding the largest distance
Dαn,m (right plots) and hence an alarm. However, for a sin-
gle hash function, several outputs are above the threshold
(cf. Fig. 3, left plots), corresponding to many IPdst (23670
out of the 189361 in the trace). Table 2 demonstrates how,
by combining up to 8 different hash functions so as to rule
out random collisions, the detection procedure raises finally
only one alarm, here associated to an anomaly on a sin-
gle IPdst (marked with circles in Fig. 3). If one filters out
anomaly amid the IPdst receiving at least 1000 packets, only
N = 6 hash functions would have been necessary to identify
this anomaly (cf. Table 2 last row). By packet inspection,
the detected anomaly is identified as a mixed flooding attack
against a single IPdst. Several protocols are used simultane-
ously: TCP (no SYN packets), UDP and ICMP. The distri-
bution of packet size also follows a profile that mimics that
of real traffic to make it harder to detect the attack. Source
IP addresses are spoofed (the IPsrc is identical to IPdst) and
destination port is 0 (which is not normally used). These
features clearly revealed the attack nature of this anomaly.

Fig. 3 indicates that, for a number of different hash
functions, two other sketch outputs (marked with trian-
gles and diamonds) often produce distances Dαn,m above
λ. Fig. 3 (left plots) shows that it is mostly due to quanti-

ties (αn,m
∆j

−αm,R
∆j

)/σm,α,∆j
being outside the ±λ normality

band for specific ranges of time-scale j: around 10ms for tri-
angles and 50ms and up for diamonds. Table 2 indicates that



N 0 1 2 3 4 5 6 7 8

Mλ 4 2 5 7 4 3 3 4

#IP 189361 23670 1479 231 50 6 0 0 0

#IP∗ 710 88 5 1 0 0 0 0 0
#IP 189361 23472 1444 249 56 11 2 2 1
#IP∗ 710 90 6 2 2 2 1 1 1

Table 2: Case study 1: Identification. N: number of
hash functions used. Mλ: number of sketch outputs above
threshold λ; #IP : expected number of IPdst falling in those
outputs because of random collisions; #IP∗: same as previ-
ous for IPdst receiving more than 1000 pkts; #IP : actual
number of IPdst belonging to those sketch outputs, hence
raising alarm; #IP∗: same as previous for IPdst receiving
more than 1000 pkts. This shows that combining a rea-
sonable number of hash functions, IPdst with anomalies are
found, whereas the expected number of accidental collisions
goes to zero.

one of these alarms (triangles in Fig. 3) remains until the
use of the 6-th hash function and is then removed by further
sketching. Investigating traffic reaching the corresponding
IPdst, we found that it corresponds to DNS traffic having
a specific, periodic structure which appears as anomalous
insofar as such a periodicity is rare and not expected for
aggregated traffic. Also, we identify diamonds to be a long,
but low volume, download via SSH protocol: For some hash
functions, it is classified as anomalous because it also ex-
hibits some form of periodicity, with a period larger than
100 ms. It might happen that, depending on the remainder
of the traffic that fall within the same sketch output, this
SSH download dominates at large scales and hence causes
the distance to bypass the threshold. However, both DNS
and SSH download consist of legitimate traffic. It is there-
fore a satisfactory output of our detection tool that the use
of a large enough number of sketches removes them from the
list of anomalies.

Let us further mention that the detected mixed flooding
with spoofing attack corresponds to only 1% of the traffic
and is by far not the largest elephant in the trace; this illus-
trates that our procedure is not simply focused on volume
anomalies. Moreover, the anomaly lasts for the entire fifteen
minutes of the analyzed trace. Because detection arises from
comparisons between sketch outputs containing normal traf-
fic and those carrying anomalous traffic, it does not require
that the anomaly starts within the analyzed time window
and does not rely on a change in time: hence the procedure
is not fooled here. To validate that no anomaly was missed,
we have systematically inspected traffic towards IPdst that
received more than 0.1% of the total volume of the traffic
and checked that no other anomaly could be identified.

4.4 Case study 2: short-lived portscan
Next, we focus on detection and real-time tracking of

short-lived portscan anomalies. Fig. 4 (top left) shows a
directional aggregated time series. Detection is conducted
using IPsrc as the hashing key. Fig. 4 (bottom left) shows
distances that for a given hash function (#3 in Table 3): 8
sketch outputs are above threshold λ. Note that distances
Dαn,m (for m ∈ 1, ..., M) decrease more slowly than in Fig.
3, where IPdst is the hashing key. Combining the N = 8
hash functions finally retain 21 IPsrc addresses, amongst

N 0 1 2 3 4 5 6 7 8

Mλ 13 11 8 11 13 13 13 12

#IP 35365 14367 4938 1234 424 212 86 34 12

#IP∗ 376 152 52 13 4 1 0 0 0
#IP 35365 14326 5031 1276 470 194 77 44 21
#IP∗ 376 163 53 13 8 7 6 6 5

Table 3: Case study 2: Identification. Same legend as
Table 2 for the second case study.

which only 5 emit more than 1000 packets (cf. Table 3),
retained as meaningful anomalies.

An a posteriori inspection of the corresponding packets
shows that 3 of them can be identified as port scanning.
The first detected portscan aims at finding FTP servers, it
corresponds to only 0.9% of the total volume of the traffic.
The aggregated time series corresponding to the output of
one hash function (#3) containing this anomaly is depicted
in Fig. 4 (top right) and reveals that this anomaly lasts for
a little more than 4 minutes. The second detected portscan
consists of bursts of a few seconds gathering around 2% of
the total volume of the traffic, and tracks HTTP servers.
The third one searches for all open ports in hosts over a
small subnetwork (around a few thousands hosts, 0.6% in
volume, one minute long). The fourth anomaly consists of
a HTTP flood, i.e., a large number of what can be seen as
HTTP requests (4% of the traffic); all source ports are iden-
tical hence excluding simple parallel downloading. The fifth
anomaly is a heavy traffic (4.5%) using GRE (generic rout-
ing encapsulation) protocol. GRE packets likely carry IPv6
traffic in the link, though it is difficult to decide whether it
consists of legitimate or illegitimate traffic.

Let us further illustrate that the detection procedure is
not simply volume based. It does not simply detect the
largest elephant of the trace: Indeed, the smallest (in packet
number) detected anomaly is only the 20th largest elephant.
Also, we have checked that the 15 other largest elephants
are not classified as anomalies and consist of normal traf-
fic (HTTP exchanges, TCP packets towards standard ports,
IRC or exchange of data that does not seem to resort to ma-
licious activity such as worms). Finally, the technique has
the potential to be used over much shorter time windows.
Fig. 4 (bottom right) depicts, for the first portscan anomaly,
the distances Dαn,m vs. time, computed using T = 1 min
long sliding windows. For the entire duration of the portscan
(corresponding to 6 windows out of the 15 min), distances
are above the threshold. Hence the procedure perfectly lo-
cates the anomaly in time, without the recourse of rupture or
volume based detection procedures. That is, the anomaly is
seen because its short time correlation structures differ from
those of the normal or background traffic.

4.5 Typology of the anomalies
Let us now turn to a higher level description of the anoma-

lies found by means of our procedure. The most surprising
result is the observation that anomalies were found in almost
every trace over the 6 years and, in most cases, traces con-
tained not a single but many anomalies. Also, the average
number of detected anomalies is increasing over the years,
and so is their variety. In 2001, anomalies mostly consisted
of straightforward flooding attacks. Typical attacks attempt
to be smart by using random ports, spoofed IP and/or using
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Figure 4: Case study 2. (USA to Japan, Jan. 18, 2005)
Top: aggregated time series of full traffic (left) and of a
sketch output where a FTP portscan anomaly is detected
(right); aggregation at 5ms, time-axis labels are in min. Bot-
tom left: sorted Dαn,m , m ∈ 1, ..., M ; 7 sketch outputs are
above the threshold λ. Bottom right: Dαn,m0 computed
within T = 1min time windows for the sketch m0 output
plotted above. The portscan lasts only a few minutes, be-
tween minutes 4 to 9 and is well detected at its precise times
of occurrence.

random packet length (following the distribution of typical
traffic) but not always; in any case, these kinds of anomalies
are easily identified once detected. Over the years, there is
an increasing number of detected anomalies that turn out
to be hard to identify and qualify. Some correspond, for
instance, to IPdst receiving a small number of packets from
a large number of different hosts (hundreds or thousands)
on higher ports. This may be related to peer-to-peer (P2P)
nodes/servers traffic. No further information is available
to decide whether this is legitimate or not. Elephants corre-
sponding to HTTP traffic (and in some cases to FTP or SSH
connections) are sometimes detected as anomalies, but this
tends to decrease along the years because of the increase of
the number of used IP addresses found in the traces: hash-
ing efficiency for obtaining normal traffic reference is im-
proved by the multiplication of background traffic. Traffic
is found asymmetric on this trans-Pacific link, and there are
differences even in the most frequently observed anomalies
depending on the direction of the traffic. Notably, for large
scale attacks, SYN flooding is commonly observed from US
to Japan while ICMP flooding is more usually seen in the
opposite direction.

When using IPdst as a hashing key, we found a variety
of anomalies. There are a lot of flooding of various kinds
(UDP, TCP-SYN, TCP, ICMP, sometimes mixed), attack-
ing sources being either isolated, distributed (typically, a
couple of dozen of sources) or spoofed (fixed “impossible” IP
of the same subnetwork or thousands of random IPs). The
involved ports are often known ones (FTP, SSH, HTTP,
MySQL). Sometimes, they are selected randomly (anoma-
lies towards a single high port or several different ports),
and more rarely consist of invalid ports (port 0). Also, we
found anomalies related to DNS traffic (very regular, for
small periods of a few tens of seconds) from a limited num-
ber of hosts. Some anomalies consist of point-to-point GRE

traffic. On very rare occasions (actually, two in 6 years),
we observed systematic scans of all the ports of a single IP
address.

When hashing on IPsrc, one naturally finds again some
of the anomalies listed above. (such as GRE, DNS, and
single source floodings). IPsrc hashing reveals a large vari-
ety of scan activities, mostly towards HTTP, SSH, MySQL,
FTP. More recently, but still rarely, we found scans target-
ing the usual P2P ports or even larger sets of ports (some
not identified). Some hosts responding to requests from a
large number of different IP addresses are detected: this may
be false alarms (HTTP, MySQL traffic) but it is associated
from time to time to some traffic of worms/virus. Note
that, by construction, the procedure does not aim at de-
tecting worms/virus packets that are best found from their
signature. However, it can detect the outburst of new worms
when only a few hosts are infected (therefore having a traffic
structure different from other, uncompromised hosts).

Concerning typical duration of anomalies, a large num-
ber of the detected ones (such as flooding/transfer anoma-
lies) last for much longer than the entire 15 minutes ans, as
exaplined, this does not fool our detection procedure which
needs not observe beginnings or ends of the anomaly to be
efficient. We have found attacks lasting longer than the day,
and one of them kept going in all traces over 9 months.
There are also small bursts, with duration ranging from a
couple of seconds to a few minutes, especially of SYN and
ICMP floodings. As previously mentioned, they can be pre-
cisely located using short (1 min or 30 sec) analysis time
windows. Scans are usually much shorter, typically in a
few minutes. Some of them consist of the regular repetition
of a brief pattern. Rare cases of large scale attacks (con-
taining up to 30% of traffic) were also observed. However,
most anomalies have much lower volume, and we tracked
all anomalies with volumes down to 0.1% of the total traffic
volume. They are hidden behind elephants of regular traffic
in most cases, yet correctly detected.

The methodology proposed in this communication is thus
able to detect anomalies, filter the packets associated to it
and identify the type of anomalous activity. All this can
be operated off-line (as in the current study) or on-line in
real-time, due to the low computational cost of the method.
A network engineer can then assess the risk of the anomaly
based on its class and on the number of packets (or on the
throughput) involved. In the studied database, anomalies
were never responsible for outage of the link during the mea-
surement periods (else there would be no measurement) but
some seem to be detrimental to the rest of the traffic. Let
us also comment on the capability of the detection tool to
detect short or long lasting anomalies. First the method
operates through a comparison between subparts (sketches
) of the traffic without using a change detection hence is
operant for anomalies lasting longer than the observation
time-window. Second, the method is based on the short-
time multiscale statistical characteristics (here from 5 ms to
1s) hence is also valid to detect short lasting anomalies. As
seen in case study 2, the detection is working successfully
over short (e.g., 1 minute) analysis windows as well as over
long ones (here up to the length of the traces, 15 minutes).

5. CONCLUSIONS AND PERSPECTIVES
The detection tool proposed here appears to be parti-

cularly relevant to extract anomalies from single-point back-



bone measurements. We were able to find many anomalies
in the database of the MAWI repository, in an unexpectedly
large number. This is a work in progress and the first report
on labeling the traces in the repository with anomalies; fur-
ther analysis on this database is to be pursued in order to
systematically label the anomalies inthere.

Based on its multiresolution properties, the detection tool
is able to detect short-lived anomalies as well as longer ones;
we have put the emphasis on the fact that the procedure
should not be reduced to a rupture change, or a volume-
based detection, as many profile-based are: due to the non
Gaussian modeling used as its background, the detection
method is sensitive to the statistical characteristics (short
time correlations) of anomalies hidden in large scale traffic.

This detection tool benefits from a very low computa-
tional cost so that one can easily think of real-time (on-line,
and on-the-fly) implementation and hence mitigation, even
on loaded backbone networks. The choice of the type of at-
tribute that is used as input for the hash function determines
the type of anomalies that are investigated: For instance, in
the present study, hashing the IPdst address is more in-
tended toward the detection of flooding attacks, while se-
lecting the IPsrc address is prone to reveal port scan opera-
tions. In particular, an improvement of the method would be
hashing jointly with respects to two or more attributes, that
could be fruitful to detect other kinds of anomalies. Still,
the present study has covered almost all the well-known,
classical anomalies that are usually found and enabled the
automatic discovery of a number of new anomalies whose
nature is being investigated.

One practical issue for further research is to add a feature
to filter specific known anomalies. As in the DNS traffic
in our results, legitimate traffic could be identified as an
anomaly if it has a unique traffic pattern. Thus, to reduce
false alarms, there must be a way to filter certain traffic
patterns once they are labeled as legitimate by other means.

Another important issue is to evaluate the algorithm against
sampled traffic or NetFlow data, which is of particular in-
terest to backbone network operation.
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