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ABSTRACT in a first approximation, can be identified to the phase deriva-
tive), weighted by the corresponding instantaneous power.

In the case of multicomponent AM-FM signals, the ideal- . :
Except for very special cases, there is no general method-

ized representation which consists of weighted trajectories onI 0 i ticall t a distributi in (1), In th
the time-frequency (TF) plane, is intrinsically sparse. Recent 09y [0 automatically get a distribution as in (1). Inthe case

advances in optimal recovery from sparsity constraints thu8f a single c_omponent[( N 1)'_'t is well-known [6] that a .
suggest to revisit the issue of TF localization by exploitingpe_rfect Iocallzatl(_)n can be aftained .for pure FM signals with
sparsity, as adapted to the specific context of (quadratic) T linear modulationdy () = 1 and ¢, (t) - fo + at) by
distributions. Based on classical results in TF analysis, it i&'sing the Wigner-Ville Distribution (WVD):

argued that the relevant information is mostly concentrated in teo

a restricted subset of Fourier coefficients of the Wigner-Ville Wa(t, f) = / r (
distribution neighbouring the origin of the ambiguity plane.
Using this incomplete information as the primary constraint
the desired distribution follows as the minimumnorm so-

Z * _ Z —i2wfT 2
t+2)x(t 2)6 dr. (2)

Although this property can be extended to some forms of
honlinear FMs (e.g., Bertrands’ distributions for power-laws

lution in the transformed TF domain. Possibilities and Iimita-[6])’ itis generally at the expense of a substantially increased

tions of the approach are demonstrated via controlled numeC—OmpleXity in the definition (and the computation) of the dis-
. € approz . : : {ributions, with furthermore the limitation of being adapted
ical experiments, its performance is assessed in various co b some specific type of FM only and to not extend to mul-
figurations' and the resu!ts are compared With. standard teCEE:omponent situations. For this last point, the well-known

niques. Itis shown that improved representations can be o drawback of energy distributions is to obey a quadratic super-

tained, though at a computational cost which is significantly” " . o . .
increased. position principle which creates cross-terms in between any

two components of a signal, and thus significantly reduces
Index Terms— time-frequency, localization, sparsity the readability of Wigner-type distributions [6, 7].

—00

1. TIME-FREQUENCY LOCALIZATION 1.2. Classical techniques of TF localization

The aforementioned difficulties have led to many develop-
ments during the last 20 years but, unfortunately, since both
If we consider a signal made of the superimposition of a finitdocalization and creation of cross-terms result from the very
number of AM-FM components: same mechanism [7], it turns out that trying to impose simul-
taneously localization and cross-terms reduction is faced with
a trade-off that can be viewed as a form of time-frequency
uncertainty principle. The simplest way to understand where
this trade-off comes from and how to manage it is to interpret
it is natural to attach to it ailealizedTF distribution (TFD)  the WVD in its 2D Fourier transform plane.

p(t, f) which essentially distributes the total energy along TF By definition, the WVD admits a 2D Fourier transform

1.1. AM-FM signals as time-frequency trajectories

ar(t) eisak(t)7

]~

x(t) =
k=1

trajectories according to: which is referred to as th@mbiguity functioAF) and reads
+oo - - ,
N A$(€7T) = / zlt+ =) 2" (t— = e’LQTrft dt.
p(t’f):Zai@)é(f—sﬁ'k(t)/%r). (1) . ( 2) ( 2)
= If we introduce the TF shift operatd, , which acts on

H 2
In such a picture, each component is characterized at eaa!gnaISw(t) € L*(R) as

time instant by essentially one instantaneous frequency (which, (Te x) (t) i= a(t — 1) e 2mSE=7/2)



we readily get thatd, (¢, 7) = (z, T¢ ,x) and, by construc- localized TFDp(t, f) being therefore the solution of the con-
tion, the AF can thus be viewed as a TF correlation funcstrained minimization problem:

tion. As such, an AF exhibits most properties of a corre- .

lation function, including hermitian symmetry and the fact o lolls Fip} = Az = Ol ryeqn ®)
that its modulus is maximum at the origin. Moreover, in . s . o
the case of multicomponent signals, the total AF consists otf tAt this p_0|tnt, I Its \(/jvc_)rth erknprlr;l]smmg thatc';he spemf;:: Clpnh-tl
both auto-componentseighbouring the origin of the plane extwe are interested In maxes the proposed approach slightly

- different from a classical recovery problem from an incom-
andcross-componentsostly located at a TF distance from yp

the origin which directly depends on the TF separation pePlete Fourier description. Indeed, the AF is by definition the

tween the individual components and that are the Fourier ing I?/omiirr;er ttrzanlsZ?rrrnf:)fnghtT] WIX] D\,N?n dd the;ir:s nA?: pc;g: n
ages of the undesired cross-terms in the TF plane. This otfco ering the fatter iro € knowledge ot the 0

servation early prompted [5] 0 propose mprovemenis upofl = B I 8 I TR SRS, B LS TR
the WVD by weighting the AF around the origin of the plane ". ) S .
y weignting 9 P signal and discards cross-terms that limit readability. The re-

[ lyi [ 2D Fourier transform: th S .
prior applying an Inverse ourier franstorm. the more re sulting TFD p(¢, f) is therefore more “constructed” by the

stricted the weighting domain, the more effective the cross- . ) X . .
gnting 8cedure than “reconstructed” since it defines an idealized

terms suppression but, at the same time, the more decreaé%{) t which d ot exiser fior optimization
the TF localization. Although this procedure (which definesO™€C ch does not exiger seprior op ation.
Cohen’s class [6] on geometrical grounds) proved reasonab

|
effective, other approaches have also been proposed, Whiéé?' Constraints

b_asically explo_it the pha;e information usually discarded ineyact vs. approximate— The primary constraint which is
simple quadratic distributions such as spectrograms (or Scalaiven by (3) imposes a strict equality ov@rin the AF do-

grams). In this respect, reassigned spectrograms [8] proved fain. This however can be relaxed [4] according to
particular extremely efficient to approach (1) and will thus be

used in Section 3 for a sake of comparisons. min lolles 17{p} — Azlla < €l (e yeq (4)

wheree is a user-specified bound. Both possibilities (3) and
(4) will be considered in the following.

If the analyzed signal is given in discrete-time and supposed

to be of dimensionV in time, its TFD is of dimensionv2  Selection of Fourier samples- As far as the specification of
when computed oveN frequency bins. However, assuming the domair( is concerned, a number of different possibilities
that K < N, i.e., that the number of components is muchare also offered, in terms of both area and shape. Based on
smaller than the dimension of the signal, the targeted TFD heorem 1.3 of [3], the cardinality ¢t should be

yvhich is supposed to saj[isfy Q) is distri.buted' over the plane card(Q) = O (K.N. log(NQ))

in a very sparse way, with onl) 1D trajectories where at

mostK. N values are expected to be non-zero. Imposing sucfor the recovery ofk AM-FM trajectories of N points each

a sparsity is therefore a new way of approaching the problenin a TF domain of sizeV2. In practice, results given in [3]
suggest that the logarithmic term can be replaced by a con-

1.3. A sparsity perspective

2 LOCALIZATION FROM SPARSITY stant in betweed and8. Stressing again the fact that a per-
CONSTRAINTS fect recovery of the WVD is not our objective and that as

much AF values outside from the origin as possible are to

2.1. Principle be discarded, this constant term should be preferably cho-

o ) _ . sen smaller. As justified in the forthcoming Section 3, it
The principle of the approach is very simple. It consists inyoyed reasonably efficient in the simulations we conducted
selecting a suitable collection of AF samples neighbouring, chooserard(Q) ~ N.
the origin of the plane in a given domail(¢, 7) and search- Concerning the shape of the AF domain onto which the
ing for the sparsest TFp su'ch that its 2D Fourier.transform 1/0 mask withO(IV) non-zero elements is to be applied to
F{p} coincides with the original AF ove®. Looking for a  the AF, we chose here the simplest solution which is to make
perfectly spiky solution such as (l)_vv_ould require to minimize,ga of a fixed square geometry. A refined procedure would
the total number of non-zero coefficients, i.e., th@orm of  consist in selecting a domain whose geometry matches the
the TFD. While this turns out not to be practicable from ayata-dependent) structure of the AF near the origin (e.g., with

computational viewpoint, a series of recent works [3, 4] have, Radially Gaussian KerndL]), but this will not be followed
shown that a near-optimal solution can be attained at a senqj—p here because of space limitation.

bly more affordable cost by minimizing tHe-norm, reduc-
ing the problem to the solving of a linear program. It is thisAdditional constraints— One particular interest of the ap-
technique which is proposed to be followed here, the desiregroach based on optimization is that further constraints can
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Fig. 1. Synthetic example- Different TFDs are displayed in Fig. 2. Rényi entropy and, -distance— Using the same sig-

the case of a 128 points signal whose TF model (1) is given inal as in Fig. 1, the localization properties and proximity from

the middle of the top row, in between the Wigner-Ville Distri- the model of the different TFDs are quantified in terms of the

bution (left) and a reassigned spectrogram (right). The bottorRényi entropy of order 3 (left, with the model entropy in thick

row presents the results obtained from optimizations based drlack line) and; -distance (right), as a function of the relative

the only knowledge of thé3 x 13 Fourier samples of the number of AF samplesard(€2) /N used in the optimizations.

WVD neighbouring the origin of the AF plane. From left to

right: minimumli,;-norm, exact minimuni;-norm according

to (3) and approximate minimurh-norm according to (4)

with € = 0.05 ||z||o. For all diagrams, amplitudes are color of the WVD neighbouring the origin of the AF plane, i.e., on

coded logarithmically, with a dynamic rangeIsf dB. a subset of about% only of the total number of AF coef-
ficients. From a qualitative point of view, it turns out from
this Figure that the approximate minimutnorm solution

h&according to (4)) is very effective, even as compared to the

be imposed besides (3) or (4). One can think, e.g., of t ianed ‘ hich is k ¢ v beh best
marginalization properties attached to unit cross-sections ireasmgne spectogram which IS known to usuafly behave bes

the AF plane [6]. This however is not necessarily relevan or .th'.s kind of signal (an-d whose wm.dow length has been
in the context of a sharp TF localization since, in the case o pt.|m|zed S0 as to best fit the r.n.odel n mef‘orm sense).

multicomponent signals, highly oscillatory behaviours alonqhhIS aﬁprec(;anonf can be qugr;]tlfled further 'r? terms |0f b%thl
TF trajectories will be favoured. A more interesting variation € achieved perlormance W'T[ rgspect to the actua} moael,
is to favor regular time evolutions, what can be achieved ex@nd the influence of the cardinality of the AF domain from

- . . L ; o which the optimization is conducted. This is reported in Fig-
plicitly by imposing specific AF cross-sections or, implicitly, i . o .
b . tarti int & ti thed WVD. ure 2 which displays both a Iocal_|zat|on measure (tleyR

y using as a starting point a time smoothed entropy of order 3 [2]) and thg -distance to the model as a

function of card(2)/N. What is revealed by this Figure is
3. EXAMPLES that both minimund;-norm solutions are generally better lo-

calized (i.e., have a smalle€Ryi entropy) than the other con-

The feasability of the method has been tested on simple, ygjyered TFDs, with even an entropy that might be smaller than
informative examples. All the computations have been madg,o odel one whose value is in this c&sa7. In particular

in MATLAB,, with the -nME'FREQUENCYTOO'EBoxl forthe  ihe exact, solution has always the minimum entropy but, as

TF computations and thg-MAGIC TOOLBOX® for the opti-  o\igenced by Fig. 1, this is due to an oversparse, discontinu-

mlzafuon. ) ) ous, structure which results in a larger distance to the actual
Figure 1 compares different TFDs in the case a¥a=  qqe|. The evolution of this distance shows that the best be-

128 points signal made of the superimposition of a linear ang,4vior is obtained with the approximate minimumnorm

of a sinusoidal FM, both modulated in amplitude with a Gausyq tion. the minimum being obtained forrd(Q2) ~ N.

sian. In this example, the different optimizatipns have bee'AdditionnalIy, it is worth noticing that, while the WVD we

based on the only knowledge of thé x 13 Fourier samples  giarteq with is known to attain negative values and whereas
http://tfth. nongnu. org no positivity constraint has been imposed, the minimym
2http://ww. | 1- magic. org norm solutions happen to be almost positive.




WV RSP I[;-eq I[i-err
averagetime (sec.) 0.16 0.30 52 175

Table 1. Computational cost This Table reports the average
computation times associated to the simulations of Fig. 2. All
computations have been performed witmiilAB R2007a in
similar conditions (Macintel Core2Duo 2.16 GHz).

frequency

making profit of the assumed sparsity of their energy distribu-
tion in the TF plane. Due to space limitations, only the princi-
ple of the method has been outlined and there is clearly plenty
of room for more thorough investigations and further develop-
ments. The selection of the Fourier samples in the AF domain
needs special attention in terms of both area and shape, and
it is expected that the use of adapted kernels (as proposed,
e.g., in [1]) might prove useful. Whereas the heavy computa-
Fig. 3. Real data example— This Figure compares a reas- tionalload can be considered as a severe drawback, itis worth

Signed Spectrogram (left C0|umn) and the approximate minstressing again that one advantage of the Optimization-based
imum ,-norm solution (4) withe = 0.05 ||z||2 (right col- approach is that additional constraints can be envisioned so

umn) in the case of a bat echolocation call of effective lengtt®s to satisfy specific properties in the TF plane (such as, e.g.,
N = 400, the optimization being based on the knowledge off€gularity conditions related to smoothed marginals). Those
the 23 x 23 Fourier samples of the WVD neighbouring the different points are under current investigation and will be re-
origin of the AF plane. The bottom row displays enlargedPorted elsewhere.

versions of the distributions within the yellow boxes in the

top row. For all diagrams, amplitudes are color coded loga- 5. REFERENCES
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