M. Basseville, Distance measures for signal processing and pattern recognition, Signal Processing, vol.18, issue.4, pp.349-369, 1989.
DOI : 10.1016/0165-1684(89)90079-0

URL : https://hal.archives-ouvertes.fr/inria-00075657

M. Bayram and R. G. Baraniuk, Multiple window time-varying spectrum estimation, Nonlinear and Nonstationary Signal Processing, pp.292-316, 2000.

N. Cristianini and J. Shawe-taylor, An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods, 2000.
DOI : 10.1017/CBO9780511801389

M. Davy and S. Godsill, Detection of abrupt signal changes using Support Vector Machines: An application to audio signal segmentation, Proc. IEEE ICASSP-02, 2002.

P. Flandrin, Time-Frequency/Time-Scale Analysis, 1999.

P. Honeiné, C. Richard, and P. Flandrin, Time-Frequency Learning Machines, IEEE Transactions on Signal Processing, vol.55, issue.7, 2007.
DOI : 10.1109/TSP.2007.894252

C. J. Keylock, Constrained surrogate time series with preservation of the mean and variance structure, Physical Review E, vol.73, issue.3, pp.30767-30768, 2006.
DOI : 10.1103/PhysRevE.73.036707

H. Laurent and C. Doncarli, Stationarity index for abrupt changes detection in the time-frequency plane, IEEE Signal Processing Letters, vol.5, issue.2, pp.43-45, 1998.
DOI : 10.1109/97.659547

S. Mallat, G. Papanicolaou, and Z. Zhang, Adaptive covariance estimation of locally stationary processes, The Annals of Statistics, vol.26, issue.1, pp.1-47, 1998.
DOI : 10.1214/aos/1030563977

W. Martin, Measuring the degree of non-stationarity by using the Wigner-Ville spectrum, ICASSP '84. IEEE International Conference on Acoustics, Speech, and Signal Processing, pp.41-44, 1984.
DOI : 10.1109/ICASSP.1984.1172740

W. Martin and P. Flandrin, Detection of changes of signal structure by using the Wigner-Ville spectrum, Signal Processing, vol.8, issue.2, pp.215-233, 1985.
DOI : 10.1016/0165-1684(85)90075-1

R. A. Silverman, Locally stationary random processes, IEEE Transactions on Information Theory, vol.3, issue.3, pp.182-187, 1957.
DOI : 10.1109/TIT.1957.1057413

B. Schölkopf and A. J. Smola, Learning With Kernels: Support Vector Machines, Regularization, Optimization and Beyond, 2001.

T. Schreiber and A. Schmitz, Improved Surrogate Data for Nonlinearity Tests, Physical Review Letters, vol.77, issue.4, pp.635-638, 1996.
DOI : 10.1103/PhysRevLett.77.635

URL : http://arxiv.org/abs/chao-dyn/9909041

E. Serpedin, F. Panduru, I. Sari, and G. B. Giannakis, Bibliography on cyclostationarity, Signal Processing, vol.85, issue.12, pp.2233-2303, 2005.
DOI : 10.1016/j.sigpro.2005.05.002

J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and J. D. Farmer, Testing for nonlinearity in time series: the method of surrogate data, Physica D: Nonlinear Phenomena, vol.58, issue.1-4, pp.77-94, 1992.
DOI : 10.1016/0167-2789(92)90102-S

J. Xiao and P. Flandrin, Multitaper time-frequency reassignment, Proc. EUSIPCO-06, 2006.
URL : https://hal.archives-ouvertes.fr/ensl-00111665

J. Xiao, P. Borgnat, P. Flandrin, and C. Richard, Testing Stationarity with Surrogates - A One-Class SVM Approach, 2007 IEEE/SP 14th Workshop on Statistical Signal Processing, 2007.
DOI : 10.1109/SSP.2007.4301353

URL : https://hal.archives-ouvertes.fr/ensl-00175481

J. Xiao and P. Flandrin, Multitaper timefrequency reassignment for nonstationary spec- trum estimation and chirp enhancement
DOI : 10.1109/tsp.2007.893961

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=