P. Borgnat, P. Flandrin, and P. O. Amblard, Stochastic discrete scale invariance, Stochastic discrete scale invariance, pp.181-184, 2002.
DOI : 10.1109/LSP.2002.800504

URL : https://hal.archives-ouvertes.fr/ensl-00175962

P. Flandrin, P. Borgnat, and P. O. Amblard, From Stationarity to Self-similarity, and Back: Variations on the Lamperti Transformation, Long-Range Dependent Stochastic Processes: Theory and Applications, 2003.
DOI : 10.1007/3-540-44832-2_5

B. Forte and E. R. Vrscay, Solving the Inverse Problem for Function and Image Approximation Using Iterated Function Systems, Dyn. Cont. Disc. Impul. Systems, vol.1, issue.2, pp.177-231, 1995.

S. Jaffard, Multifractal Formalism for Functions Part I: Results Valid For All Functions, SIAM Journal on Mathematical Analysis, vol.28, issue.4, pp.944-998, 1997.
DOI : 10.1137/S0036141095282991

K. Falconer, Random fractals, Mathematical Proceedings of the Cambridge Philosophical Society, vol.42, issue.03, pp.559-582, 1986.
DOI : 10.1512/iumj.1981.30.30055

R. D. Mauldin and S. C. Williams, Random recursive constructions: asymptotic geometric and topological properties, Transactions of the American Mathematical Society, vol.295, issue.1, pp.325-346, 1986.
DOI : 10.1090/S0002-9947-1986-0831202-5

J. E. Hutchinson and L. Ruschendorff, Self-Similar fractals and selfsimilar random fractals, Fractal geometry and stochastics, pp.109-123, 2000.