F. Auger and P. Flandrin, Improving the readability of time-frequency and time-scale representations by the reassignment method, IEEE Transactions on Signal Processing, vol.43, issue.5, pp.43-1068, 1995.
DOI : 10.1109/78.382394

F. Auger, P. Flandrin, P. Gonçalvès, and O. Lemoine, Time-Frequency Toolbox for M atlab, User's Guide and Reference Guide

M. V. Berry and Z. V. Lewis, On the Weierstrass-Mandelbrot Fractal Function, Proc. R. Soc. Lond. A,v ol, pp.459-484, 1980.
DOI : 10.1098/rspa.1980.0044

J. Bertrand, P. Bertrand, J. Ph, and . Ovarlez, The Mellin transform, The Transforms and Applications Handbook (A. Poularikas, 1990.

P. Borgnat, P. Flandrin, and P. Amblard, Stochastic discrete scale invariance, IEEE Signal Processing Letters, vol.9, issue.6, pp.181-184, 2002.
DOI : 10.1109/LSP.2002.800504

URL : https://hal.archives-ouvertes.fr/ensl-00175962

P. Borgnat, Modèles et outils pour l'invariance d'´ echelle brisée: Variations sur la transformation de Lamperti et contributions aux modèles statistiques de vortex en turbulence, 2002.

P. Borgnat, P. Amblard, and P. Flandrin, Lamperti transformation for finite size scale invariance, Proc. Int. Conf. on Physics in Signal and Image Proc. PSIP-03, 2003.
DOI : 10.1109/acssc.2002.1197043

P. Flandrin, Time-frequency and chirps, Proc. of AeroSense'01, 2001.
DOI : 10.1117/12.421196

P. Flandrin, P. Borgnat, and P. Amblard, From stationarity to selfsimilarity , and back : Variations on the Lamperti transformation, Long-Range Dependent Stochastic Processes: Theory and Applications (G. Raganjaran, 2003.

S. Gluzman and D. Sornette, Log-periodic route to fractal functions, Physical Review E, vol.65, issue.3, pp.2-418, 2002.
DOI : 10.1103/PhysRevE.65.036142

URL : http://arxiv.org/abs/cond-mat/0106316

G. H. Hardy, Weierstrass's non-differentiable function, Trans. Amer. Math. Soc.,v ol, vol.17, pp.301-325, 1916.
DOI : 10.2307/1989005

J. Lamperti, Semi-stable stochastic processes, Transactions of the American Mathematical Society, vol.104, issue.1, pp.62-78, 1962.
DOI : 10.1090/S0002-9947-1962-0138128-7

B. B. Mandelbrot and J. W. Van-ness, Fractional Brownian Motions, Fractional Noises and Applications, SIAM Review, vol.10, issue.4, pp.422-437, 1968.
DOI : 10.1137/1010093

B. B. Mandelbrot, Fractals: Forms, Chance and Dimension,F reeman, 1977.

B. B. Mandelbrot, Gaussian Self-Affinity and Fractals, 2002.

G. Samorodnitsky and M. S. Taqqu, Stable Non-Gaussian random Processes: Stochastic Models with Infinite Variance, 1994.

D. Sornette, Discrete-scale invariance and complex dimensions, Physics Reports, vol.297, issue.5, pp.239-270, 1998.
DOI : 10.1016/S0370-1573(97)00076-8

C. Tricot22-]-k and . Weierstrass, ¨ Uber continuirliche Functionen eines reelles Arguments, die für keinen Werth des letzteren einen Bestimmten Differentialquotienten besitzen, Königl. Akademie der Wissenschaften, pp.71-74, 1872.