
HAL Id: ensl-00175314
https://ens-lyon.hal.science/ensl-00175314

Submitted on 27 Sep 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Probabilistic annotation of protein sequences based on
functional classifications.

Emmanuel D Levy, Christos A Ouzounis, Walter R Gilks, Benjamin Audit

To cite this version:
Emmanuel D Levy, Christos A Ouzounis, Walter R Gilks, Benjamin Audit. Probabilistic annota-
tion of protein sequences based on functional classifications.. BMC Bioinformatics, 2005, 6, pp.302.
�10.1186/1471-2105-6-302�. �ensl-00175314�

https://ens-lyon.hal.science/ensl-00175314
https://hal.archives-ouvertes.fr


BioMed Central

Page 1 of 12

(page number not for citation purposes)

BMC Bioinformatics

Open AccessResearch article

Probabilistic annotation of protein sequences based on functional 
classifications
Emmanuel D Levy1,3, Christos A Ouzounis*1, Walter R Gilks2 and 
Benjamin Audit*1,4

Address: 1Computational Genomics Group, The European Bioinformatics Institute, EMBL Cambridge Outstation, Cambridge CB10 1SD, UK, 
2Medical Research Council Biostatistics Unit, Institute of Public Health, Cambridge CB2 2SR, UK, 3Computational Genomics Group, MRC 
Laboratory of Molecular Biology, Hills Rd, Cambridge CB2 2QH, UK and 4Laboratoire Joliot-Curie and Laboratoire de Physique, CNRS UMR5672, 
Ecole Normale Supérieure, 46 Allée d'Italie, 69364 Lyon Cedex 07, France

Email: Emmanuel D Levy - elevy@mrc-lmb.cam.ac.uk; Christos A Ouzounis* - ouzounis@ebi.ac.uk; Walter R Gilks - wally.gilks@mrc-
bsu.cam.ac.uk; Benjamin Audit* - Benjamin.Audit@ens-lyon.fr

* Corresponding authors    

Abstract

Background: One of the most evident achievements of bioinformatics is the development of

methods that transfer biological knowledge from characterised proteins to uncharacterised

sequences. This mode of protein function assignment is mostly based on the detection of sequence

similarity and the premise that functional properties are conserved during evolution. Most

automatic approaches developed to date rely on the identification of clusters of homologous

proteins and the mapping of new proteins onto these clusters, which are expected to share

functional characteristics.

Results: Here, we inverse the logic of this process, by considering the mapping of sequences

directly to a functional classification instead of mapping functions to a sequence clustering. In this

mode, the starting point is a database of labelled proteins according to a functional classification

scheme, and the subsequent use of sequence similarity allows defining the membership of new

proteins to these functional classes. In this framework, we define the Correspondence Indicators

as measures of relationship between sequence and function and further formulate two Bayesian

approaches to estimate the probability for a sequence of unknown function to belong to a

functional class. This approach allows the parametrisation of different sequence search strategies

and provides a direct measure of annotation error rates. We validate this approach with a database

of enzymes labelled by their corresponding four-digit EC numbers and analyse specific cases.

Conclusion: The performance of this method is significantly higher than the simple strategy

consisting in transferring the annotation from the highest scoring BLAST match and is expected to

find applications in automated functional annotation pipelines.

Background
The gap between the growth rate of biological sequence
databases and the capability to characterise experimen-

tally the roles and functions associated with these new
sequences is constantly increasing [1]. This results in an
accumulation of raw data that can lead to an increase in
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our biological knowledge only if computational charac-
terisation tools are developed. We focus here on the anno-
tation of protein function. A generic approach to this
problem consists of transferring the annotation from
sequences of known function to uncharacterised proteins
[2]. The transfer mechanism might be subdivided in two
steps: (i) to establish the list of known proteins with sig-
nificant sequence similarity to the uncharacterised
sequence; (ii) to select the known sequence(s) from which
the annotation is transferred [3]. The first step is usually
performed with sequence alignment tools such as FASTA
[4] or BLAST [5]. When sensitivity is critical, alternative
tools such as PSI-BLAST [6] and hidden Markov models
[7] can be used. Finding homologous proteins can also be
accomplished using alignment-independent sequence
comparison tools, which have been developed to over-
come the limitation arising from the assumption of conti-
guity between homologous segments [8,9]. Then, the
challenge is the selection of true homologues from the list
of similar sequences. Most of the above tools provide a
score measuring the degree of similarity between the
sequences compared. A simple criterion to single out a
homologue is to choose the most similar sequence i.e. the
highest scoring sequence. More elaborate methods have
been designed to enhance the precision and reliability of
the annotation process. These rely on the combination of
the annotations of more than one homologue [10-13] or,
for example, on semantic analyses of annotation lines
[14].

This type of annotation process relies on the assumption
of a strong relationship between protein sequence and
function. This hypothesis is generally fair [15] even
though many studies have demonstrated the existence of
counter-examples that can lead to annotation errors [16-
19]. Two major origins of errors can be distinguished: (i)
the short listed homologous protein(s) have a different
function from the sequence to be annotated (failure of the
sequence-function paradigm or error in the homology
search); (ii) the transferred annotations were themselves
not correct (transfer of database errors). The second type
of errors along with the iterative usage of annotation
transfer gives rise to the specific problem of error propaga-
tion when newly annotated sequences are included in the
reference database used for the homology search. Recent
studies have shown that dramatic consequences on the
reliability of database annotations are likely to arise from
this process [20]. In order to improve our control on these
two types of errors, it would be very useful to associate a
measure of reliability to the annotations obtained. In this
way, we might limit the introduction of new errors and
limit their propagation by not admitting the transfer of
the less reliable annotations.

In this work, we address this issue by developing a proba-
bilistic framework to the homology-based annotation
process. Our approach relies on the usage of a reference
dataset where protein sequences are classified into func-
tional classes. Here, an annotation is a membership to a
functional class, thus, function sharing is evident. The
possibility for a protein to perform a particular function is
then assessed based on its similarity relationships with all
protein sequences known to perform this function; it ena-
bles for instance to take into consideration both the pres-
ence and the absence of similarity. This possibility is used
during the training step of machine-learning approaches
for sequence annotation, which relies on the availability
of a classified reference dataset [21-23]. Note that most
other methods proposed to date map function to proteins
by first "clustering" proteins based on sequence similari-
ties and second combining the functional description of
the characterised proteins to propose a description for the
uncharacterised sequences. The present approach inverts
this process by mapping sequences to a functional classi-
fication instead of mapping functions to a sequence clus-
tering. Following this idea, we propose a method to build
correspondence indicators (CIs) between sequences and
functional classes. Then, we explore two Bayesian annota-
tion frameworks based on the comparison of the CIs of a
sequence of unknown function with the observed CIs for
the reference protein sequences. This framework provides
probabilities for a sequence to belong to the different
functional classes. We advocate the use of these probabil-
ities as a direct measure of the reliability of annotations.

To validate both probabilistic methods for automatic
annotation, we applied them to the well-established clas-
sification of enzymes. Our results show that both meth-
ods allow distinguishing proteins whose annotation is
reliable from the others. At the highest level of reliability,
the two methods predict the four EC digits with a very low
error rate (~0.002) for 90.6% and 96.0% of enzymes
respectively. We compared these results with the simple
strategy consisting in transferring the EC number of the
BLAST best hit. Our best method has an error rate half that
of the best-hit strategy at the same coverage level.

Results
Defining correspondence indicators

Given a functional classification, annotating a new pro-
tein consists in establishing to which functional class or
classes it belongs. To approach the problem we defined a
Correspondence Indicator (CI) between the new protein and
each of the functional classes, and second, formulated a
classification scheme based on these indicators. This sec-
tion is devoted to the first point, whereas the second one
will be treated in the following section.
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Using the bit-scores of sequence alignments (See Meth-
ods), we can imagine many different scoring strategies to
measure this correspondence. For instance, we could use
the number of hits (with a bit-score above a given thresh-
old), or the best bit-score between the new protein and
the functional class members. Alternatively, we might
choose to compromise between the two above options by
taking the sum of the bit-scores between the new protein
and the class members.

Here, we propose a measure that unifies these three strat-

egies. Let Ω1, ..., Ωn symbolise the set of n functional

classes with respective sizes N1, ..., Nn. We denote Sc,d the

BLAST bit-score between two proteins c and d. Then, we

define the CI  (c) parameterised by α∈[0,+∞),

between a new protein c and the class Ωj as follows:

where the sum is taken over bit-scores Sc,d greater than a

given threshold S0, for c≠d.  (c) measures the strength

of the homology relationship between the new protein c

and the family Ωj as the sum of the pairwise bit-scores to

the power α between c and all class members. The possi-

bility to choose the parameter α allows modulating the

relative weight of each hit with a class: the relative weight

of hits with larger bit-scores increases with α. Using α = 0,

all the hits have the same weight and  (c) is simply

the "number of hits" of c with Ωj. When α = 1, the weight

of each hit is its bit-score and  (c) is the "sum of the

bit-scores". Finally, as α→∞ only the hit with the largest

bit-score counts and  (c) reduces to ,

which is equivalent to the "best bit-score" scoring strategy.

(For large value of α, it can be convenient to simply define

 (c) as the best bit-score with class Ωj:  (c)

= ). Thus, the choice of α enables a continuous

variation between the strategies where only the number of

hits or only the bit-score of the best hit counts. To our

knowledge, such a parametric approach to sequence

search metrics has not been proposed previously. Note

that a more sophisticated combination of the CIs

obtained for different α values could take advantage of

various aspect of information captured by each of these α

values.

Different strategies of annotation

Best correspondence indicator strategy

Given a fixed value for α, the simplest classification

scheme is to assign the new protein c to the class  that

maximises the CI. For α = 0, it is the functional class with

the greatest number of hits with c. When α→∞, this

amounts to the class containing the sequence closest to c:

a simple "best hit" strategy of annotation. Note that differ-

ent values of α may result in a different classification of c.

Estimating the probability for a protein sequence to belong to a 

functional class: an univariate Bayesian approach

A limitation to the "best CI" strategy of annotation is the

lack of a reliability assessment for the functional assign-

ments. To overcome this limitation, we propose to esti-

mate, independently for each of the functional classes, the

probability P(c ∈ Ωj |  (c)) for a protein c drawn at

random, to belong to class Ωj given  (c) i.e. we esti-

mate probabilities knowing one variable (indicator) only.

Using Bayes theorem, we can show [See Additional file 1,

Section S2] that this conditional probability can be esti-

mated by:

where  and  are respec-

tively, the number of proteins truly belonging to class Ωj

and the number of proteins from the entire dataset, whose

correspondence indicator with class Ωj is comprised in

[(  (c) - λ), (  (c) + λ)] . This mechanism is illus-

trated in Additional file 1, Figures S1(a). λ is fixed for the

annotation of each new protein such that the total

number of sampled proteins N (  (d) ± λ) is always

equal to 10. This can be viewed as an adaptive smoothing

of the data: λ is increased until the interval [(  (c) - λ),
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(  (c) + λ)] contains a predetermined quantity of

information (10 proteins).

Determining the most likely functional class of a protein sequence: a 

multivariate Bayesian method of annotation

In the previous approach, we assessed the membership of

a new protein to a functional class using only the CI with

this class. Because this process is performed independ-

ently for each class, it allows several probabilities to be

close to 1. In such circumstances functional assignment is

ambiguous. To improve the control on these cases, we

propose to estimate the probability P(c∈Ωj|{  (c) ...

 (c)}) of a new protein c to belong to Ωj knowing the

set {  (c) ...  (c)} of its CIs with all the functional

classes i.e. we estimate probabilities based on multiple

variables (indicators). Using Bayes theorem, we can show

[See Additional file 1, Section S3] that:

Estimating this probability amounts to consider the n-

dimensional space of CIs and to look in that space what is

the functional composition of the proteins that have their

position within the sphere B ({  (c) ...  (c)}, r) of

radius r, centred at {  (c) ...  (c)}. In other words,

we count the number of proteins within the sphere B

({  (c) ...  (c)}, r) that truly belong to class Ωj.

The ratio between this number and the total number of

proteins in the sphere is  (c ∈ Ωj | {  (c) ... 

(c)}). This mechanism is illustrated in Additional file 1,

Figure S1(b).

As previously for λ, r is determined for each protein such

that the total number of proteins sampled N(B({  (c)

...  (c)}, r)) is always 10. Note that this method

amounts to find the 10 closest proteins from the reference

dataset to the point {  (c) ...  (c)} in the CI space.

The logic behind this adaptive methodology is that the

local density of proteins in the CI space can be highly var-

iable depending on the average level of homology

between proteins in each functional class. Hence, using

constant value for λ and r is not adequate. In this frame-

work, it does not make sense to attempt classifying pro-

teins into classes with less than 10 members. The

particular choice of 10 corresponds to a trade off between

precision (the higher the number of proteins in the neigh-

bourhood, the higher the precision of probability calcula-

tions; see the caption from Table 1) and coverage i.e. the

number of EC classes considered (see Methods).

Determining the optimal correspondence indicator

The freedom of choice of the parameter α in the CI 

(c) (Eq.(1)) allows us to combine in different ways the bit-

scores of the alignments of protein c with the proteins of

the class Ωj. The choice of α enables a continuous varia-

tion between the strategies where only the number of hits

above the threshold S0 (α = 0) or only the bit-score of the

best hit (α→∞) counts (See Defining correspondence

indicators). To optimise the parameters α and S0, we re-

annotated each enzyme (See Methods) using the best CI

strategy (See Different strategies of annotation) with dif-

ferent combinations of their values. In Figure 1, we report

the number of annotation errors E(α,S0) for each combi-

nation of these parameters. At a fixed value of S0, we

observe that the higher α, the lower the number of errors.
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Table 1: Performance of the Univariate Bayesian annotation approach. Re-annotation of the filtered ENZYME database with the 

univariate Bayesian approach. Since we systematically sample 10 enzymes to calculate the probabilities for a protein to belong to each 

functional class (See Different strategies of annotation), probabilities can only take one of the following eleven values: 0, 0.1, ..., 0.9, 1. 

We report for each assignment probability level and globally the number of correct annotations, the number of annotation errors and 

the corresponding error rate and coverage of the database.

Univariate Bayesian approach

Assignment probability 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 TOT

Correct annotations 84 109 103 99 119 177 252 302 437 726 25387 27795

Annotation errors 27 15 5 11 13 23 41 29 31 45 53 293

Error rate (%) 24.3 12.1 4.6 10.0 9.8 11.5 14.0 8.8 6.6 5.8 0.21 1.04

Coverage (%) 0.4 0.4 0.4 0.4 0.5 0.7 1.0 1.2 1.7 2.7 90.6 100.0
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Moreover, the difference between the number of errors at

α = 0 and at α = 10 soars for small S0 values (20 folds at S0

= 45: E(0,45) = 2156 and E(10,45) = 122). This effect is

due to the poor specificity of alignments having a small

bit-score. With no cut-off (S0 = 0), all sequences hit one

another and thus, for α = 0 all the functional assignments

are made to the largest class. This illustrates that the

choice of the α value can be critical, and that for small α

values, the sensitivity to S0 is higher. At a fixed value of α,

by increasing the cut-off S0 we minimise the number of

errors as expected, but simultaneously the coverage of

annotated proteins drops significantly (Fig. 2). Indeed, a

protein cannot be annotated if all its hits have a bit-score

below the cut-off. This shows that if we do not want to

lose too much coverage, there is very little latitude on S0.

By minimising the number of errors to determine the
optimal value for α, we conclude that the best bit-score
strategy (α→∞) is the one which best describes the rela-
tion between an enzyme and its functional class. Moreo-
ver, given the weak sensitivity to S0 for α→∞, we choose
the smallest value S0 = 45 for the threshold in order to
maximise the coverage. Then, from now on, the only CI
we will be using is  (c) for S0 = 45, denoted 
(c). The best CI strategy with α→∞ reduces to a BLAST best-
hit strategy (See Different strategies of annotation). Its per-
formance depends only on the threshold S0 that also
directly controls the coverage (Fig. 2). It will serve as a ref-
erence to compare to the results obtained with the two

probabilistic approaches. In this way, given the same
input (BLAST pairwise bit-scores), we will assess the
improvement in annotation quality obtained by an effi-
cient usage of a functional classification on the reference
dataset. Recently developed database search methods
exploit sequence profiles and often outperform BLAST in
terms of sensitivity for the detection of remote homolo-
gies. However, this increase in sensitivity usually comes at
the expense of specificity, which is the most important
feature in the present set up. Indeed, most enzymes have
easily detectable homologies with sequences from their
EC class.

Re-annotation with the univariate Bayesian approach

The univariate Bayesian approach allows estimating the

probabilities for an enzyme to belong to a particular EC

class Ωj, given only  (c) (the maximum bit-score with

this class). To annotate an enzyme using this method, we

derive probability estimates for its membership in each

functional class (Eq.(2)) and assign it to the class for

which the probability is largest. We re-annotated all

enzymes of the reference dataset via this approach, using

the leave-one-out method (See Methods). The results of

this re-annotation are presented Table 1. There is a total

annotation error rate r = 0.010 (293 errors), which is more

than twice as large as for the re-annotation of the reference

dataset by the best-hit strategy (Fig. 2: r = 0.0045, 126

errors). However, we can take advantage of the assign-

ment probabilities that do not exist for the best-hit strat-

egy and that are a direct measure of the confidence we

have in an assignment. Considering the large proportion

of proteins (90.6%) that are annotated with the highest

confidence (assignment probability of 1), we notice that r

= 0.0021 (53 errors), two fold smaller than for the best-hit

strategy. The reduction of the error rate remains very sig-

nificant even if we take into account the coverage of anno-

tation: at the same coverage, the best-hit strategy leads to

a rate of error of 0.0034 which is 1.5 larger (Fig. 2). To

achieve the same rate of error with the best-hit strategy the

coverage drops to 54% (Fig. 2). Interestingly, for assign-

ment probabilities smaller than 1, the error rate dramati-

cally increases (r > 0.05). These results demonstrate that

flagging annotations with the assignment probabilities

allows us to filter out likely errors. Finally, we note in

Table 1 that 84 proteins are reported to be correctly anno-

tated with an assignment probability equals to 0. These

proteins only hit their true class and so, can be assigned

only to it. However, because their CI with their class falls

in a range of values with only protein from other classes,

the assignment probability is equal to zero (Eq.(2)).

Y
Ω j

( )α→∞
YΩ j

YΩ j

Number of re-annotation errorsFigure 1
Number of re-annotation errors. Number of annotation 
errors E(α,S0) made during the re-annotation of the 28088 
enzymes of the filtered ENZYME database (See Methods) 
using the best CI strategy (See Different strategies of annota-
tion) as a function of the parameter α and cut-off S0 (Eq. (1)).
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In this mode of automatic annotation, the probabilities of
membership of a protein to each functional class are esti-
mated independently, allowing for two or more probabil-
ities to be significant e.g. 1 and 0.8. In principle, this
property permits to assign a protein to more than one
functional class. Nevertheless, if proteins can belong to
one functional class only, as for the set of enzymes consid-
ered here (See Methods), these situations correspond to
ambiguous cases that are more likely to lead to annota-
tion errors than instances where proteins have only one
significant probability. Indeed, out of the 25387 enzymes
annotated with an assignment probability of 1 (Table 1),
23655 have their second highest probability equal to 0
(data not shown). For these "clear cases", the error rate is
significantly reduced to r = 0.0009 (21 errors) which is 3
times smaller than the error rate for the maximum bit-
score strategy at the same annotation coverage (Fig. 2; r =
0.0031 at 84% coverage). This result strongly suggests that
taking into account simultaneously the CIs with all func-
tional classes can lead to significant improvement in the
annotation process. This approach is investigated in the
next section.

Re-annotation with the multivariate Bayesian method

We now explore a multivariate Bayesian method taking

into account all CIs concurrently. More precisely, each

protein is mapped to a point in an n-dimensional space

where each dimension corresponds to one of the n possi-

ble functional classes. In this space, the coordinates of a

protein are the CIs  (c) (maximum bit-score) with

each family. The probabilities for a protein to belong to

each functional class are estimated simultaneously

according to the functional class of the 10 proteins of the

reference dataset closest to the unclassified protein in this

space (See Different strategies of annotation and Addi-

tional file 1, Fig. S1(b)). Note that compared to the uni-

variate Bayesian approach, protein neighbourhood is

determined globally, just once. As a result, the sum of all

the probabilities is always 1; there cannot be more than

one significant class membership probability (P~1) per

protein.

We re-annotated all enzymes of the reference dataset via
this method (See Methods, Table 2). Compared with the
univariate approach, we note a decrease of the global error
rate (r = 0.0079 vs. 0.010). At the highest annotation con-
fidence (assignment probability of 1), we observe a signif-
icant increase of the annotation coverage (96.0% vs.
90.6%) concomitant with a stable error rate (r = 0.0020
and 53 errors vs. r = 0.0021 and 53 errors). The error rate
at the highest confidence level is half that of the best-hit
strategy for the same coverage. We observe that to achieve
a similar error rate the coverage of the best-hit strategy
would dramatically drop to 51% (Fig. 2). Interestingly,
the assignment probabilities closely match the empirical
error rates. For instance, for the set of enzymes annotated
with an assignment probability of 0.7, we measure an
error rate of 0.242 (≈1-0.7).

Comparing the two Bayesian annotation strategies

The two Bayesian methodologies differ significantly on
the coverage of the database of enzymes annotated at the
maximum level of reliability (probability 1): 90.6%
(25440/28088) for the univariate approach in contrast
with 96.0% (26951/28088) for the multivariate method.
This increase of coverage actually associated with a con-
stant number of errors (53) corresponds to 1511 more
correct annotations in favour of the multivariate method
(Tables 1 and 2). This is due to the fact that the multivar-
iate Bayesian method regards a protein sequence as a sin-
gle point in the CI space while the univariate Bayesian
approach considers the orthogonal projection on each CI
axis separately. Figures 3(a) and 3(b) propose two exam-
ples to illustrate the consequences of this difference.

YΩ j

Re-annotation error rateFigure 2
Re-annotation error rate. Rate of annotation error as a 
function of the coverage for the re-annotation of the 28088 
enzymes of the filtered ENZYME database (See Methods). 
The full line corresponds to the best-hit strategy (See Deter-
mining the optimal correspondence indicator); the curve was 
obtained by performing the re-annotation for different values 
of the threshold S0 between 45 (100% coverage by definition 
of the filtered ENZYME database) and 841. (∇,∆) correspond 
to the univariate and multivariate Bayesian methods at the 
highest confidence level (P = 1, Tables 1 and 2). (®) corre-
sponds to the "clear cases" identified by the univariate Baye-
sian method (P = 1 and second highest probability equals to 
0; see Re-annotation with the univariate Bayesian approach).
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Exploring the CI space for EC classes 2.3.1.61 (Dihydrolipoamide S-

succinyltransferase) and 2.3.1.12 (Dihydrolipoamide S-

acetyltransferase)

Focusing on protein O31550 [Swiss-Prot:O31550] from
EC 2.3.1.12, we note Figure 3(a) that its CIs (best bit-
scores) with both EC classes are similar (231 on the Y-
coordinate with EC2.3.1.12 and 225 on the X-coordinate
with EC 2.3.1.61). To calculate the probabilities to belong
to each EC classes with the multivariate Bayesian method,
we look at the functional distribution of the proteins clos-
est to O31550 in the CI space (See Different strategies of
annotation, Eq.(3)). This process is represented by the
dotted circle in Figure 3(a); it leads to P2.3.1.12 = 0.7 and
P2.3.1.61 = 0.3 and, thus, to a correct annotation of O31550.
By contrast, when annotating this protein with the univar-
iate Bayesian approach, these probabilities are calculated
independently (See Different strategies of annotation,
Eq.(2)). P2.3.1.12 falls to 0 because on the EC2.3.1.12 axis,
around bit-score 231 (box to the right), we sample only
proteins belonging to EC 2.3.1.61. In the same manner,
for EC 2.3.1.61 around bit-score 225 (box on top), we
observe only one protein out of 10 that truly belongs to
EC 2.3.1.61 so that P2.3.1.61 = 0.1. Hence, we wrongly
assign O31550 to EC 2.3.1.61 but with a very low assign-
ment probability P = 0.1.

Exploring the CI space for EC 1.6.5.3 (NADH dehydrogenase 

(ubiquinone)) and EC 1.6.99.5 (NADH dehydrogenase (quinone))

There is also strong sequence similarity between proteins
from these two EC classes and there exists a quite well
defined "boundary" that is densely populated (Fig. 3(b)).
Very clearly the projections on the CI axes intrinsic to the
univariate approach tend to mix the 804 proteins from the
two EC classes leading to poor performances (at P = 1, r =
0.014 for 44.2% coverage) whereas the multivariate
method can adapt to the boundary and leads to improved
performances (at P = 1, r = 0.0028 for 90.0% coverage).
These cases clearly exemplify that the projections on the
CI axes can have great influence on the probability calcu-
lation and may result in annotation errors. It also shows
that the multivariate method outperforms the univariate
approach because of its ability to adapt to the shape of the
boundary between functional classes in the CI space.

Analysing the origins of annotation errors

The proposed Bayesian annotation strategies optimise the
exploitation of the functional information carried by CIs
built upon sequence similarity clues (BLAST bit-scores).
We explore examples of the failure of these clues leading
to annotation errors when using the multivariate Bayesian
method.

Annotation errors between Glyceraldehyde 3-phosphate 

dehydrogenases

Proteins from classes EC 1.2.1.12 and EC 1.2.1.59 catalyse
the same reaction (Glyceraldehyde 3-phosphate dehydro-
genation) but EC 1.2.1.12 proteins are NAD-dependent
while EC 1.2.1.59 proteins can use both NAD and NADP
as cofactors. As illustrated in Figure 3(c), there exists
strong cross-similarity between sequences from these two
classes but each class tends to occupy a separate part of the
CI space so that annotation can be done accurately. We
note four exceptions: four proteins from EC 1.2.1.59
(black triangles; [Swiss-Prot:O09452, Swiss-Prot:O34425,
Swiss-Prot:P80505, Swiss-Prot:Q48335]) are closer to the
EC 1.2.1.12 cloud than to the other EC 1.2.1.59 proteins
in the CI space and thus are wrongly re-annotated as EC
1.2.1.12 proteins. The erroneously re-annotated EC
1.2.1.59 sequence O34425 is Bacillus subtilis gapB protein.
Protein gapA [Swiss-Prot:P09124], also from B. subtilis
belongs to class EC 1.2.1.12. It was shown that gapA can
acquire the gapB activity with only two amino acids muta-
tions (D32A and L187N) [24]; actually, gapB possesses
these mutations. Therefore, a reasonable hypothesis is
that gapA and gapB originate from a gene duplication
event followed by divergent evolution. From the topology
of Figure 3(c), it is possible that similar scenarios apply to
the three other "misplaced" EC 1.2.1.59 sequences. Here,
functional specialisation can be achieved with only a few
modifications at specific sites. General alignment tools
like BLAST do not capture the higher significance of muta-
tions at these sites compared to alterations at other sites;
this leads to annotation errors difficult to avoid with auto-
matic general-purpose tools.

Annotation errors between two-sector ATPases

Another interesting example of annotation errors comes
from the classes EC 3.6.3.14 and EC 3.6.3.15, both of
which contain transporting two-sector ATPases, the
former transporting H+ and the latter Na+. In the CI space,
the two clouds of points marking the proteins from these
classes exactly overlap (data not shown) i.e. CIs based on
BLAST bit-scores do not capture any sequence specificity
distinguishing the two EC classes (the two classes are asso-
ciated with the same 5 PROSITE patterns [25]). EC
3.6.3.15 being much less populated than EC 3.6.3.14 (16
members and 1252 members, respectively), this particular
topology results in the 16 EC 3.6.3.15 sequences to be
wrongly assigned to EC 3.6.3.14 with a high confidence (P
= 1 in the 16 cases) because a large majority of their neigh-
bours in the CI space belongs to EC 3.6.3.14. More gener-
ally, when CIs do not allow the distinction of two classes
then we expect most sequences to be assigned to the larger
class with an assignment probability equal to the relative
size of this class. Hence, unless one class is greatly larger
than the other one, assignment probabilities will be sig-
nificantly smaller than 1 allowing us to filter out these

http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=O31550
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=O09452
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=O34425
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=P80505
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=Q48335
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=P09124
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specious annotations. In other words, the 16 erroneous
annotations of EC 3.6.3.15 proteins originate from a class
size effect. In most situations class sizes are of the same
order and such a local topology of the CI space leads to
easily detectable annotations errors (low assignment
probabilities). This example of annotation errors actually
explains how, by scanning the local configuration of the
CI space, the Bayesian strategies can avoid a number of
errors.

Example of annotation error propagation

In the present work, we considered the annotations asso-
ciated to the sequences in the ENZYME database to be
exact. Nevertheless, analysis of the origins of annotation
errors using visual representations of the CI space as
shown Figure 3, revealed peculiar configurations of the
sequence-function relationship. A close investigation of
these cases allowed us to identify three clear annotation
errors. Figure 3(d) provides an example of error identifica-
tion. Protein P94598 [Swiss-Prot:P94598] is annotated as
a member of EC 1.4.1.3 (NAD(P)-utilizing glutamate
dehydrogenase) but the multivariate Bayesian method
assigned it to EC 1.4.1.4 (NADP-specific glutamate dehy-
drogenase) with an assignment probability of 1. Indeed,
P94598 is close to a group of EC 1.4.1.4 proteins in the CI
space. Tracing the source of this annotation, we noted that
its strong CI value with EC1.4.1.4 originated from a strong
sequence similarity with protein P95544 [Swiss-
Prot:P95544] annotated as EC 1.4.1.4. By checking the
publication associated with the annotation of P95544, we
noted that this protein was wrongly annotated and actu-
ally belongs to EC 1.4.1.3 [26]. Correcting this database
annotation error, the CI value of P94598 with EC 1.4.1.3
increases while its CI value with EC 1.4.1.4 decreases so
that in fact the multivariate Bayesian method correctly
classifies it to EC 1.4.1.3 (Fig. 3(d)). Interestingly, this
example provides an illustration of an annotation error
susceptible to propagate [20]. The correction of the anno-
tation of P95544 was submitted to the ENZYME database
and is expected to be included in future releases. Another
example comes from P17692 [Swiss-Prot:P17692] that we
classify as EC 2.4.1.19 (cyclomaltodextrin glucanotrans-

ferase) in disagreement with its database annotation: EC
3.2.1.1 (alpha-amylase). Actually, the EC 2.4.1.19 activity
of P17692 has been described in the literature [27]. In
addition, we found that Q11119 [Swiss-Prot:Q11119]
(EC 3.1.2.14, oleoyl-[acyl-carrier protein] hydrolase)
should be annotated as EC 3.1.2.15 (ubiquitin thioleste-
rase). The experts of ENZYME have validated these two
annotation errors and corrected the corresponding data-
base entries.

Discussion
The maintenance of various aspects of protein function is
intricate due to the inhomogeneity of the sequence-func-
tion relationship. For example, 60% of EC classes with
more than 2 members could not be perfectly discrimi-
nated by sequence similarity at any BLAST threshold [28].
Moreover, the 4 (or first 3) EC digits were systematically
identical only above 80% (or 50%) sequence identity in
structural alignments, while at the other end of the spec-
trum, the preservation of the 4 EC digits was observed at
as low as 16% identity [29]. Consequently, the threshold
below which sequence similarity should not be consid-
ered for annotation transfer at a given confidence level
should in general be determined for each functional class
independently. However, it is typically set in a uniform
manner. In sharp contrast, the two Bayesian methods
developed here take into account how functional classes
are distributed locally in the relevant part of the CI space
or along CI axes and assign a low probability where the
sequence-function relationship is ambiguous.

Interestingly, with both Bayesian approaches, a large
majority of proteins have been re-annotated with an
assignment probability of 1 (Tables 1 and 2). In the case
of the multivariate Bayesian method, it means that for
96.0% of the enzymes of our dataset their 10 nearest
enzymes in the CI space have the same EC number. Also,
at the fourth level of the EC hierarchy, 255 classes out of
589 (43%) are isolated i.e. the 10553 proteins out of
28088 (38%) belonging to these classes have no BLAST
hit (above threshold S0 = 45) with the proteins of the
other classes. This illustrates that there exists a high level

Table 2: Performance of the Multivariate Bayesian annotation method. Re-annotation of the filtered ENZYME database with the 

multivariate Bayesian method. Since we systematically sample 10 enzymes to calculate the probabilities for a protein to belong to 

each functional class (See Different strategies of annotation), probabilities can only take one of the following eleven values: 0, 0.1, ..., 

0.9, 1. We report for each assignment probability level and globally the number of correct annotations, the number of annotation 

errors and the corresponding error rate and coverage of the database.

Multivariate Bayesian method

Assignment probability 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 TOT

Correct annotations 0 0 0 0 9 35 109 116 188 511 26898 27866

Annotation errors 0 0 0 5 10 37 34 37 29 17 53 222

Error rate (%) - - - 100.0 52.6 51.4 23.4 24.2 13.4 3.2 0.20 0.79

Coverage (%) 0.0 0.0 0.0 0.0 0.1 0.3 0.5 0.5 0.8 1.9 96.0 100

http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=P94598
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=P95544
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=P17692
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=Q11119
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Examples of topology in the CI spaceFigure 3
Examples of topology in the CI space. In 4 cases where there is a strong cross similarity between sequences belonging to 
two different EC classes, we plot for each protein of these classes a point whose 2 coordinates are the CIs of its sequence with 
the two functional classes (BLAST best-hit with the corresponding EC class). (a): EC 2.3.1.61 (black circles) and EC 2.3.1.12 
(grey triangles); crosses on top and at right correspond to the projection on the CI axes; the dotted circle (boxes on top and 
to the right) marks the limit of the sampling regions used to annotate O31550 with the multivariate (univariate) Bayesian 
method [See Additional file 1, Fig. S1]. (b): EC 1.6.5.3 (black triangles) and EC 1.6.99.5 (grey circles). (c): EC 1.2.1.59 (black tri-
angles) and EC 1.2.1.12 (grey circles). (d): EC 1.4.1.3 (black triangles) and EC 1.4.1.4 (grey circles); the arrow shows the change 
of position of protein P94598 in the CI space when the annotation of P95544 is corrected from EC 1.4.1.4 to EC 1.4.1.3 (See 
Analysing the origins of annotation errors).
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of clustering of enzymes sharing their four EC digits in the
CI and sequence spaces. Thus, for the filtered ENZYME
database we considered in this analysis (enzymes catalys-
ing one reaction only and EC categories with more than
11 members; see Methods), CI based on sequence similar-
ity is a meaningful clue to predict the full EC code. In con-
trast, considering EC digit conservation based on pairwise
sequence comparison, it was found that a good practical
rule was to transfer 2 EC digits above 15% sequence iden-
tity [29]. There is no contradiction here. Essentially, when
considering sufficiently populated EC classes, for most
sequences we find very close homologues within their
class allowing a clear functional annotation. This property
of large EC classes also explains why the optimal CIs are
obtained for α→∞ (See Determining the optimal corre-
spondence indicator) i.e. why the optimal CIs reduce to
the best BLAST bit-score with each class while the number
of hits is not taken into consideration (See Defining cor-
respondence indicators): the important property in the
sequence-EC class relationship is that the EC class con-
tains at least one highly similar sequence to the query
sequence under study. This situation also clarifies the rea-
son for the good performance of the simple BLAST best-
hit strategy for the tested data set (error rate smaller than
0.0045; Fig. 2). A priori, the well-specified clustering of
sequences belonging to the same class cannot be general-
ised to other classifications of proteins, so depending on
the sequence classification scheme under consideration it
is important to measure the optimal α value. In situations
where this value is small (i.e. when the number of hits is
more significant than their scores), it is predictable that
the difference between the performances of the Bayesian
approaches and the simple BLAST best-hit method will be
greatly increased.

Conclusion
The importance of standardising the systems by which
biological functions are described is now generally recog-
nised [30]. This has opened up the possibility for high-
throughput automatic retrieval of sequences based on
functional characteristics. In the present work, we demon-
strate the great potential offered by a classification of pro-
tein functions to improve the quality of sequence
annotations. Indeed, the availability of such a functional
classification allows the definition of measures of corre-
spondence between a sequence and all functional classes
i.e. it permits taking advantage of the complete set of sim-
ilarity relationships of a query sequence with the
sequences from a reference database. The automated
Bayesian methodologies provide reliable information
about the sequences whose assignment probability is
large enough (in this work, P = 1) leaving behind the more
"difficult" cases. In an annotation pipeline, these method-
ologies could be an efficient filter to focus the work of
human experts on the more error prone cases [31]. Along

the same lines, inconsistencies between automated anno-
tation and database annotation could be used to highlight
possible annotation errors [32]; in this context, visual rep-
resentations like those presented in Figure 3 can be a use-
ful tool for human experts.

An important aspect of this work is the construction of
correspondence indicators between sequences and func-
tional classes (Eq.(1)). Here, we used BLAST bit-scores for
this process but the score from any pairwise protein com-
parison can be used instead e.g. structural comparison
[33,34] or alignment-independent measures that can be
computed from the primary sequence like length, word
frequency, molecular weight or total charge [8,9,22]. Note
that in principle, any measure of relationship between
sequence and function can be used instead of CIs. In a pre-
vious study, it was shown that the simple BLAST best-hit
approach outperformed three machine-learning methods
based on alignment-independent features for the classifi-
cation of enzymes within the EC hierarchy [22]. In con-
trast, the two Bayesian classifiers based on CIs outperform
sequence similarity alone in term of sensitivity and specif-
icity. This suggests that CIs could reveal themselves to be
powerful features as input to machine-learning
approaches for protein classification [21,23]. It remains to
be seen whether the performance of CIs based on pairwise
BLAST bit-scores is constant across various classification
problems e.g. when there is only remote homology
between class members [35].

The analytical development leading to CIs can be
extended to construct a measure of correspondence
between two functional classes that describes the degree
of their overlap in the CI space (Fig. 3). Since a strong
overlap indicates that two functional classes cannot be
distinguished by the CIs, we can build an "adapted" func-
tional classification by merging functional classes based
on this new criterion. Interestingly, this amounts to
empirically solve the problem of the extent of the func-
tional annotation that can be transferred [29]. For exam-
ple, EC 3.6.3.14 and EC 3.6.3.15 exactly overlap in the CI
space (See Analysing the origins of annotation errors),
this means that BLAST-based CIs simply do not differenti-
ate these two types of transporting two-sector ATPases. It
is more effective in an automated system to group these
two classes in a Meta EC class "Na+ or H+ transporting two-
sector ATPases" that we can reliably assign to. A key fea-
ture of the proposed methodologies is the quantification
of the reliability of annotations; the assignment probabil-
ity represents an attractive candidate, both versatile and
compact, to qualify non-experimentally based annota-
tions. In principle, it could be taken into account by the
Bayesian annotation framework allowing its iterative
usage without risking the propagation of annotation
errors [20]. It is our hope that the Bayesian annotation
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strategies presented herein will contribute to more robust
automatic annotation pipelines.

Methods
A database of enzymes

In the present work, we put forward a method of classifi-
cation of uncharacterised proteins, based on their pattern
of homology with a reference set of classified proteins. We
validate this approach on a database of enzymes anno-
tated by their four-digit EC number. Annotations and
sequences have been retrieved using release 30 of
ENZYME [36]) and release 41 of SWISSPROT [37]. We
quantified the homology relationship between two pro-
teins by the bit-score of the alignment between their
sequence using BLAST with default parameters settings
[6]. Query sequences were masked for low-complexity
regions using CAST [38]. Where BLAST reports more than
one significant hit between two sequences, we retain only
the best bit-score. We performed a BLAST "all against all"
comparison between enzymes and stored all pairwise best
bit-scores greater than 45 (E-value cut-off of 10-5 for the
database under consideration).

The tree-like structure of the EC nomenclature [See Addi-
tional file 1, Section S1] suggests that the EC classification
defines a functional partition of enzymes. However, 1078
enzymes are classified into multiple EC classes. This can
originate from overlaps in the definition of EC classes, or
from multi-functional enzymes. In the present work, we
do not take explicitly into account the possibility of multi-
functional proteins. Hence, all enzymes with more than
one EC number were discarded in order to obtain a refer-
ence dataset where the functional classification defines a
partition of the protein sequence set. In addition, protein
sequences annotated as "fragment" in SWISSPROT have
not been considered. Ultimately, the probabilistic frame-
work of annotation we developed requires a minimum
number of proteins in each class for the functional assign-
ments to be meaningful. We fixed this minimum number
to 10 proteins and so ignored all classes containing less
than 11 members (we re-annotate each enzyme using a
leave-one-out method; see Validation by re-annotation).
Finally, we removed the 215 sequences that did not
present any hit in our database of local alignments. This
defined the reference set of 28088 protein sequences used
in the present analysis as well as their functional classifi-
cation.

Validation by re-annotation

In order to quantify the performance of the different
annotation strategies presented above, they were applied
to re-annotate the filtered ENZYME database using a
leave-one-out procedure. This method consists in remov-
ing in turn each enzyme from the reference dataset and to
re-annotate it as if it was a new enzyme of unknown activ-

ity. The so-obtained classification of enzymes was then
compared to the original classification. For the two Baye-
sian methods, new enzymes were assigned to the func-
tional class for which the estimated probability is the
highest.
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