
HAL Id: ensl-00169409
https://hal-ens-lyon.archives-ouvertes.fr/ensl-00169409v2

Submitted on 4 Sep 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An efficient rounding boundary test for pow(x,y) in
double precision

Christoph Lauter, Vincent Lefèvre

To cite this version:
Christoph Lauter, Vincent Lefèvre. An efficient rounding boundary test for pow(x,y) in double preci-
sion. 18 pages. 2007. <ensl-00169409v2>

https://hal-ens-lyon.archives-ouvertes.fr/ensl-00169409v2
https://hal.archives-ouvertes.fr

Laboratoire de l’Informatique du Parallélisme

École Normale Supérieure de Lyon
Unité Mixte de Recherche CNRS-INRIA-ENS LYON-UCBL no 5668

An efficient rounding boundary test for

pow(x,y) in double precision

Christoph Quirin Lauter,

Vincent Lefèvre
September 4, 2007

Research Report No RR2007-36

École Normale Supérieure de Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, France

Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80

Adresse électronique :lip@ens-lyon.fr

An efficient rounding boundary test for

pow(x,y) in double precision

Christoph Quirin Lauter, Vincent Lefèvre

September 4, 2007

Abstract

The correct rounding of the function pow : (x, y) 7→ xy is currently based on
Ziv’s iterative approximation process. In order to ensure its termination, cases
when xy falls on a rounding boundary must be filtered out. Such rounding
boundaries are floating-point numbers and midpoints between two consecutive
floating-point numbers.
Detecting rounding boundaries for pow is a difficult problem. Previous ap-
proaches use repeated square root extraction followed by repeated square and
multiply. This article presents a new rounding boundary test for pow in dou-
ble precision which resumes to a few comparisons with pre-computed constants.
These constants are deduced from worst cases for the Table Maker’s Dilemma,
searched over a small subset of the input domain. This is a novel use of such
worst-case bounds.
The resulting algorithm has been designed for a fast-on-average correctly
rounded implementation of pow, considering the scarcity of rounding boundary
cases. It does not stall average computations for rounding boundary detection.
The article includes its correction proof and experimental results.

Keywords: floating-point arithmetic, correct rounding, power function

Résumé

L’arrondi correct de la fonction pow : (x, y) 7→ xy se base actuellement sur le
processus d’approximation itératif de Ziv. Afin de garantir la terminaison de ce
processus, les cas où xy tombe sur une frontière d’arrondi doivent être filtrés.
Les frontières d’arrondi sont formées par les nombres flottants et les milieux
entre deux nombres flottants consécutifs.
La détection de frontières d’arrondi de pow est un problème difficile. Les ap-
proches antérieures utilisent des extractions de racines carrées répétées suivies
d’une boucle de mises au carré et de multiplications. Cet article présente un
nouveau test de frontière d’arrondi pour pow en double précision qui se contente
de quelques comparaisons avec des constantes pré-calculées. Ces constantes ont
été déduites des pires cas du Dilemme du fabricant des tables, recherchés sur
un petit sous-ensemble du domaine d’entrée. Ceci est une utilisation nouvelle
de bornes de pires cas.
L’algorithme présenté a été développé pour une implémentation de pow cor-
rectement arrondie, rapide en moyenne, en considérant la rareté des cas sur les
frontières d’arrondi. Il ne retarde pas les calculs de cas moyens pour la détection
de cas sur les frontières d’arrondi. Cet article inclut la preuve de correction de
l’algorithme ainsi que des résultats expérimentaux.

Mots-clés: arithmétique flottante, arrondi correct, fonction power

An efficient rounding boundary test for pow 1

1 Introduction

Correct rounding of elementary functions f : R → R such as exp, sin, log2, extends bit-by-bit
portability of the IEEE 754 standard for binary floating point arithmetic [1]. Correct rounding
means returning a floating-point result rounded as if infinite intermediate precision were used to
evaluate f . Its importance, its impact and, in particular, its feasibility have been shown in the
last years [17, 14, 7, 4, 5, 11].

Correctly rounding implementations [3, 7, 17, 16] offering high performance currently rely on
two main approaches, that can be used together. In the first technique due to Ziv, an iterative
process increases the accuracy of an approximation to the given function. Eventually, it can be
ensured that rounding the approximation is equivalent to rounding the infinitely exact value [17,
14]. In the second approach, the worst-case accuracy in Ziv’s iterations is pre-calculated for some
target precision such as IEEE 754 double precision [11, 15], so that not only average but also
worst-case performance can be brought to a high level [4, 5].

In order to guarantee the termination of Ziv’s iterative process, it is necessary to detect cases
when the image f(x) of a function lies exactly on a so-called rounding boundary [17, 14, 13]. A
rounding boundary is a point where the rounded value abruptly changes: values less than the
boundary are rounded downward and values greater than it are rounded upward. Special rules,
like the ties-to-even rule of the IEEE 754 standard, apply if the value lies exactly on the boundary.

For common elementary, transcendental functions, such as for example exp, sin, log2, this
detection is easy: rounding boundaries are rational numbers, whereas the images of these functions
on rational values are transcendental except for a few well-known arguments [14, 8]. Thus, only
few values remain to be filtered. For instance, exp(x) is rational only for x = 0 and log2(x) is
rational only for integer powers of 2.

For the function pow : (x, y) 7→ xy the situation is different. First, the function is bivariate.
This currently makes worst-case accuracy computation unfeasible for double precision in reason-
able time. Current techniques are opposed to a combinational explosion [15, 10]. Hence, the
correct rounding of pow is based only on Ziv’s iterative approach [13, 16, 17]. Second, the images
pow(x, y) = xy are not floating-point numbers of some precision for some floating-point numbers
x and y, and potentially fall on rounding boundaries. Consider for example 12960.75 = 216. Nev-
ertheless, the rounding boundary cases (x, y) – in a given precision – form a complicated set. For
example, xy is rational for x rational and y integer or, more difficult, for x a repeatedly perfect
square and y the reciprocal of the corresponding integer power of 2. However, not all rationals are
rounding boundaries. The detection of these rounding boundary cases of pow requires a particular
algorithm.

This paper addresses this rounding boundary detection problem for pow in binary floating-
point arithmetic as specified by the IEEE 754 standard. The problem is considered for IEEE 754
double precision and all rounding modes defined by the standard: the default mode round-to-
nearest-ties-to-even and the three directed rounding modes [1].

The problem is not new: different detection algorithms have already been proposed in the
MPFR library [7, 13], in Sun’s libmcr [16] and in IBM’s (Ziv’s) libultim that is now integrated
in the GNU C Library (glibc)1 [17]. In all these three previous approaches, the detection algo-
rithm performs relatively expensive computations at run-time. Complex tests ensure that these
computations are all error-free. A novelty in our approach is that these computations are replaced
with simple tests with constants and approximations that are already available in an implementa-
tion of pow. Typically we replace a repeated square root extraction and testing process followed
with a square and multiply loop by eight comparisons with pre-computed constants.

A second novelty in our work is how these constants can be pre-computed. Surely, worst-case
bounds for the correct rounding cannot be computed for the function pow on its whole definition
domain in double precision in reasonable time [15, 10]. Nevertheless, worst-case bounds can be
computed for a subset of the domain [9]. This subset principally contains arguments (x, n) of
integer powers xn of a double precision number x for small integers n and pre-images (x, 2−F · n)

1available at http://www.gnu.org/software/libc/

http://www.gnu.org/software/libc/

2 Ch. Lauter, V. Lefèvre

of small 2F -th roots of a double precision number x raised to some very small integer power:
(

x2−F
)n

. We observe and prove that all cases when xy falls on a rounding boundary must lie
in such a small subset of the double precision numbers. Further, we show that we can detect
rounding boundary cases using approximations better than the worst-case: if an approximation
to xy is provably twice as near to a rounding boundary than an inexact case can ever be, the true
value of xy is exactly on the rounding boundary.

Purpose of the design of our algorithm has not been just a new application of worst-case
search results. The algorithm has been designed as a basic brick for a fast correctly rounded
implementation of pow. We show that in random input, rounding boundary cases are rare. This
particularly holds for the default rounding mode. Our algorithm allows one to get high average
performance by not stalling not-rounding-boundary-cases on the critical path and to pitch on the
rounding boundary cases essentially for free after the second iteration in Ziv’s process.

This paper is organized as follows: In Section 2, we analyze previous correct rounding im-
plementations of pow. After fixing notations (Section 2.1), we give an overview on how Ziv’s
iteration technique works and why its termination is conditioned by detecting rounding boundary
cases (Section 2.2). We analyze then the general, previously proposed techniques for rounding
boundary detection for pow (Section 2.3) before sketching the algorithms in Sun’s libmcr, Ziv’s
libultim and MPFR (Section 2.4). We expose our approach in Section 3. We show here anal-
yses of the number of rounding boundary cases (Section 3.1). We expose our technique using
worst-cases (Section 3.2) and show what algorithm can be used for computing these worst cases
(Section 3.3). Finally we present our algorithm (Section 3.4). We give a sketch of the correctness
proof of the algorithm in Section 4. Before concluding in Section 6, we show performance results
in Section 5.

2 Correct rounding implementations of pow

2.1 Notations

Throughout this paper we work with binary floating point numbers. In our formalization [2] a
floating point number 2E ·m consists of an exponent E and a significand m, both signed integers.
We make abstraction from special data like infinities or Not-a-Numbers (NaNs). We denote the
set of floating-point numbers of precision k with unbounded exponent range as:

Fk =
{

2E ·m | E ∈ Z, m ∈ Z, 2k−1 ≤ |m| ≤ 2k − 1
}
∪ {0} .

IEEE 754 double precision floating-point numbers have a bounded exponent range [1]. They
correspond to the set

D =
{

2E ·m | E ∈ Z, −1074 ≤ E ≤ 971, 252 ≤ |m| ≤ 253 − 1
}

∪
{

2−1074 ·m | m ∈ Z, |m| ≤ 252 − 1
}
.

Floating-point numbers in D for whichm varies between 252 and 253−1 are called normal numbers.
The remaining numbers are called subnormal numbers. Remark that D ⊆ F53 [2].

We consider the IEEE 754 rounding modes round-down, round-up, round-to-zero and the
default mode round-to-nearest-ties-to-even [1]. We denote the operation of rounding as a function
◦k : R → Fk. We use the symbol ⋄k : R → Fk if a distinction between two rounding modes is
necessary.

Rounding functions are discontinuous. The discontinuity points of a rounding function are the
rounding boundaries of the corresponding rounding mode. For the modes ◦k round-down, round-
up and round-towards-zero, the set of the rounding boundaries is the set Fk [11]. We refer to
such a case as an exact case. For the rounding round-to-nearest mode ◦k, the set of the rounding
boundaries is formed by the midpoints of two consecutive floating-point numbers in Fk [11]. We
refer to such a case as a midpoint case.

An efficient rounding boundary test for pow 3

The midpoints of numbers in Fk are numbers in Fk+1 with odd significand. Since Fk ⊂
Fk+1, the rounding boundaries of all considered rounding-modes ◦k lie in Fk+1. Testing whether
pow(x, y) is a rounding boundary case in double precision hence means computing the predicate

RB(x, y) = (xy ∈ F54) .

2.2 The Table Maker’s Dilemma and Ziv’s correct rounding technique

The correct rounding of a non-rational function f is subject to the Table Maker’s Dilemma [14].
The unknown, exact value ẑ = f(x) of the function is approximated by z with an error δ. It
is only known that ẑ lies in an interval Z = [z − δ; z + δ] around the approximation z. If no
rounding boundary lies in Z, all values z̃ ∈ Z round to the same value ◦ (z̃). Hence, rounding the
approximation z gives to correct rounding: ◦ (ẑ) = ◦(z) (see Figure 1(a)). On the other hand, if a
rounding boundary lies in Z, there is a doubt: some values z̃ ∈ Z round up, other values z̃ round
down (see Figure 1(b)) [14].

Rounding boundary Exact value ẑ

Interval ZApproximation z

(a) Easy to round case

Rounding boundary

Approximation z

Exact value ẑ

Interval Z

(b) Hard to round case

Figure 1: Table Maker’s dilemma

Ziv’s correct rounding technique [17] iteratively decreases the approximation error δ when the
rounding cannot be decided. If the exact value ẑ is not a rounding boundary, there is some non-
zero distance between ẑ and the nearest boundary (see Figure 1(a)). With decreasing δ, the width
of Z = [z − δ; z + δ] eventually becomes less than this distance and correct rounding becomes
possible. In the case when ẑ lies on a rounding boundary, the iteration does not terminate.
With a non-zero approximation error δ, there will be decreasingly smaller intervals Z around the
rounding boundary ẑ. Nevertheless, they will never reach ẑ. The iteration repeatedly misinterprets
a rounding boundary case as a hard-to-round case (i.e. a non-rounding-boundary case whose image
is very close to a rounding boundary). Hence, rounding boundary cases must be filtered out [17].

High performance is obtained in the average case with this technique. Values ẑ = f(x) can
be considered as randomly distributed around rounding boundaries [17, 14, 4, 6]. On average,
the first fast approximation step suffices for correct rounding. Nevertheless, the worst-case timing
of Ziv’s iteration remains unknown. In order to ensure this worst-case timing, the number of
iteration must be statically bounded. This is possible if the smallest, worst-case distance between
a value ẑ = f(x) and the nearest rounding boundary can be computed. This is currently feasible
for most univariate elementary functions in double precision. For the bivariate pow : (x, y) 7→ xy
function, such worst-case researches are currently unfeasible in reasonable time for the whole
double precision definition range [10, 15, 9]. In consequence, Ziv’s iteration process must be used

4 Ch. Lauter, V. Lefèvre

with an a-priori unknown number of iterations. This implies the necessity of detecting rounding
boundaries after some number of iterations in the process or before it (see Figure 1(b)).

Using approximations for some of the computations needed for rounding boundary detection
is nevertheless possible. Detecting rounding boundary cases in double precision means computing
the predicate RB(x, y) = (xy ∈ F54). Let ◦54 be rounding-to-nearest to 54 bits of precision.
Since ◦54(xy) ∈ F54 holds, rounding boundary detection means testing whether xy = ◦54(xy).
The rounding boundary detection reduces thus to some sort of equality test. Here, the following
observation is important: Let ⋄53 be a rounding to 53 bits in any rounding mode. The rounding
◦54(xy) is never confronted to the Table Maker’s Dilemma when the rounding ⋄53(xy) is confronted
to the Table Maker’s Dilemma: since ⋄53(xy) is confronted to the Table Maker’s Dilemma, xy lies
near or exactly on a rounding boundary, which is a floating-point number in F54. In consequence,
the value xy is far from the middle of two consecutive floating-point numbers in F54 and can easily
rounded to the nearest in F54 (see Figure 2).

Rounding boundary for ⋄53 Interval Z

Rounding boundaries for ◦54

Figure 2: Using an approximation in the detection

A rounding boundary detection test launched after a first step in Ziv’s iteration may thus use
◦54(xy + δ) = ◦54(xy) for the test whether xy = ◦54(xy). Further, once a rounding boundary case
has been detected, i.e. xy = ◦54(xy), the correctly rounded value ⋄53(xy) may be deduced from
the approximation as ⋄53(◦54(xy+ δ)). Although the report [13] alludes this technique, it does not
appear to be used in any known previous implementation.

2.3 General techniques for rounding boundary cases of pow

All previous rounding boundary tests for the function pow : (x, y) 7→ xy use some basic properties
of the arguments x, y ∈ F53 and the potential rounding boundary xy ∈ F54. A variant of the
corresponding algorithm with a proof sketch is already outlined in [13]. These basic properties
imply some branching scheme. Typically the sign of some values and their exponents are tested.
We reuse this preliminary branching scheme in our algorithm. Further, the basic properties yield
bounds on particular values. In previous approaches, these bounds mainly guarantee the termina-
tion of an iteration. Our algorithm explicitly tests against these bounds. They further determine
a domain, on which constants must be pre-computed for our algorithm. In Section 4 we therefore
extend the proof sketch given in [13], in particular by proving such bounds.

Let us now consider these basic properties of rounding boundary cases xy. Let z be a rounding
boundary near xy, i.e. z = ◦54(xy). Remark that previous approaches do not explicitly compute z
but merely suppose it to exist. The numbers x, y and z are floating-point numbers. Without lack
of generality, x can be supposed to be positive. The numbers x, y and z can hence be written

x = 2E ·m
y = 2F · n
z = 2G · k

where E,F,G ∈ Z, m, k ∈ 2N + 1 and n ∈ 2Z + 1.
Testing a rounding boundary case, i.e. computing RB(x, y) = (xy = ◦54(xy)) means thus

checking if
22F ·E·n ·m2F ·n = 2G · k .

An efficient rounding boundary test for pow 5

Since m is odd (see Section 4), this is equivalent to testing the two conditions

m2F ·n = k (1)

2F · E · n = G . (2)

A distinction must now be made depending on the sign of n. If n is negative, m2F ·n = k can be
written

(
m−n
)2F

=
1
k
.

Since m,n, k and F are integers and m,−n, k > 0, this implies with the second condition that x
must be an integer power of 2 and that E ·y must be an integer G (see Section 4 for more details).
This can easily be tested for in IEEE 754 double precision. Conversely, if these conditions are
satisfied, then xy is a integer power of two, i.e. one knows that xy is an exact case (or an underflow
or overflow).

On the other hand, if n is positive, the situation is more complicated. There are two alternatives
depending on the sign of F . If F is negative, m2F ·n = k can be written

(
2−F
√
m
)n

= k .

Since n is odd and 2−F is even (see Section 4), this reduces to testing whether there exists an
integer j ∈ N such that

2−F
√
m = j (3)

jn = k . (4)

The test whether 2−F
√
m ∈ N is performed by previous approaches as repeated square root extrac-

tion and testing: since m is odd,

2−F
√
m ∈ N⇒ 2−F−1

√√
m ∈ N⇒ 2−F−1√

m′ ∈ N ∧m′ =
√
m ∈ N .

The condition
√
m ∈ N is mainly tested by taking the floating-point square root of m and checking

whether it is exact, i.e. produced without round-off. The termination of this iteration is ensured
by a bound on m: m has at most 53 significant bits. Since upon each exact square root extraction
the number of significant bits in m is halved at each step, no more than 5 iterations are possible:
53 < 25+1 (see Section 4). While the bound F ≥ −5 is still important in our algorithm, the square
root extraction loop is no longer needed.

If F is positive or zero, m2F ·n = k can be written

mt = k

where t = 2F ·n = y ∈ N. In consequence, independently of the sign of F , the algorithm must test
either mt = k or jn = k with m,n, j, t, k ∈ N. Let us = k be the test to be performed. Since k is
bounded above by 254 − 1, the upper bound on s depends on u. Previous approaches store these
bounds in a table or branching structure. Eventually, us is computed by a multiply loop. In our
approach, we only use a weaker bound: s < 35 because u ≥ 3 (see Section 4).

2.4 Previous correctly rounded implementations of pow

All previous correctly rounded implementations of pow, in Sun’s libmcr, in Ziv’s libultim and
in MPFR, use a combination of Ziv’s correct rounding technique and the general techniques
for detecting rounding boundary cases. Their control flows are illustrated in Figure 3. The
illustrations have been obtained by analysis of the source code because documentation is only
partially available [17, 16, 7, 13].

The implementation in Sun’s libmcr uses the most conservative approach to rounding bound-
ary filtering (see Figure 3(a)). Before Ziv’s iteration process is started, all rounding boundary

6 Ch. Lauter, V. Lefèvre

p ≈ 2−86

Easy to round cases

Hard to round cases

Nested if structure
Repeated square roots
IEEE 754 flag access
Square and multiply

First approximation

Rounding test

Ziv’s iteration process

p ≈ 1− 2−7

cases
Rounding boundary

Rounding boundary
cases

(a) Approach in libmcr

Easy to round cases

Easy to round cases

Hard to round cases

p ≈ 2−86

p ≈ 1− 2−17

p ≈ 1− 2−7

Rounding boundary cases

Tables
Repeated square roots

Repeated multiplications

Ziv’s iteration process

Rounding test

Second approximation

Rounding test

First approximation

Rounding boundary
cases

(b) Approach in libultim

Ziv’s iteration process

2y·E 6∈ Q

Test: y · E ∈ Z ?
y · E ∈ Z

Rounding boundary
cases

y 6∈ N

xn, n ∈ Z

y ∈ Z
Test: y ∈ Z ?

Ziv’s iteration process:
Square and multiply
Reciprocal if y < 0

Test: x = 2E , E ∈ Z ?

∄E ∈ Z, x = 2E

Rounding test

First approximation

Ziv’s iteration process

Easy to round cases

No rounding boundary cases

Residue tests and square roots

Rounding boundary cases

Repeatedly perfect squares: x = 2E , E ∈ ZRounding boundary
cases

xy 6∈ Q
y · E 6∈ Z

(c) Approach in MPFR

Figure 3: Previous approaches

cases are filtered out. Arguments run through nested branches before possibly being tested in the
repeated square root extraction loop. The exactness of each square root extraction is tested by
clearing and checking the IEEE 754 inexact flag. If a case is determined to be a rounding boundary
case, the result of pow is computed by a square and multiply loop. Midpoint cases get correctly
rounded by the last multiplication [16]. If a case does not lie on a rounding boundary, Ziv’s
iteration process is launched without reuse of the intermediate results produced in the rounding
boundary test.

Branches and, in particular, IEEE 754 flag access are expensive operations on current processors
because of pipeline stalls. In the libmcr approach, some of the rounding boundary detection
branches get executed independently whether the case is a rounding boundary case or not. Even
if average, not-rounding-boundary cases do not run through every stage of the nested testing
structure, the critical path gets delayed.

Ziv’s approach in libultim accounts for higher average performance on the critical path.
Rounding boundary detection is performed only after two iterations of Ziv’s correctly rounding
process (see Figure 3(b)). As probability arguments [17, 4, 6] show, average cases are thus returned
faster. In consequence, the rounding boundary test is executed on average for fewer inputs. Its
probabilistic relative cost decreases.

An efficient rounding boundary test for pow 7

Although the approach in libultim allows for higher average performance than the approach in
libmcr, it is still not optimal: the rounding boundary detection is delayed until after the second
approximation step in Ziv’s iteration. However, the approximation is used neither for faster
rejection of not-rounding-boundary cases nor for faster computation of the value of rounding
boundary cases. Although an approximation to xy is available and could yield to ⋄53(xy) by
⋄53(◦54(xy)) as explained above, Ziv’s implementation recomputes rounding boundary cases xy by
repeated multiplication. This approach delays thus rounding boundary cases more than necessary.

The implementation of pow in MPFR modifies the approach of pow in libultim [7, 13]. Some
special cases, i.e. y ∈ Z, x = 2E , E ∈ Z and x = 2E , y · E ∈ Z, are filtered out before starting a
Ziv iteration. Rounding boundary handling is simple for these special cases. For the remaining
cases, an approach similar to the one in libultim is used: the first step of Ziv’s iteration is
executed. This allows for fast average performance for not-rounding-boundary cases. Rounding
boundary test is then performed by repeated testing of perfect squares. MPFR relies here on a
test implemented in the GNU Multi Precision Library (GMP)2. Once a rounding boundary case is
detected, the value of xy is computed by the integer power function, using a square and multiply
process.

In the comparisons of the different approaches, the following important point must be accounted
for. The libraries libmcr and libultim are targeted to double precision [17, 16]. The MPFR
library supports multiple-precision computations [7, 13]. Algorithms for multiple-precision should
have the best known asymptotic complexity in the average case. In contrast, algorithms for a given
fixed precision, like double precision, may be optimized not in terms of asymptotic complexity but
in terms of latency in cycles. In this article, we aim at speeding up an implementation of pow
in double precision. The MPFR implementation cannot meaningfully be compared to the double
precision implementations in every aspect but may be source of inspiration.

3 New approach for pow

3.1 Number of rounding boundary cases

In the continuation of the successive improvements in Ziv’s libultim and MPFR, we want to
increase average performance on both not-rounding-boundary cases and rounding-boundary cases.
For average case analysis and improvement, information on the probabilities of the different types
of inputs is necessary [17, 4]. The case counts given in this section have been obtained mainly on
the base of the properties of rounding boundary cases presented in Section 2.3. The cases have
been counted using ad-hoc, quick-and-dirty algorithms that are outside the scope of this article.

In double precision, the function pow : (x, y) 7→ xy, x, y ∈ D has about 2112 regular arguments.
We call regular arguments inputs (x, y) for which xy is a real number that can be rounded into
double precision without under- or overflow or complete loss of precision. Typically, irregular
arguments produce NaN or infinities on output or are rounded to 0 or 1. The count can be verified
by considering all exponents of x and computing bounds on y for each exponent.

Let us now consider the number of rounding boundary cases separating them into exact and
midpoint cases. Some rounding boundary cases are trivial. Typically, the cases y = 1 or y = 2
are handled by ad-hoc filtering: x1 = x and x2 = x · x. We do not consider these two trivial
cases. The number of exact cases is slightly greater than the number of mid-point cases: there are
roughly 227 non-trivial exact cases and roughly 225 midpoint cases. The conditions for an input
(x, y) to be a rounding boundary case detailed in Section 2.3 are slightly weaker for exact than
for midpoint cases. Round-to-nearest is the IEEE 754 default mode [1]. We therefore concentrate
on midpoint cases, that are associated to that mode.

There are 37500822 ≈ 225.5 midpoint cases xy, y 6= 2, in double precision. When additional
excluding y = 3, the count drops to 19066760 ≈ 224.2 cases. Further excluding even y = 4,
18596893 ≈ 224.1 cases remain. Remark that still 18431732 of these cases are formed by the case
y = 3

2 . In contrast, excluding y = 3
2 is difficult, because it would currently imply usage of a

2available at http://gmplib.org/

http://gmplib.org/

8 Ch. Lauter, V. Lefèvre

square root extraction which is an expensive operation on current pipelined processors. Only 2330
midpoint cases xy, y 6= 2, round to subnormal numbers ◦53(xy). In all subnormal cases, x and y
are normal numbers and y is different from 3, 4 or 3

2 .
For uniformly distributed regular arguments (x, y), the probability for an argument to be a

midpoint case with y 6= 2 is approximately pmidpoint = 225

2112 = 2−87. By probabilistic arguments [17,
4, 6], this can be related to the probability of a not-rounding-boundary, hard-to-round case. It
would be a case for which an accuracy corresponding to 53+1+87 = 141 bits is necessary in Ziv’s
iteration in order to ensure correct rounding. In Ziv’s libultim, the rounding boundary detection
seems thus to be executed still too early after the second approximation step giving about 80
significant bits [4, 17]. However, remark that this argument is based on a uniformity hypothesis
on the inputs that might not be satisfied.

Executing the rounding boundary detection after a later Ziv’s iteration step has negative impact
on the performance on rounding boundary cases. One might think of an application using pow on
a set of inputs that are all rounding boundary cases. Here the following observation can be made:
On uniformly distributed arguments (x, y) that are non-trivial midpoint rounding boundary cases,
the probability for y being y = 3 or y = 4 is psimple = 37500822−18596893

37500822 ≈ 50.4%. We propose
thus to filter not only y = 2 but also y = 3 and y = 4 before starting Ziv’s iteration process. The
detection of the remaining rounding boundary cases can then be performed after an iteration step
with an accuracy of about 120 valid bits. The handling of arguments y = 2, y = 3 and y = 4 can
be done essentially for free in current pipelined processors. The impact of late rounding boundary
detection on rounding boundary case performance drops to the half. Section 5 gives the measured
performance of this approach.

3.2 Using worst-case bounds for rounding boundary detection

The impact of rounding boundary detection on the whole performance of a correctly rounded
implementation of pow can be decreased by simplifying the detection algorithm. Let us now see
how the repeated square root extraction and square and multiply process can be avoided at all.

Suppose that worst-case information is available. Let us show how rounding boundary cases
can be discerned from not-rounding-boundary cases merely using an approximation, that is needed
anyway in Ziv’s correct rounding iteration process. On all regular double precision inputs (x, y) ∈
D

2, that are not rounding boundary cases, Ziv’s iteration will be able to provide a correctly rounded
result in any rounding mode after approximating ẑ = xy by z = xy · (1 + ε) with a relative error
ε not greater than some bound ε, i.e. |ε| ≤ ε, where ε is the worst-case of the Table Maker’s
Dilemma [14, 10, 15]. Hence, whatever interval between two consecutive floating-point numbers
is considered, not-rounding-boundary cases xy may fall in some range between the floating-point
numbers and their midpoint. However, they cannot be nearer to them than xy · ε. Around
floating-point numbers and their midpoints there are gaps in which no numbers xy, x, y ∈ D, can
fall. See Figure 4 for an illustration. Let ẑ = xy now be a rounding boundary case, for example a
midpoint case. Let z be an approximation to ẑ with a relative error ε less than half the worst-case
error ε, i.e. z = xy · (1 + ε), with |ε| ≤ 1

2 · ε. The approximation z will then lie in the gap –
where no not-rounding-boundary cases may lie because of the worst-case bound. More precisely,
the approximation interval Z around an approximation z to a rounding boundary case will not
intersect with any approximation interval corresponding to a not-rounding-boundary case.

Rounding boundary detection can thus be performed as follows: after approximating xy with
an accuracy slightly higher than the worst-case, the algorithm simply checks whether the approx-
imation falls in the gap or not. This test is exactly the same as the test for checking whether an
approximation can be correctly rounded or not in Ziv’s iteration [17, 3, 4]. It must be performed
anyway in an approach using Ziv’s iteration. If worst-case information were available for the func-
tion pow on its whole double precision definition range, rounding boundary detection would be
essentially for free.

It is currently unfeasible to compute worst-cases for pow in double precision [15, 10]. Never-
theless, our rounding boundary detection approach still works. We define a subset S of the double
precision numbers D

2. This subset reflects the bounds on rounding boundary cases presented in

An efficient rounding boundary test for pow 9

Exact case Exact case

Gaps without cases

Midpoint case

Midpoint caseNot-rounding-boundary cases

Not-rounding-boundary cases

Approximation Approximation interval Z

Figure 4: Using worst-case information for rounding boundary cases

Section 2.3.

S =
{

(x, y) ∈ D
2 | y ∈ N, 2 ≤ y ≤ 35

}

∪
{

(m, 2Fn) ∈ D
2 | F ∈ Z, −5 ≤ F < 0, n ∈ 2N + 1, 3 ≤ n ≤ 35, m ∈ 2N + 1

}
.

As shown in Section 4, all rounding boundary cases of pow in double precision lie in S. The
rounding boundary test can thus refute rounding boundary cases immediately if some (x, y) ∈ D

does not lie in S. Further, it is possible to compute the worst-cases of xy for inputs (x, y) ∈
S [10, 15]. For the first part of S, where y ∈ N, worst-case information for the integer powers
of a double precision number can be reused [9]. The second part has about 258.4 elements which
has been a feasible number of inputs; Section 3.3 describes how the worst case has been found.
For inputs in the subset, (x, y) ∈ S, rounding boundary detection can thus be performed using
worst-case information.

The following worst case for correct rounding to double precision has been found in the subset
S: for x = 1988580363009869, y = 2−4 · 5, xy reads in binary

xy = 1110101111001110.0101001100001100010111001011000110001 1 0 . . . 0
︸ ︷︷ ︸

60 zeros

111

The worst-case accuracy ε is thus ε =
∣
∣
∣
◦54(xy)−xy

xy

∣
∣
∣ ≥ 2−114.

Let us see now how these worst cases have been computed.

3.3 Searching for the worst case of mα

If we write α = 2Fn, the problem of finding the worst case of the second part of S is reduced to
searching for the worst case of mα with m ∈ D ∩ (2N + 1) for each of the 85 values of α.

The algorithms to search for the worst cases, described in [11, 15, 10], can be used only if
the tested function can be approximated by small-degree polynomials on large enough intervals
(with an error small enough to filter out most input numbers with these algorithms). However,
if we consider hα(m) = mα for the first values of m, the function hα cannot be approximated by
a small-degree polynomial. Fortunately, as m goes larger, the fast algorithms quickly start to be
applicable and become more and more efficient, so that the whole search is possible in a reasonable
time. Still, this makes the split into small intervals more complex, as shown below.

10 Ch. Lauter, V. Lefèvre

We sought to reuse existing code as much as possible, not only the implementation of the core
algorithms [10], but the whole toolchain, which includes the split into small intervals, automatic
error analysis (with guaranteed error bounds), generation of efficient code and the parallelization.
So, we had to reduce the problem to the search of the worst cases of a univariate function with
both input and output in some fixed precision.

The input number m takes 252 values: 1, 3, 5, . . . , 253 − 1, so one can write x = 1 + k · 2−52,
with k = m−1

2 . As k takes the values 0, 1, 2, . . . , 252 − 1, the corresponding set of the values of x
is D ∩ [1, 2).

Since x = 1 + (m− 1)/253, one has m = 1 + (x− 1) · 253, thus the tested function is fα(x) =
(
1 + (x− 1) · 253

)α
.

The input interval [1, 2) was split in the following way (probably not optimal, but this choice
was sufficient):

1. [1 + 2−8, 2) split into 8160 intervals of width 2−13;

2. [1 + 2−15, 1 + 2−8) split into 1016 intervals of width 2−18;

3. [1 + 2−22, 1 + 2−15) split into 254 intervals of width 2−23;

4. [1 + 2−29, 1 + 2−22) split into 254 intervals of width 2−30;

5. [1 + 2−36, 1 + 2−29) split into 254 intervals of width 2−37;

6. [1 + 2−43, 1 + 2−36) split into 254 intervals of width 2−44;

7. [1 + 2−50, 1 + 2−43) split into 254 intervals of width 2−51;

8. 4 values of [1, 1 + 2−50).

The search ran for 25 days on a small network of machines. The SLZ algorithm [15] was not used
because it is less interesting for the double precision, but also because the current implementation
is not part of the mentioned toolchain.

3.4 Detection algorithm

Our rounding boundary algorithm detectRoundingBoundaryCase combines all previous ele-
ments for computing the predicate RB(x, y) = (xy ∈ F54). It is illustrated in Algorithm 1.

The algorithm takes x, y and an approximation z = xy · (1 + ε) in input. The accuracy ε of
this approximation must be slightly better than the worst-case of the function pow in the subset
S. Typically, we choose |ε| ≤ 2−117. The algorithm starts with rounding z to the nearest floating-
point number in F54, 2G · k = ◦54(z). As explained (see Section 2.2), this rounding is not subject
to the Table Maker’s Dilemma if the rounding ⋄53(z) into D is. The algorithm performs then
a rounding test, i.e. it checks whether z is near or on a rounding boundary. If the condition of
this test,

∣
∣2G · k − z

∣
∣ ≥ 2−116, is fulfilled, xy is far from a rounding boundary. It does not fall in

the gap around rounding boundaries. Hence, it cannot be a rounding boundary; the algorithm
returns false. The rounding ⋄53(z) of the approximation z already yields the correctly rounded
result ⋄53(xy).

After this first test, the algorithm checks whether x is an integer power of 2, i.e. x = 2E . In this
case, xy can be a rounding boundary case only if E ·y ∈ Z. The algorithm responds appropriately.
See Section 4 for the correctness proof in this particular case. If x is not an integer power of 2,
the algorithm checks whether (x, y) lies in S or not. In the case where (x, y) lies in S but y is
not integer, i.e. it decomposes into y = 2F · n, where n ∈ 2N + 1 with negative F , the algorithm
further checks whether not only m2F ·n = k is satisfied but also E · y = G, respectively whether
k ∈ 2Z + 1. This check is necessary in this case because the test xy = 2G · k must be decomposed
into E ·y = G and m2F ·n = k (see Section 2.3). If one of the conditions, i.e. (x, y) ∈ S or E ·y = G,
is not satisfied, the case cannot be a rounding boundary case by the gap argument. The algorithm

An efficient rounding boundary test for pow 11

responds immediately false in this case. Otherwise the case must be a rounding boundary case;
the algorithm returns true.

Input: x ∈ D, x > 0, y ∈ D, y 6= 0, y 6= 1
z such that z = xy · (1 + ε) with |ε| ≤ 2−117.

Output: a predicate RB(x, y) = (xy ∈ F54)
Let 2G · k = ◦54(z) such that G ∈ Z, k ∈ N;1

if
∣
∣2G · k − z

∣
∣ ≥ 2−116 · z then return false;2

if ∃E ∈ Z, x = 2E then3

if E · y ∈ Z then return true else return false;4

else5

if y < 0 ∨ y > 35 then return false;6

Let F ∈ Z, n ∈ 2N + 1 such that 2F · n = y;7

if n > 35 ∨ F < −5 then return false;8

if F < 0 then9

Let E ∈ Z, m ∈ 2N + 1 such that 2E ·m = x;10

if E · y 6∈ Z then return false;11

if 2G−E·y · k 6∈ 2Z + 1 then return false;12

end13

return true;14

end15

Algorithm 1: detectRoundingBoundaryCase

Our rounding boundary detection algorithm decomposes its inputs x and y into x = 2E ·m and
y = 2F · n. This operation seems to require an expensive loop for counting the trailing zeros in
the significand of the numbers. In fact, previous approaches, for instance Sun’s libmcr and Ziv’s
libultim, use such a loop. Actually, techniques are known3 for performing such a decomposition
using only some logical operations or a small table [12].

3.5 Correct rounding algorithm

Based on our analysis of the probability of rounding boundary cases presented in Section 3.1 and
using our rounding boundary detection algorithm, we propose the approach for correctly rounding
pow illustrated in Figure 5.

In our approach, the algorithm starts with filtering simple cases such as y = 2 for any x and
y = 3 or y = 3 for x on not more than 21 bits. This filter can be performed while filtering irregular
arguments of the function. On pipelined processors, the evaluation of xy in the general case can
even already be started. The cost of the filter is thus hidden inside the critical path. The results
of the special cases x2, x3 and x4 can be computed in an ad-hoc way. Since about half of the
rounding boundary cases are these special cases, average performance on pure rounding boundary
input will get speeded up.

The algorithm continues then with two iterations in Ziv’s correct rounding loop. The first
step will approximate xy with an accuracy equivalent to about 60 valid bits [3, 4, 5]. In order to
meet the requirements of our rounding boundary detection algorithm, the second step must then
approximate xy with an accuracy equivalent to at least 117 valid bits. The rounding boundary
test then filters the remaining rounding boundary cases before further iterations are launched if
needed. In our approach, the rounding boundary test with its mere eight comparisons becomes
thus a negligible part of the whole algorithm for a correctly rounded function pow.

3see http://graphics.stanford.edu/~seander/bithacks.html

http://graphics.stanford.edu/~seander/bithacks.html

12 Ch. Lauter, V. Lefèvre

Second approximation

Rounding test

Rounding test

First approximation

Exact and half-ulp cases

Filter simple cases

2E ·m = x, m ∈ 2 · N + 1

Comparisons of F,m, n
with precomputed constants

2F · n = y, n ∈ 2 · N + 1

y = 2, any x
y = 3, y = 4, x on ≤ 21 bits

Decide rounding (Ziv) Hard to round cases

p ≈ 2−86 (RN mode)

More hard to round cases

p ≈ 1− 2−65

Easy to round cases

p ≈ 1− 2−7

Ad-hoc computation
Easy rounding boundary cases

No rounding boundary cases

No rounding boundary cases

Rounding boundary cases

Figure 5: New approach to a correctly rounded pow

4 Correctness proof

Claiming correct rounding properties and – more important – claiming termination of Ziv’s it-
eration is only worthwhile if a complete proof is given. Let us thus prove the correction of our
rounding boundary detection Algorithm 1 detectRoundingBoundaryCase. We show a series of
lemmas following the argumentation scheme in Section 2.3. This proof extends concepts sketched
in [13].

Theorem 4.1

Let

S =
{

(x, y) ∈ D
2 | y ∈ N, 2 ≤ y ≤ 35

}

∪
{

(m, 2Fn) ∈ D
2 | F ∈ Z, −5 ≤ F < 0, n ∈ 2N + 1, 3 ≤ n ≤ 35, m ∈ 2N + 1

}
.

Let ◦54 be the rounding-to-nearest to 54 bits. Thus, the following holds:

∀(x, y) ∈ S, xy ∈ F54 ∨
∣
∣
∣
∣

◦54(xy)− xy
xy

∣
∣
∣
∣
≥ 2−114 .

Proof (sketch):
The bound has been obtained using our worst-case search algorithm [10, 9]. Proving the correctness
of this algorithm is behind the scope of this paper.

The test whether 2E·2
F ·n ·m2F ·n = 2G · k can be decomposed into two separate tests:

Lemma 4.1

Assume that E,F,G ∈ Z, m,n, k ∈ 2N + 1. Thus, the following holds

2E·2
F ·n ·m2F ·n = 2G · k ⇔ E · 2F · n = G

∧ m2F ·n = k .

An efficient rounding boundary test for pow 13

Proof (sketch):

Consider the fact that m2F ·n and k or mn and k2−F are odd integers and E · 2F · n − G 6= 0 or
E ·n−G ·2−F 6= 0. Thus, the equations 2E·2

F ·n−G ·m2F ·n = k or 2E·n−G·2
−F ·mn = k2−F yield to

contradictions because their left-hand sides are even integers and their right-hand sides are odd.

The algorithms check several bounding conditions on the inputs. These bounds can be shown
as follows.

Lemma 4.2

Let m ∈ 2N + 1 be bounded by 3 ≤ m ≤ 253 − 1. Let n ∈ 2N + 1 be bounded by 1 ≤ n ≤ 253 − 1.

Let k ∈ 2N + 1 be bounded by 1 ≤ k ≤ 254 − 1. Let F ∈ Z be an integer. Assume that m2F ·n = k.
Thus, 2F · n is bounded by 2F · n ≤ 35 and F is bounded by −5 ≤ F ≤ 5.

Proof:

In the first place let us show the upper bounds. Since k ≤ 254− 1, we know that m2F ·n ≤ 254 and
2F · n · log2(m) ≤ 54. Since m ≥ 3, we have log2(m) ≥ log2(3) > 0. Hence, 2F · n ≤ 54

log2(m) ≤
54

log2(3) < 34.08 < 35. This is the upper bound to be shown for 2F · n. Since n ≥ 1, we have

2F ≤ 35 and therefore F ≤ 5.13. Since F is integer, we have the given bound F ≤ 5.
Let us show now that F ≥ −5. Without loss of generality, we can suppose that F is negative.

Let pi, qi be prime numbers such that i 6= i′ ⇒ pi 6= pi′ ∧qi 6= qi′ . Let αi, βi ∈ N\{0} be valuations
such that m =

∏

i

pαii and k =
∏

i

qβii Since F ≤ −1, 2−F is integer. Thus, we have mn = k2−F

where mn and k2−F are integers. In consequence, the equation
∏

i

pαi·ni =
∏

i

qβi·2
−F

i holds and

there exists a permutation σ such that ∀i . pi = qσ(i)∧αi ·n = βσ(i) ·2−F . Sincem is an odd integer

andm ≥ 3, ∀i . pi ≥ 3 holds. Furtherm ≤ 253−1 and therefore 3αi ≤ 253 and αi ≤ 53· log(2)
log(3) ≤ 34.

Let κi ∈ 2N + 1 be odd integers and γi ∈ N valuations such that ∀i . αi = 2γi · κi. Such κi and
γi exist for all αi because αi ∈ N. Since ∀i . αi ≥ 1, the following upper bounds are satisfied:
∀i . κi ≥ 1. As ∀i . αi ≤ 34, the following holds 2γi ≤ 34 and γi ≤ log2(34) ≤ 5.09. Since γi ∈ N,
γi ≤ 5. The following identity has been shown to hold: 2γi · (κi · n) = βσ(i) · 2−F Since n and all
κi are odd integers, κi · n is odd. Further, βσ(i) is an integer. Thus, −F is bounded above by γi
which is bounded by 5. So F ≥ −γi ≥ −5.

The test m2F ·n = k, F < 0, can be decomposed into two tests, m2F = j ∈ N and jn = k:

Lemma 4.3

Assume m,n, k ∈ 2N + 1, F ∈ Z, F ≤ −1.

Thus, m2F ·n = k ⇔ ∃j ∈ N .
(

j = m2F ∧ jn = k
)

holds.

Proof (sketch):
It suffices to remark that a 2−F -root of an integer m is integer only if all valuations of the prime
factor decomposition of m are divisible by 2−F and that n is odd. So, if j = m2F is not integer,
there exists a valuation in the prime decomposition as well of m as of mn that is not divisible by
2−F but all valuations of k2−F are divisible by 2−F .

The correctness of our Algorithm 1 detectRoundingBoundaryCase is also to be shown for
negative y that we can classify as follows.

Lemma 4.4

Assume that x, y ∈ D such that x > 0, y < 0, xy ∈ R and 2−1075 ≤ |xy| ≤ 2−1024.
Thus, xy ∈ F54 iff ∃a ∈ Z . (2a = x ∧ a · y ∈ Z).

Proof:
The existence of the indicated a clearly implies xy ∈ F54. The other implication can be as follows:
Assume that xy ∈ F54 but the contrary of the property to be implied. Since x, y ∈ F53 and
xy ∈ F54, there exist odd integers m,n, k ∈ 2N + 1 and signed integers E,F,G ∈ Z such that
x = 2E ·m, y = −2F ·n and xy = 2G ·k. This yields to m2F ·n = 2−G−E·2

F ·n · 1
k

. There are two case

14 Ch. Lauter, V. Lefèvre

depending on the sign of F . If F ≥ 0 then 2F is an integer, 2F ·n is an integer and −G−E · 2F ·n
is a signed integer. There exists therefore an integer a ∈ N, a signed integer b ∈ Z and an odd
integer c ∈ 2N + 1 such that ma = 2b · 1

c
by the definitions a = 2F · n, b = −G − E · 2F · n and

c = k. If F < 0 then 2−F is integer, −G · 2−F , E · n and −G · 2−F −E · n are signed integers and
k2−F is an odd integer. So there exist an integer a ∈ N, a signed integer b ∈ Z and an odd integer
c ∈ 2N + 1 such that ma = 2b · 1

c
by a = n, b = −G · 2−F − E · n and c = k2−F .

If b ≥ 0, 2b is integer. Since ma is integer, 2b

c
is integer. As c is odd, gcd

(
2b, c
)

= 1. In
consequence, c is equal to 1, c = 1. If b < 0, 2−b and 2−b · c are integer. Since ma is integer, 1

2−b·c

is integer. Hence, 2−b · c = 1 and thus, c = 1 because c is odd and 2−b is integer.
Since c = 1 and c = k or c = k2−F , k is equal to 1 in all cases. This implies that xy = 2G · 1

is an integer power of 2. In consequence, x = 2
G
y . Since 2ξ is transcendental for all algebraic ξ

that are not signed integers (see [8]), and since x is algebraic, there exists an a = G
y
∈ Z. Thus,

a · y = G ∈ Z and x = 2
G
y = 2

a·y

y = 2a. This yields a contradiction with the hypotheses.
Here is finally the correctness theorem of our algorithm for detecting rounding boundary cases.

Theorem 4.2

Algorithm 1 detectRoundingBoundaryCase is correct.
This means ∀x ∈ D, x > 0 and ∀y ∈ D, y 6= 0, y 6= 1 such that 2−1075 ≤ xy ≤ 21024 and
∀z = xy · (1 + ε) for some ε, |ε| ≤ 2−116, the algorithm returns true iff xy ∈ F54.

Proof (sketch):
Combining Theorem 4.1, Lemmas 4.1, 4.2, 4.3 and 4.4, and considering at which lines the algorithm
may return true (respectively false), the consequence of the theorem follows.

5 Experimental results

We have implemented our approaches to correct rounding of the function pow and to rounding
boundary detection inside the crlibm library [3]. We have compared our implementations to
a not-correctly rounded system libm, to Ziv’s libultim, Sun’s libmcr and to MPFR version
2.2.0. The experiments have been conducted on two systems: first, on an Intel Xeon CPU at 2.40
GHz running GNU/Linux 2.6.19.2-server with gcc 3.3.5 and, second, on an IBM Power5 at 1.66
GHz running GNU/Linux 2.6.18.8-0.3-ppc64 with gcc 4.1.2. Note that some of the considered
implementations are not available on some systems. The only rounding mode supported by all
libraries is round-to-nearest. The timing measures have been normalized to 1 for crlibm.

We give separate timings for random input and for input consisting only of non-trivial rounding
boundary cases (y 6= 1, y 6= 2). We indicate average and worst-case timings. The worst-case
timings given for random input are the worst values observed and not absolute values.

Intel Xeon IBM Power5
Random xy ∈ F54 Random input xy ∈ F54

avg./worst avg./worst avg./worst avg./worst
crlibm 1/7.70 3.18/6.38 1/7.63 4.06/8.42
libm 1.20/134 0.633/0.899 - -
libultim - - 1.65/8550 3.19/4.14
libmcr 3.54/172 0.636/1.61 - -
MPFR 170/298 47.9/168 700/1090 188/534

These results show that average performance on random input is increased by at least 39%
in our implementation with respect to previous implementations, for instance libultim. These
improvements are obtained at the sake of a slight slow-down of the very rare rounding boundary
cases, for instance, of about 21% with regard to libultim. The difference between the timings
for hard-to-round cases and rounding boundary cases can be neglected: rounding boundary cases

An efficient rounding boundary test for pow 15

are not more than 9% slower. For libmcr, this overhead of rounding boundary detection could
still go up to about 50%. It seems reasonable that an application that can afford a factor 7.70
between average and worst-cases for correct rounding, can afford 9% more for 39% speed-up on
average. The differences on the Xeon architecture where the worst-case on random input is slower
than rounding boundary cases, can be explained by expensive subnormal rounding. Rounding
boundary cases are about 50% faster on average than in the worst-case. This latter experimental
result perfectly validates the relevance of our theoretical estimates of 49.6% (see Section 3.1).

6 Conclusions and future work

In this article, we have considered the detection of rounding boundary cases of the function pow :
(x, y) 7→ xy in double precision. We have presented an algorithm for efficient rounding boundary
detection. The algorithm, consisting of practically only a few comparisons with constants, allows
for better average performance of an implementation of pow. Typically, the critical path gets no
longer delayed by operations that are difficult to pipeline. Loops involving tests and square root
extraction are replaced by a straight-line program.

Our algorithm uses pre-computed constants. These constants are derived from the worst-case
accuracy of the function pow in a particular sub-domain of double precision. This innovative use
of the techniques developed for the correct rounding can be extended to other functions and might
be profitable in terms of performance. We will investigate in this direction in the future.

The advantages of our approach and implementation is the improvement of the average per-
formance of pow of about 39% and the drop in overhead of the rounding boundary detection to
maximally 9%. The drawback of the approach is the slow-down of the very rare (p = 2−87) round-
ing boundary cases of about 21%. With respect to rounding boundary case average performance,
this slow-down could be diminished if not only the trivial cases y = 2, y = 3 and y = 4 could
be handled apart without affecting the critical path on pipelined processors. For instance, still
99.1% of the non-trivial midpoint cases are formed by the case y = 3

2 . It is part of our future work
to find a special algorithm for this case. The case would require a pipeline-blocking square root
extraction on a special path if current techniques were used.

The algorithm presented in this article is a basic brick for a correctly rounded implementation
of pow. The worst-case accuracy for correct rounding and – more important – the absolute worst-
case timing of the different implementations still cannot be bounded. For the purpose of this
article, worst-case information on a partial domain has been useful. Future work might evaluate
how correct rounding of pow with bounded worst-case performance could be enabled by only
partial information on hard-to-round cases.

References

[1] ANSI/IEEE. Standard 754-1985 for binary floating-point arithmetic, 1985.

[2] S. Boldo. Preuves formelles en arithmétiques à virgule flottante. PhD thesis, École Normale
Supérieure de Lyon, November 2004.

[3] CRLibm, a library of correctly rounded elementary functions in double-precision.
http://lipforge.ens-lyon.fr/www/crlibm/.

[4] F. de Dinechin, A. Ershov, and N. Gast. Towards the post-ultimate libm. In 17th IEEE
Symposium on Computer Arithmetic, Cape Cod, Massachussets, June 2005.

[5] F. de Dinechin, Ch. Q. Lauter, and J.-M. Muller. Fast and correctly rounded logarithms in
double-precision. RAIRO, Theoretical Informatics and Applications, 41:85–102, 2007.

[6] A. Feldstein and R. Goodman. Convergence estimates for the distribution of trailing digits.
Journal of the ACM, 23(2):287–297, April 1976.

http://lipforge.ens-lyon.fr/www/crlibm/

16 Ch. Lauter, V. Lefèvre

[7] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann. MPFR: A multiple-
precision binary floating-point library with correct rounding. ACM Transactions on Mathe-
matical Software, 33(2), June 2007.

[8] G. H. Hardy and E. M. Wright. An introduction to the theory of numbers. Oxford University
Press, 1979.

[9] P. Kornerup, V. Lefèvre, and J.-M. Muller. Computing integer powers in floating-point
arithmetic. Research report RR2007-23, Laboratoire de l’Informatique du Parallélisme, Lyon,
France, May 2007.

[10] V. Lefèvre. New results on the distance between a segment and Z
2. Application to the exact

rounding. In P. Montuschi and E. Schwarz, editors, Proceedings of the 17th IEEE Symposium
on Computer Arithmetic, pages 68–75, Cape Cod, MA, USA, June 2005. IEEE Computer
Society Press, Los Alamitos, CA.

[11] V. Lefèvre and J.-M. Muller. Worst cases for correct rounding of the elementary functions
in double precision. In N. Burgess and L. Ciminiera, editors, Proceedings of the 15th IEEE
Symposium on Computer Arithmetic, pages 111–118, Vail, Colorado, 2001. IEEE Computer
Society Press, Los Alamitos, CA.

[12] Ch. E. Leiserson, H. Prokop, and K. H. Randall. Using de Bruĳn sequences to index a 1 in
a computer word. ftp://theory.lcs.mit.edu/pub/cilk/debruijn.ps.gz.

[13] The MPFR Team. The MPFR library: Algorithms and proofs. algorithms.tex File - revision
4629 (July 4, 2007) - available in SVN repository from http://www.mpfr.org/gforge.html.

[14] J.-M. Muller. Elementary Functions, Algorithms and Implementation. Birkhäuser, Boston,
1997.

[15] D. Stehlé, V. Lefèvre, and P. Zimmermann. Searching worst cases of a one-variable function
using lattice reduction. IEEE Transactions on Computers, 54(3):340–346, March 2005.

[16] Sun Microsystems. libmcr, a reference correctly-rounded library of basic double-precision
transcendental elementary functions.
http://www.sun.com/download/products.xml?id=41797765.

[17] A. Ziv. Fast evaluation of elementary mathematical functions with correctly rounded last bit.
ACM Transactions on Mathematical Software, 17(3):410–423, September 1991.

ftp://theory.lcs.mit.edu/pub/cilk/debruijn.ps.gz
http://www.mpfr.org/gforge.html
http://www.sun.com/download/products.xml?id=41797765

	1 Introduction
	2 Correct rounding implementations of pow
	2.1 Notations
	2.2 The Table Maker's Dilemma and Ziv's correct rounding technique
	2.3 General techniques for rounding boundary cases of pow
	2.4 Previous correctly rounded implementations of pow

	3 New approach for pow
	3.1 Number of rounding boundary cases
	3.2 Using worst-case bounds for rounding boundary detection
	3.3 Searching for the worst case of m
	3.4 Detection algorithm
	3.5 Correct rounding algorithm

	4 Correctness proof
	5 Experimental results
	6 Conclusions and future work

