The Common Origin of Linear and Nonlinear Chiral Multiplets in N=4 Mechanics

Abstract : Elaborating on previous work (hep-th/0605211, 0611247), we show how the linear and nonlinear chiral multiplets of N =4 supersymmetric mechanics with the off-shell content (2,4,2) can be obtained by gauging three distinct two-parameter isometries of the “root” (4,4,0) multiplet actions. In particular, two different gauge groups, one abelian and one non-abelian, lead, albeit in a disguised form in the second case, to the same (unique) nonlinear chiral multiplet. This provides an evidence that no other nonlinear chiral N =4 multiplets exist. General sigma model type actions are discussed, together with the restricted potential terms coming from the Fayet-Iliopoulos terms associated with abelian gauge superfields. As in our previous work, we use the manifestly supersymmetric language of N =4, d=1 harmonic superspace. A novel point is the necessity to use in parallel the λ and τ gauge frames, with the “bridges” between these two frames playing a crucial role. It is the N =4 harmonic analyticity which, though being non-manifest in the τ frame, gives rise to both linear and nonlinear chirality constraints.
Type de document :
Pré-publication, Document de travail
22 pages. 2007
Liste complète des métadonnées

Littérature citée [9 références]  Voir  Masquer  Télécharger
Contributeur : François Delduc <>
Soumis le : vendredi 13 juillet 2007 - 14:16:01
Dernière modification le : jeudi 19 avril 2018 - 14:54:03
Document(s) archivé(s) le : lundi 24 septembre 2012 - 11:05:49


Fichiers produits par l'(les) auteur(s)


  • HAL Id : ensl-00162422, version 1



François Delduc, E. Ivanov. The Common Origin of Linear and Nonlinear Chiral Multiplets in N=4 Mechanics. 22 pages. 2007. 〈ensl-00162422〉



Consultations de la notice


Téléchargements de fichiers