Time-Scale Block Bootstrap tests for non Gaussian finite variance self-similar processes with stationary increments

Abstract : Scaling analysis is nowadays becoming a standard tool in statistical signal processing. It mostly consists of estimating scaling attributes which in turns are involved in standard tasks such as detection, identification or classification. Recently, we proposed that confidence interval or hypothesis test design for scaling analysis could be based on non parametric bootstrap approaches. We showed that such procedures are efficient to decide whether data are better modeled with Gaussian fractional Brownian motion or with multifractal processes. In the present contribution, we investigate the relevance of such bootstrap procedures to discriminate between non Gaussian finite variance self similar processes with stationary increments (such as Rosenblatt process) and multifractal processes. To do so, we introduce a new joint time-scale block based bootstrap scheme and make use of the most recent scaling analysis tools, based on wavelet leaders.
Type de document :
Communication dans un congrès
IEEE Statistical Signal Processing Workshop 2007 (SSP'07), 2007, Madison, Wisconsin, United States. IEEE SPS (Institute of Electrical and Electronics Engineers - Signal Processing Society), 2007
Liste complète des métadonnées

Littérature citée [9 références]  Voir  Masquer  Télécharger

https://hal-ens-lyon.archives-ouvertes.fr/ensl-00160708
Contributeur : Herwig Wendt <>
Soumis le : vendredi 6 juillet 2007 - 17:27:15
Dernière modification le : jeudi 19 avril 2018 - 14:54:03
Document(s) archivé(s) le : lundi 24 septembre 2012 - 10:56:38

Fichier

SSP07_V6.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : ensl-00160708, version 1

Collections

Citation

Herwig Wendt, Patrice Abry. Time-Scale Block Bootstrap tests for non Gaussian finite variance self-similar processes with stationary increments. IEEE Statistical Signal Processing Workshop 2007 (SSP'07), 2007, Madison, Wisconsin, United States. IEEE SPS (Institute of Electrical and Electronics Engineers - Signal Processing Society), 2007. 〈ensl-00160708〉

Partager

Métriques

Consultations de la notice

132

Téléchargements de fichiers

78