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Abstract. The operatiod” — V* is a fundamental operation over finitary lan-
guages leading tav-languages. Since the sEt of infinite words over a finite
alphabety’ can be equipped with the usual Cantor topology, the quesfitine
topological complexity ofu-powers of finitary languages naturally arises and has
been posed by Niwinsk| [Niw§0], Simonnét [Sim92] and Staiga97h]. It has
been recently proved that for each integep 1, there exist some-powers of
context free languages which drE),-complete Borel setsl], that there ex-
ists a context free languadesuch thatZ“ is analytic but not BoreIS], and
that there exists a finitary langualfesuch thafi’“ is a Borel set of infinite rank,
[Fin04]. But it was still unknown which could be the possibiénite Borel ranks
of w-powers.

We fill this gap here, proving the following very surprisingsult which shows
that w-powers exhibit a great topological complexity: for eachnmull count-
able ordinalg, there exist somEg-completew-powers, and someg-compIete
w-powers.

Keywords: Infinite words;w-languagesiv-powers; Cantor topology; topological complexity;
Borel sets; Borel ranks; complete sets.

1 Introduction

The operatiol” — V¥ is a fundamental operation over finitary languages leading t
w-languages. It produces-powers, i.e. w-languages in the fornmv«, whereV is a
finitary language. This operation appears in the charaetéon of the clasREG,, of
w-regular languages (respectively, of the cla@ds, of context freew-languages) as the
w-Kleene closure of the familR EG of regular finitary languages (respectively, of the
family C'F of context free finitary language$) [Stap7al.

Since the sef’* of infinite words over a finite alphabef can be equipped with the
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usual Cantor topology, the question of the topological clexity of w-powers of fini-
tary languages naturally arises and has been posed by Ntivi, Simonnet
[Bim92], and Staigef{[Stag7a]. A first task is to study theitpws of w-powers with
regard to the Borel hierarchy (and beyond to the projectieesinchy) [Sta97f,PP04].

Itis easy to see that the-power of a finitary language is always an analytic set bezaus
it is either the continuous image of a compact f&tl, ..., n}* for n > 0 or of the
Baire spaces”.

It has been recently proved, that for each integer 1, there exist some-powers

of context free languages which af) -complete Borel sets| [Finp1], and that there
exists a context free languagesuch thatZ. is analytic but not Borel [[Fin$3]. Notice
that amazingly the languadeis very simple to describe and it is accepted by a simple
1-counter automaton.

The first author proved if] [Finp4] that there exists a finitayguagel” such thaf/«

is a Borel set of infinite rank. However the only known fact beit complexity is that
there is a context free langua@é such thafV« is Borel aboveA?, [].

We fill this gap here, proving the following very surprisiresult which shows that-
powers exhibit a great topological complexity: for each +mufl countable ordinaf,
there exist soméjg-completew—powers, and somHg—compIetew—powers. For that
purpose we use a theorem of Kuratowski which is a level byl esion of a theorem
of Lusin and Souslin stating that every Borel £t 2¢ is the image of a closed subset
of the Baire space® by a continuous bijection. This theorem of Lusin and Souslin
had already been used by Arnold [n JArh83] to prove that eBoyel subset o2,
for a finite alphabet”, is accepted by a non-ambiguous finitely branching trasiti
system with Buichi acceptance condition and our first idestwaode the behaviour of
such a transition system. This way, in the general case, wenemage to construct an
w-power of the same complexity &

The paper is organized as follows. In Section 2 we recalldbastions of topology
and in particular definitions and properties of Borel sets.pibved our main result in
Section 3.

2 Topology

We first give some notations for finite or infinite words we $hae in the sequel,
assuming the reader to be familiar with the theory of fornamguages and af-
languages, seq [Thd$0,Sta97a,RP04]. Leve a finite or countable alphabet whose
elements are called letters. A non-empty finite word aVes a finite sequence of let-
ters:z = ag.a1.az...a, whereVi € [0;n] a; € X. We shall denote:(i) = a; the

(i + 1) letter ofz andz[(i + 1) = z(0) ... z(i) for i < n, is the beginning of length

i + 1 of z. The length ofzr is |z| = n + 1. The empty word will be denoted Hyand
has 0 letters. Its length is 0. The set of finite words aVes denoted”<«. A (finitary)
languagel over X is a subset of2<“. The usual concatenation productwfandv




will be denoted by v or justuw. If [ € w and(a;)i<; € (X<¢)!, then™;; a; is the
concatenatiomg . ..a;_1.

The first infinite ordinal isv. An w-word overY' is anw -sequenceas ... a, .. .,
where for all integers > 0 a; € Y. Wheno is anw-word over Y, we write
oc=0(0)o(1)...0(n)...ando[(n+1) = o(0)o(1)...o(n) the finite word of length
n + 1, prefix of 0. The set ofv-words over the alphabef is denoted by”“. An w-
language over an alphahEtis a subset of2“. If View a; € <%, then™¢c,, a; is
the concatenationga; . . .. The concatenation product is also extended to the product
of a finite wordu and anw-word v: the infinite wordu.v or ™ v is then thew-word
such that{uwv) (k) = u(k) if k& < |u|, and(u.v)(k) = v(k — |u]) if & > |ul.

The prefix relation is denoted: the finite wordu is a prefix of the finite word (re-
spectively, the infinite word), denoted: < v, if and only if there exists a finite word
w (respectively, an infinite word), such that = v~ w.

If s<a=a(0)a(l)..., thena—s is the sequence(|s|)a(|s|+1)...

For a finitary languag® C X<, thew-power ofV is thew-language
Ve=Aui...up...€¢ X2Y|Vi>1 u; €V}

We recall now some notions of topology, assuming the readiee familiar with basic
notions which may be found ifi [KurH6,Mo480,KeH95. LIf9455dPPd4].

There is a natural metric on the sBt’ of infinite words over a countable alphabgt
which is called the prefix metric and defined as follows. kor € X* andu # v let

d(u,v) = 27 ererto) wherel,, ¢, is the firstintegen such that thén 4 1) letter

of u is different from the(n + 1) letter ofv. The topology induced o’ by this

metric is just the product topology of the discrete topolagyy.. Fors € Y <%, the

setN;:={a € X% | s<a} is a basic clopen (i.e., closed and open) seL'sf More

generally open sets & are in the formiV ~ X«, whereW C X <v,

The topological spaces in which we will work in this paperlvwié subspaces of'“
whereX is either finite having at least two elements or countablyitei

WhenlX is afinite alphabet, the prefix metric induces®ti the usual Cantor topology
andX“ is compact.

The Baire space is equipped with the product topology of the discrete togglon
w. Itis homeomorphic tPs :={a €2¥ | Vicw Jj >i aj)=1} C 2%, viathe map
defined onwu® by H(3):=0°(10°M1 ...

We define now th&orel Hierarchy on a topological spac¥ :

Definition 1. The classeX? (X ) andII? (X) of the Borel Hierarchy on the topologi-
cal spaceX are defined as follows:

»9(X) is the class of open subsetsof

I1Y(X) is the class of closed subsetsXf

And for any integen, > 1:

=Y. 1(X) is the class of countable unionsHf -subsets of .



IT%_ | (X) is the class of countable intersectionsXff-subsets of.

The Borel Hierarchy is also defined for transfinite IevelseriassesE‘g(X) and
Hg(X), for a non-null countable ording, are defined in the following way:
32(X) is the class of countable unions of subset&dh U, ¢ IT9.

IT(X) is the class of countable intersections of subsef§ @i U, <% .

Suppose now thaX CY’; thenZ2(X)={AN X | AcZ2(Y)}, and similarly forITg,
see [Kec9p, Section 22.A]. Notice that we have defined theBoassesa?(X) and
Hg(X) mentioning the spac¥ . However when the context is clear we will sometimes
omit X and denote&=?(X) by 352 and similarly for the dual class.

The Borel classes are closed under finite intersections aighs, and continuous
preimages. MoreoveEg is closed under countable unions, aﬂ@ under countable

intersections. As usual the ambiguous classis the classS? N ITY.

The class oBorel setsis A} := .., 2 =U,,, I, wherew, is the first un-
countable ordinal.

TheBorel hierarchy is as follows:

»9=open 9 . 0.
AY%=clopen A Al Al
ITY =closed I e m°

This picture means that any class is contained in every ttaf® right of it, and the
inclusion is strict in any of the spaces’.

For a countable ordinal, a subset of“ is a Borel set ofank « iff it is in X% U IO,
i 0 0
but notin{J, (35 UILY).

We now define completeness with regard to reduction by coatia functions. For a
countable ordinak > 1, a setF’ C X is said to be &9 (respectivelyI1%)-complete
setiff for any setE C Y* (with Y a finite alphabet)E € X0 (respectivelyF € I19)

iff there exists a continuous functiofi : Y* — X< such thatE = f~1(F). X0
(respectivelyIT!)-complete sets, with an integer> 1, are thoroughly characterized
in [Stagf].

Recall that a seK C X« is aX! (respectivelfIY)-complete subset of“ iff it is in
>0 but not inIIC (respectively inlI° but notinxY), [Kec9).

For example, the singletons 2f areTI{-complete subsets @F. The setP,, is a well
known example of &I3-complete subset .

If T is a class of sets, thdh:={-A | AcT} is the class of complements of setdin
In particular, for every non-null countable ordinal X0 = IT% andII? = X0.

There are some subsets of the topological spacevhich are not Borel sets. In par-
ticular, there exists another hierarchy beyond the Bomsfanchy, called the projective



hierarchy. The first class of the projective hierarchy isdlassX] of analytic sets. A
setA C X is analytic iff there exists a Borel s@& C (X x Y)¥, with Y a finite
alphabet, suchthate A — Jy € Y such tha(z, y) € B, where(z,y) € (X xY)¥

is defined by{z, y)(i) = (z(¢),y(¢)) for all integers; > 0.

A subset ofX“ is analytic if it is empty, or the image of the Baire space byoa-c
tinuous map. The class of analytic sets contains the clagoil sets in any of the
spacest“. Notice thatAl = X1 N ITi, wherell! is the class of co-analytic sets, i.e.
of complements of analytic sets.

Thew-power of a finitary languag¥ is always an analytic set becaus#ifs finite and
hasn elements thev* is the continuous image of a compact §et1,...,n — 1}¢
and if V' is infinite then there is a bijection betweghandw andV'* is the continuous

image of the Baire space”, [Sim93].

3 Main result

We now state our main result, showing thapowers exhibit a very surprising topolog-
ical complexity.

Theorem 2. Let¢ be a non-null countable ordinal.
(a) There isA C 2<% such that4d¥ is Eg-complete.
(b) There isA C 2<% such that4 is Hg-complete.

To prove Theorerﬁl 2, we shall use a level by level version ofeardm of Lusin and
Souslin stating that every Borel sBtC 2¢ is the image of a closed subset of the Baire
spacew® by a continuous bijection, se95, p.83]. It is the failog theorem,
proved by Kuratowski in[[Kurélé, Corollary 33.11.1]:

Theorem 3. Let¢ be a non-null countable ordinal, ang € Hg+1(2w). Then there is
C € IIY(w*) and a continuous bijectiorf : C — B such thatf ! is Zg-measurable
(i.e., f[U]is EQ(B) for each open subséf of C).

The existence of the continuous bijectign C — B given by this theorem (without
the fact thatf ~! is 3:2-measurable) has been used by Arnoldin [Afn83] to prove that
every Borel subset of?“, for a finite alphabet”, is accepted by a non-ambiguous
finitely branching transition system with Biichi acceptmondition. Notice that the
sets of states of these transition systems are countable.

Our first idea was to code the behaviour of such a transitietesy. In fact this can

be done on a part ab-words of a special compact s&f o. However we shall have
also to consider more general séfs; ; and then we shall need the hypothesis of the
Zg-measurability of the functioff.

We now come to the proof of Theor¢in 2.

LetT be the clas&?, or ITg. We assume first thgt> 3.



Let B C 2¢ be aT'-complete set. The® is in T'(2*) but not inT'(2¥). As B¢ H2+1'
Theoren|B give¢’ € I19(P,,) andf. By Proposition 11 in[[Lec5], it is enough to find
AC4<¥ The languagel will be made of two pieces: we will havé =, U 7. The set
m will code f, and7 will look like B on some nice compact sefSy ;. Outside this

countable family of compact sets we will higie so thatA“ will be the simple set:*.

o We setQ := {(s,t) € 2<¥ x 2<% | |s| = |t|}. We enumerat€) as follows. We start
with g := (0, 0). Then we put the sequences of lengtbf elements o x 2, in the
lexicographical orderingy; := (0,0), ¢2 := (0, 1), g3 := (1,0), ¢4 := (1,1). Then we
put the16 sequences of length g5 := (02, 0?), g6 := (0%,01), ... And so on. We will
sometimes use the coordinates;gf:= (¢%, ¢ /). We put)M; := X, ; 41, Note that
the sequenc@\/;) e, is strictly increasing, and that,, is the last sequence of length
j of elements of x 2.

« Now we define the “nice compact sets”. We will sometimes viexg an alphabet, and
sometimes view it as a letter. To make this distinction ¢lear will use the boldface
notation2 for the letter, and the lightface notati@rotherwise. We will have the same
distinction with3 instead of2, so we have = {0,1},3 = {0,1,2},4 = {0, 1,2, 3}.
Let NV, j be non-negative integers wifki < M. We set

Knji={y=2""["ew m; 2Mi+iv1 3 2Mirit1 1 cqv | Vi c w m; € 2 = {0,1}}.

As the mappy ; : Ky ; — 2¢ defined bypy ;(v) := icwm; is @ homeomorphism,
Ky ,; is compact.

o Now we will define the sets that “look |ik8”.

- Let € w. We define a functiow; : B — Q by ¢;() := [f~!(«), o][l. Note thatQ is
countable, so that we equip it with the discrete topologyhkse conditions, we prove
thatc; is Zg-measurable.

If 1 # 1q°| = |¢*| thenc; ' (g) is the empty set. And for any € Q, andl = |¢°| =
lg'], it holds thate; '(q) = {@ € B | [fHa),a][l = ¢} = {a € B | afl =
qtandf~1(a)[l = ¢°}. Butafl = ¢! means thatv belongs to the basic open set
N, and f~1(a)[l = ¢° means thatf~*(a) belongs to the basic open s&to or
equivalently thatn = f(f~'(a)) belongs tof (N,0) which is aX?-subset ofB. So
c;'(q) =Np N f(Nyp)is azg-subset ofB andc; is Eg—measurable.

- Let N be an integer. We put
En:={ac2”|qyacB and c‘qM(q]lVa):qN 1.
Notice thatEy = { a€2¥ | a€ B andcy(a) = 0} = B.
As ¢, | is ¢-measurable anflyy } € AY(Q), we getc‘;}lv‘ ({av}) € AY(B) CT(B).
el

Therefore there i€ € T'(2) with c"q} ({av})=GnB. Thusqq% ({an}) €T (22)

N



sinceT is closed under finite intersections. Note that the riagssociating;i,« with
ais continuous, so thafy =S~[¢; 1 ({an})] isinT(2¥).
N

o Now we define the transition system obtained frém
- If me2 andn, pew, then we writen = p if ¢ <5 andg) =q;;m.

- As f is continuous orC, the graph Gf) of f is a closed subset @ x 2«. As C
is TIY(Ps,), Gr(f) is also a closed subset &, x 2*. So there is a closed subsgt
of 2¢ x 2% such that Gff) = F N (P x 2¢). We identify 2 x 2¢ with (2x2), i.e.,
we view (3, @) as[3(0), a(0)], [3(1), a(1)], ... By [Kec9§, Proposition 2.4], there is
R C (2x2)<¥, closed under initial segments, such that {(3, o) € 2 x 2% | Vk €

w (B,a)[k € R}; notice thatR is a tree whose infinite branches form the getin
particular, we get

(B,a)€CGr(f) & pePy, andVkew (B3,a)[keR.

-SetQr:={(t,s)eR | t#0 and t(|t|—1)=1}. Notice thatQ s is simply the set of
pairs(t, s) € R such that the last letter ofis al.

We have in fact already defined the transition sysfeobtained fromf. This transition
system has a countably infinite sgtof states and a s&p; of accepting states. The
initial state isqo := (0, ®). The input alphabet i8 = {0, 1} and the transition relation
§ C Q x 2 xQisgiven by: ifm €2 andn,p € w then(q,,m, q,) € § iff n = p.
Recall that a run of is said to be Biichi accepting if final states occur infinitefyen
during this run. Then the set afwords over the alphabeétwhich are accepted by the
transition systen? from the initial statey, with Biichi acceptance condition is exactly
the Borel setB.

o Now we define the finitary language

- We set
s€4=¥ | Jj,lew I(my)i<i €2 I(ns)i<i, (pi)i<t, (1i)i<i €W
no SMJ‘
and
Vi<l n; ™ p; and pi+r; = My
= and
Vi<l Pi = Ni+1
and
dp, GQf
and
5= "< 2™ m,; 2P 27 32"

e Let us show tha.CION,j[ﬂ'w N KN,]‘]:EN if NSM]



Letyen¥ N Ky ;, anda:=pn ;(7y). We can write
k k k k
Y= Thew [ Tici, 2™ mb2ri 2m g3 2m ]

k
As this decomposition of is in 7, we haven® ™% pk if i <l p¥ =nk  if i <l;, and

gy €Qy, foreachkew. Moreoverpf =n{™", for eachk cw, sincey € K, ; implies

thatpf +rf =rf +nf™ = M1, for some integem. So we get

N e ol et

1 a(lo+2) a(lo+li+1) 1
0 — e —

0 11 °

In particular we have
0 0 0 0 0
qN<qp8<<qp?0<qp(1)<<qplll

becauser = p implies thatg), < ¢. Note thatlg), | =lay|+Zj<k (;+1) because
L -
n % p implies thatq, | = |¢,|+1, so thatthe sequen¢ﬁgk |)kew is strictly increasing
Uk

since|q?| = |¢}| for each integen. This implies the existence ¢f € P, such that
q;} < p for eachk € w. Note thatg € P., because, for each integky B € Qy.
k .

Note also tha{3, ¢k ) [k € R for infinitely manyk’s. As R is closed under initial
segments(3, ¢k @) [k € R for everyk ew, so thatgy,a= f(3) € B. Moreover,

cin (anve) = (Bllanl, an) = (a¥ an) =aw,

andae Ey.

Conversely, letv € E . We have to see that:= <p;,71j(a) en¥. Asvye Ky ;, we are
allowed to writey = 2V = [ e, (i) 2Mi+titr 3 Miti+r ] Set := f~1(qk ).

There is a sequence of integéfs);c,, such thatg,, = (3, ¢ia)[l. Note thatN 0

(1) ;
kg1 41 o kjgr 12 - As N < M; we getkj1 441 < Mjiiq1. So we can define

ng =N, po = kg1 |41, o := Mj41—po, n1 = po. Similarly, we can define; :=
k|q}y|+2, 1 ::M_jJrgfpl. We go on like _this u_ntil we find somg,, in Q. This clearly
defines a word inr. And we can go on like this, so thate 7.

Thusm N Ky ; isinT'(Ky,;) CT'(4“). Notice that we proved, among other things,
the equalitypg o[ N Ko o] = B. In particular,m N K o is notinT'(4¢).

Notice thatr* codes onk , the behaviour of the transition system acceptthdn a
similar wayn* codes ok y_; the behaviour of the same transition system but starting
this time from the statey instead of the initial statg,. But somev-words in7* are not

in Koo and even not in an) y ; and we do not know what is exactly the complexity
of this set ofw-words. However we remark that all words inhave the same form
2N 2 [ m, 2P 3 281,



e We are ready to define. The idea is that an infinite sequence containing a woyd in
cannot be in the union of th& y ;'s. We set

sE4<W | dlew H(mi)igH_l €2l+2 dN ew H(Pi)igl-i—lv (Ri)igl-i-l Ewl+2

Vi<l+1 3jcw Pi=M;
= and ,
P #R,

and
s=2N " [ 741 m; 20 3281

sE4<W | dlew H(mi)igH_l €2l+2 dN ew H(Pi)igl-i—lv (Ri)igl-i-l Ewl+2

Vi<l+1 Jjew P=M,

pi= and ,

EjEw (Pl:M] and B+17£Mj+1>
and

s=2N " [ 741 m; 20 3 281

pr=p® U pt.

All the words in A will have the same forn2¥ — [ ~,<; m; 2F% 3 2% ]. Note that
any finite concatenation of words of this form still has thisni. Moreover, such a
concatenation is ip’ if its last word is inu’.

e Now we show thap“ is “simple”. The previous remarks show that

pe={y€4¥ | Jie2Vjcw Ik, nc€w IHo,t1,...,tncp’ n>j andy[k="1<, t; }.
This shows thap® € T13(4%).

Notice again that all words id have the same for2™ ~ [ ~;<; m; 257 3 2% . We
set

P:={2N 77, m; 2P 328 Je4¥ | NewandVi e w m;€2, PR, € w
andvView 3j cw P;=M;}.

We define a mag': P\ u — ({0} U ) x w? as follows.

Lety := 2N = [ Te my; 280 3 28 ] € P\ p®, andjy € w with Py = M. If

v € Kn j,—1, then we putF'(y) := (0, N, jo). If v¢ Kn j,—1, then there is an integér

maximal for whichP, # R; or there isj ew with P,=M; andP, 1 # M. Letj; ew

with P o= M;, . We put

F(y):=2" 7 [Tzt m 27825 ] Zomyy 2590 8, Ry, ).

e Fix y€ A¥. If v ¢ u®, thenye P\p®, F(y):=(t, S, j) is defined. Note that2° <,
and thatj > 0. Moreover;y—t 2% € K ;1. Note also that < M;_; if t =0}, and that



t 25 ~y(|t|+S) 2Mi 3 ¢ . Moreover, there is an integéf <min(M;_1, S) (N =S if
t=~0) suchthaty—t 25—~ ex“ N K ;_1, since the last word ip in the decomposition
of ~ (if it exists) ends before 2°.

e In the sequel we will say thdt, S, j) € ({0} U ) x w? is suitable if S<M;if t=0,
t(|t|—1)=3if t€ u, andt 25 m 2Mi+1 3¢ 11 if m€2. We set, for(t, S, j) suitable,

Prs;={~ve4”[t29<y andy—t2%€ Ko, }.

Note thatP; s ; is a compact subset @\ ., and thatf'(y) = (¢, S, j+1) if y€ P g ;.
This shows that thé”; s ;'s, for (¢, S, j) suitable, are pairwise disjoint. Note also that
u* is disjoint fromU(tVS_’j) suitable F:.5.5-

e We set, for(t, S, j) suitable andV <min();, S) (N =S if t=0),
At,S,j,N = { ’}/EPtys_’j | y—t 2S_N€7Tw n KN_’j } .
Note thatd, s ; v €T'(4*) sinceN < M;.

e The previous discussion shows that

AY=p* U U U At55N-
(t,5.) suitable y < min(/;, S)
N=Sift=10

As T is closed under finite unions, the set

Ay sj = U At 5N
N <min(}M;, S)
N=Sift=10

isinT'(4“). On the other hand we have proved thate IT9(4«) CT'(4¥), thus we get
AYeT(4v)if T=37.

Consider now the cade= Hg. We can write

Aw:Mw\ U Pt.,S,j @] U Atyg_,jﬂPt_,SJ-.
(t,8,5) Suitable (t,8,5) Suitable
Thus
=AY == /LwU U Pt,S.,j @] U Pt,S,j\At,S,j-
(t,8,5) Suitable (t,8,5) Suitable

Here — [uw U (U(t,s,j) SuitamePtys_,j)} € AY(4¥) C T'(4¥) becauseu” is aTIy-
subset ofl and(U(t s.) suitable P%,s.;) is aX9-subset ofi as itis a countable union



of compact hence closed sets. On the other Hang; \ A; s ; €T'(4), thus—A“ is in

I'(4¥) andA“ €T'(4*). Moreover, the sel“ N Py o o =7 N Py g0 =7 N Ko o is not
in T'. This shows thatl* is not inT. ThusA“ is in T'(4*)\T.

We can now end the proof of Theoreﬂn 2.

(@) If ¢ =1, then we can takel := {s € 2<% | 0 < s or Jk € w 10*1 < s} and
A =2*\ {10} is O\ ITY.

e If £ =2, then we will see in Theoref] 4 the existence4f 2<¢ such that4* is
I\ 119.

e SO0 we may assume thar 3, and we are done.

(b) If £=1, then we can take:= {0} and A~ = {0} is II{\ X.

o If £=2, then we can takél:={0*1 | kew} andA® = P, is TIJ\ 9.

e SO0 we may assume thar 3, and we are done. O

As we have said above it remains a Borel class for which we hainget got a complete
w-power: the clas&y. Notice that it is easy to see that the classical examplEpf
complete set, the sét’ \ P, is not anw-power. However we are going to prove the
following result.

Theorem 4. There is a context-free languageC 2<% such that4~ € X9\ IT9.

Proof. By Proposition 11 in[[Lec(5], it is enough to fillC 3<«. We set, forj < 3 and
SEJ<Y,
n;(s):= Card{i<|s|| s(i)=j},

T:= {ae3= | Vi<l+|a| na(a[l)<m(afl)}.
e We inductively define, fos €T N 3<%, s~ €2<“ as follows:
0 if s=0,
sT =< t7e if s=te and <2,
t—, except that its last 1 is replaced with Ogi¢2.

o We will extend this definition to infinite sequences. To dathve introduce a notion
of limit. Fix (s,)nc. @ sequence of elements 27«. We define lim s,, € 2<% as

n—oo

follows. For eacht €2<v,

t< lim s, & dng€w Vn>ng t<s,.

n—oo



o If o € T N3, then we setv™ := lim (a[n)”. We definee : T'N 3% — 2 by

n—oo
e(a):=a~. Note thatl' N 3* e I1Y(3%), ande is aXy-measurable partial function on
T N 3%, since fort €2<“ we have

t<e(la) & Ingcw Yn>ng t<(afn)™

e We setF:={seT N3<¥ | na(s)=ni(s) and s#0 and 1<[s[(|]s|—1)]}. Note
that@ +# s < 0%, and thats(]s| — 1) = 2 changes(0) = [s[(|s| —1)](0) =1 into O if
sek.

o If SC3<¥ thenS*:={",<;5,€3<% |lew and Vi <1 s; € S}. We put
A:={0}UBU{" j<k (¢;1)€3<¥ | Vi <k ¢; €({0}UE)*] and [k >0 or (k=0 andco#0)]}.

e In the proof of Theorer)2.(b) we met the §etc 2<“ | 0<s or Jkew 10F1<s}.
We shall denoted it by in the sequel. We have seen thiztt =2+ \ {10~} is X9\ I1Y.
Let us show thatl* =e~1(B¥).

- By induction onlt|, we get(st)~ = st if s,t € T' N 3<“. Let us show that
(sB)~ =s—p if moreovergeT N 3“.

Assume that < (s3). Then there isng > |s| such that, forn > my,

t=<[(s8)[m]™ =[sB[(m—|s)]” =sT[B[(m—[s])] .

This implies that < s~ 8 if |¢|<|s|. If [t| >]s|, then there i3n, €w such that,
form>my, 671(|t|—|s7]) < [B[(m—|s])]~. Here again, we get< s— 3. Thus

(s8)7 =s—p".

Let (s;)icw be a sequence such that for each integer w, s; € T N 3<“. Then
Ticw SiET, and(Tiew $i) T =icw S;, Dy the previous facts.

- Let (a;)ic, be a sequence such that for each integerw, a; € A\ {0} anda :=
AiEw Q. ASAng 6(0&): (AiGw ai)(_):AiEw a;'_)-
If ape{0} U E, then) £ a5~ < 0%, thuse(a) € Ng C 2\ {10} = B~.
If a0¢ {0} UFE, thenaozﬁjgk (le), thUSa(‘)_’:“jSk (03_)1).
If co#0, thene(«) € B as before.
If co=0, thenk >0, so thate(a) # 10“ sincee(«) has at least two coordinates
equal tol.
We proved thatd“ Ce~1(B¥).

- Assume now that(«) € B¥. We have to finda;);c., € A\{0} with o = "¢, a;. We
split into cases:

l.e(a)=0".
1.1.«(0)=0.
In this casex—0 €T ande(a—0)=0“. Moreover0 € A. We putag :=0.



1.2.a(0)=1.
In this case there is a coordingteof « equal to2 ensuring that(0) is replaced with
aline(a). We putag:=af(jo+1), sothatug e EC A, a—ap €T ande(a—ag) =0v.

Now the iteration of the cases 1.1 and 1.2 showsdhatd®.
2. e(a) =0FT110> for somek € w.

As in case 1, there ig € ({0} U E)* such thaty < o, ¢~ = 05!, a—co € T and
e(a—cp) = 10%. Note thata(|co|) =1, a—(col) € T ande[a— (¢p1)] = 0“. We put
ag:=cpl, and argue as in case 1.

3. e(a) = (Ang_l 0ki 1)0w for somel e w.

The previous cases show the existencécgf,<;+1, where foreach <1+ 1 ¢; €
({0} U E)* such that :
ap:=""j<i+1 ¢j1 <, a—ao €T ande(a—ap) =0. We are done sincg) € A.

4.e(a)=""je, OFil.
An iteration of the discussion of case 3 shows that we cardafthe form™ ;<;41 ¢;1.

e The previous discussion shows théit = e~ (B“). As B“ is an open subset @’
ande is X9-measurable, the-powerA« = e~1(Bv) is inX9(3v).

It remains to see that* = ¢~ (B“) ¢ I13. We argue by contradiction.

Assume on the contrary that }(B*) € TI3(3*). We know thatB“ = 2« \ {10“} so
e 1({10%}) = (T'N3¥)\ e~'(B) would be ax9-subset o8~ sinceT N 3“ is closed
in 3. Thuse~!({10~}) would be a countable union of compact subsets-of

Consider now theartesian product ({0}UE)N of countably many copies ¢{0}UE).
The set({0} U E) is countable and it can be equipped with the discrete togoltgen
the produc({0} U E)" is equipped with the product topology of the discrete togglo
on ({0} U E). The topological spacg0} U E)N is homeomorphic to the Baire space
w?.

Consider now the map : ({0} U E)N — e~1({10%}) defined byh(y) := 1[icw Vi
for eachy = (v0,71,---,%,---) € ({0} U E)Y. The maph is a homeomorphism by
the previous discussion. A40} U E) is homeomorphic to the Baire space, the
Baire spaceu” is also homeomorphic to the space!({10“}), so it would be also a
countable union of compact sets. But this is absurd by [{e€88orem 7.10].

It remains to see thal is context-free. It is easy to see that the langu&gs in fact
accepted by a-counter automaton: it is the set of worgs 3<“ such that :

Vie [1;]s][ na(s[l) <ni(s[l) andna(s)=n1(s) ands(0)= 1 ands(|s|—1)=2.



This implies thatA is also accepted by Bcounter automaton because the class-of
counter languages is closed under concatenation and steatmm. In particulad is
a context-free language because the class of languaggrestts1-counter automata
form a strict subclass of the class of context-free langsid#BB9§]. O

Remark 5. The operationn — o~ we have defined is very close to the erasing op-
eration defined by Duparc in his study of the Wadge hierarifbyp01]. However we
have modified this operation in such a way théat is always infinite whenr is infinite,
and that it has the good property with regarddepowers and topological complexity.

4 Concluding remarks and further work

It is natural to wonder whether the-powers obtained in this paper are effective. For
instance could they be obtainedagpowers of recursive languages ?

In the long version of this paper we prove effective versiofithe results presented
here. Using tools of effective descriptive set theory, wa firove an effective version

of Kuratowski’s Theorenf]3. Then we use it to prove the follogveffective version of
Theorenﬂz, wheré?g and Hgo denote classes of the hyperarithmetical hierarchy and
w$'K is the first non-recursive ordinal, usually called the Cheikieene ordinal.

Theorem 6. Let¢be a non-null ordinal smaller tham$'X .
(a) There is a recursive languageC 2<* such thatd“ € X2\ ITY.
(b) There is a recursive languageC 2<* such thatd” € 17\ 3.

The question, left open irf [Finp4], also naturally arisegow what are all the pos-
sible infinite Borel ranks ofu-powers of finitary languages belonging to some natural
class like the class of context free languages (respegtiagliguages accepted by stack
automata, recursive languages, recursively enumeraigjemes, .. .).

We know from ] that there are-languages accepted by Buchicounter au-
tomata of every Borel rank (and even of every Wadge degreaei @fffective analytic
set. Everyw-language accepted by a Buchicounter automaton can be written as a
finite unionL = J,,-,, U;"V;¥, where for each integer U; andV; are finitary lan-
guages accepted hycounter automata. And the supremum of the set of Borel ranks
of effective analytic sets is the ording}. This ordinal is defined by A.S. Kechris, D.
Marker, and R.L. Sami i [KMS89] and it is proved to be stsiagreater than the or-
dinal 6 which is the first nonAl ordinal. Thus the ordinald is also strictly greater
than the first non-recursive ordinaf’®. From these results it seems plausible that there
exist somev-powers of languages accepted bygounter automata which have Borel
ranks up to the ordinajs, although these languages are located at the very low level i
the complexity hierarchy of finitary languages.

Another question concerns the Wadge hierarchy which isat geéinement of the Borel
hierarchy. It would be interesting to determine the Wadgeadichy ofv-powers. In the
full version of this paper we give many Wadge degrees-@owers and this confirms
the great complexity of these-languages.
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