E. Cremmer and B. Julia, The SO(8) supergravity, Nucl. Phys, pp.159-141, 1979.

M. Grana, Flux compactifications in string theory: A comprehensive review, Physics Reports, vol.423, issue.3, pp.91-158, 2006.
DOI : 10.1016/j.physrep.2005.10.008

H. Nicolai and H. Samtleben, Maximal Gauged Supergravity in Three Dimensions, Physical Review Letters, vol.86, issue.9, pp.1686-1689, 2001.
DOI : 10.1103/PhysRevLett.86.1686

B. De-wit, H. Samtleben, and M. Trigiante, On Lagrangians and gaugings of maximal supergravities Gauging maximal supergravities, Nucl. Phys. Fortsch. Phys, vol.655, issue.52, pp.93-126, 2003.

R. Geroch, A Method for Generating Solutions of Einstein's Equations, Journal of Mathematical Physics, vol.12, issue.6, pp.918-924, 1971.
DOI : 10.1063/1.1665681

V. A. Belinsky and V. E. Zakharov, Integration of the Einstein equations by the inverse scattering problem technique and the calculation of the exact soliton solutions, Sov. Phys. JETP, vol.48, pp.985-994, 1978.

D. Maison, Are the Stationary, Axially Symmetric Einstein Equations Completely Integrable?, Physical Review Letters, vol.41, issue.8, p.41, 1978.
DOI : 10.1103/PhysRevLett.41.521

D. Korotkin and H. Samtleben, Yangian symmetry in integrable quantum gravity, Nuclear Physics B, vol.527, issue.3, pp.527-657, 1998.
DOI : 10.1016/S0550-3213(98)00358-7

H. Nicolai and H. Samtleben, Integrability and canonical structure of d=2, N=16 supergravity, Nucl. Phys, vol.5339804152, pp.210-242, 1998.

B. De-wit, H. Samtleben, and M. Trigiante, Magnetic charges in local field theory, JHEP, vol.09, issue.016, 2005.

B. De-wit, H. Samtleben, and M. Trigiante, The maximal D = 4 supergravities, preprint SPIN-07

T. H. Buscher, A symmetry of the string background field equations, Physics Letters B, vol.194, issue.1, p.194, 1987.
DOI : 10.1016/0370-2693(87)90769-6

C. M. Hull and B. J. Spence, The gauged nonlinear sigma model with Wess-Zumino term, Physics Letters B, vol.232, issue.2, p.232, 1989.
DOI : 10.1016/0370-2693(89)91688-2

X. C. De-la-ossa and F. Quevedo, Duality symmetries from non-abelian isometries in string theory, Nuclear Physics B, vol.403, issue.1-2, pp.377-394, 1993.
DOI : 10.1016/0550-3213(93)90041-M

P. Breitenlohner and D. Maison, On the Geroch group, 1987.

H. Nicolai, Two-dimensional gravities and supergravities as integrable system. Lectures presented at 30th Schladming Winter School, 1991.
DOI : 10.1007/3-540-54978-1_12

URL : http://hdl.handle.net/11858/00-001M-0000-0013-5CDA-4

H. Nicolai, D. Korotkin, and H. Samtleben, Integrable Classical and Quantum Gravity, Proceedings NATO ASI, Cargèse, pp.203-244, 1996.
DOI : 10.1007/978-1-4899-1801-7_9

URL : http://arxiv.org/abs/hep-th/9612065

E. Brezin, C. Itzykson, J. Zinn-justin, and J. B. Zuber, Remarks about the existence of nonlocal charges in two-dimensional models, Phys. Lett, pp.82-442, 1979.

B. Julia and H. Nicolai, Conformal internal symmetry of 2d sigma-models coupled to gravity and a dilaton, Nucl. Phys, vol.4829608082, pp.431-465, 1996.
URL : https://hal.archives-ouvertes.fr/hal-00007746

B. Julia, Infinite Lie algebras in physics Invited talk given at Johns Hopkins Workshop on Current Problems in Particle Theory, 1981.

D. Bernard and B. Julia, Twisted self-duality of dimensionally reduced gravity and vertex operators, Nuclear Physics B, vol.547, issue.3, pp.427-470, 1999.
DOI : 10.1016/S0550-3213(99)00093-0

URL : https://hal.archives-ouvertes.fr/hal-00007569

B. De-wit, I. Herger, and H. Samtleben, Gauged locally supersymmetric D=3 nonlinear sigma models, Nuclear Physics B, vol.671, pp.671-175, 2003.
DOI : 10.1016/j.nuclphysb.2003.08.022

P. Goddard, A. Kent, and D. I. Olive, Virasoro algebras and coset space models (1985) 88; Unitary representations of the Virasoro and Supervirasoro algebras, Phys. Lett. Commun. Math. Phys, vol.103, pp.152-105, 1986.

A. Giveon and M. Rocek, On nonabelian duality, Nuclear Physics B, vol.421, issue.1, pp.421-173, 1994.
DOI : 10.1016/0550-3213(94)90230-5

E. Alvarez, L. Alvarez-gaume, J. L. Barbon, and Y. Lozano, Some global aspects of duality in String Theory, Nuclear Physics B, vol.415, issue.1, pp.71-100, 1994.
DOI : 10.1016/0550-3213(94)90067-1

E. Alvarez, L. Alvarez-gaume, and Y. Lozano, On nonabelian duality, Nucl. Phys, vol.4249403155, pp.155-183, 1994.

N. Mohammedi, On non-Abelian duality in sigma models, Physics Letters B, vol.375, issue.1-4, pp.375-149, 1996.
DOI : 10.1016/0370-2693(96)00194-3

P. Fré, F. Gargiulo, K. Rulik, and M. Trigiante, The general pattern of Kac-Moody extensions in supergravity and the issue of cosmic billiards, Nucl. Phys, pp.741-783, 2006.

C. Klimcik and P. Severa, Dual nonAbelian duality and the Drinfeld double, Phys. Lett, pp.351-455, 1995.

K. Sfetsos, Canonical equivalence of non-isometric ??-models and Poisson-Lie T-duality, Nuclear Physics B, vol.517, issue.1-3, pp.549-566, 1998.
DOI : 10.1016/S0550-3213(97)00823-7

B. Julia, Kac-Moody symmetry of gravitation and supergravity theories, In: Lectures in Applied Mathematics AMS-SIAM, vol.21, p.335, 1985.

H. Nicolai, The integrability of N=16 supergravity, Phys. Lett, pp.194-402, 1987.

H. Nicolai and N. P. Warner, The structure of N=16 supergravity in two-dimensions, Commun. Math. Phys, vol.125, issue.369, 1989.

V. G. Kac, An elucidation of ???Infinite-Dimensional Algebras ??? and the very strange formula.??? E(1)8 and the cube root of the modular invariant j, Advances in Mathematics, vol.35, issue.3, pp.264-273, 1980.
DOI : 10.1016/0001-8708(80)90052-3