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ABSTRACT

We initiate the systematic construction of gauged matter-coupled supergravity theories in

two dimensions. Subgroups of the affine global symmetry groups of toroidally compact-

ified supergravity can be gauged by coupling vector fields with minimal couplings and a

particular topological term. The gauge groups typically include hidden symmetries that

are not among the target-space isometries of the ungauged theory. The possible gaugings

are described group-theoretically in terms of a constant embedding tensor subject to a

number of constraints which parametrizes the different theories and entirely encodes the

gauged Lagrangian.

The prime example is the bosonic sector of the maximally supersymmetric theory whose

ungauged form admits an affine e9 global symmetry algebra. The various parameters

(related to higher-dimensional p-form fluxes, geometric and non-geometric fluxes, etc.)

which characterize the possible gaugings, combine into an embedding tensor transforming

in the basic representation of e9. This yields an infinite-dimensional class of maximally

supersymmetric theories in two dimensions. We work out and discuss several examples of

higher-dimensional origin which can be systematically analyzed using the different gradings

of e9.
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1 Introduction

One of the most intriguing features of extended supergravity theories is the excep-

tional global symmetry structure they exhibit upon dimensional reduction [1]. Eleven-

dimensional supergravity when compactified on a d-torus T d gives rise to an (11−d)-

dimensional maximal supergravity with the exceptional global symmetry group Ed(d)

and Abelian gauge group U(1)q, where q is the dimension of some (typically irreducible)

representation of Ed(d) in which the vector fields transform. The only known supersym-

metric deformations of these theories are the so-called gaugings in which a (typically

non-Abelian) subgroup of Ed(d) is promoted to a local gauge group by coupling its

generators to a subset of the q vector fields. The resulting theories exhibit interesting

properties such as mass-terms for the fermion fields and a scalar potential that provides

masses for the scalar fields and may support de Sitter and Anti-de Sitter ground states

of the theory [2]. Recently, gauged supergravities have attracted particular interest in

the context of non-geometric and flux compactifications [3] where they describe the

resulting low-energy effective theories and in particular allow to compute the effective

scalar potentials induced by particular flux configurations.

A systematic approach to the construction of gauged supergravity theories has

been set up with the group-theoretical framework of [4, 5]. Gaugings are defined by a

constant embedding tensor that transforms in a particular representation of the global

symmetry group Ed(d). It is subject to a number of constraints and entirely parametrizes

the gauged Lagrangian. E.g. in the context of flux compactifications, all possible

higher-dimensional (p-form, geometrical, and non-geometrical) flux components whose

presence in the compactification induces a deformation of the low-dimensional theory

can be identified among the components of the embedding tensor. Once the universal

form of the gauged Lagrangian is known for generic embedding tensor, this reduces

the construction of any particular example to a simple group-theoretical exercise.1

Moreover, since the embedding tensor combines the flux components of various higher-

dimensional origin into a single multiplet of the U-duality group Ed(d), this formulation

allows to directly identify the transformation behavior of particular flux components

under the action of the duality groups. In particular, this allows to straightforwardly

extend the analysis of the effective theories beyond the region in which the parameters

have a simple perturbative or geometric interpretation.

Gaugings of two-dimensional supergravity (d = 9) have not been studied systemati-

cally so far. Yet, this case is particularly interesting, as the global symmetry algebra of

the ungauged maximal theory is the infinite-dimensional ĝ = e9(9), the affine extension

of the exceptional algebra g = e8(8), and the resulting structures are extremely rich.

The realization of the affine symmetry on the physical fields requires the introduction

of an infinite tower of dual scalar fields, defined on-shell by a set of first order differ-

ential equations. Consequently, these symmetries act nonlinearly, nonlocally and are

1Still, the explicit calculation of the various couplings from the closed formulas may pose a con-

siderable task.
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symmetries of the equations of motion only. As a generic feature of two-dimensional

gravity theories, the infinite-dimensional global symmetry algebra is a manifestation of

the underlying integrable structure of the theory [6, 7, 8, 9, 10]. In view of the above

discussion one may expect that the various parameters characterizing the different

higher-dimensional compactifications join into a single infinite-dimensional multiplet

of the affine algebra which accordingly parametrizes the generic gauged Lagrangian

in two dimensions. We confirm this picture in the present paper. The corresponding

multiplet is the basic representation of e9(9).

Apart from its intriguing mathematical structure, there are two features of two-

dimensional supergravity which render the construction of gaugings somewhat more

subtle than in higher dimensions. First, the overwhelming part of the affine symmetries

present in the two-dimensional ungauged theory, is of the hidden type and in particular

on-shell. Only the zero-modes g of the affine algebra ĝ are realized as target-space

isometries of the two-dimensional scalar sigma-model and thus as off-shell symmetries

of the Lagrangian. In contrast, the action of all higher modes of the algebra is nonlinear,

nonlocal and on-shell as described above. Gauging such symmetries is a nontrivial task.

Second, in two dimensions there are no propagating vector fields that could be naturally

used to gauge these symmetries.

It turns out that both these problems have a very natural common solution: in-

troducing a set of vector fields that couple with a particular topological term in the

Lagrangian allows to gauge arbitrary subgroups of the affine symmetry group. The

resulting gauge groups generically include former on-shell symmetries and thus extend

beyond the target-space isometries of the ungauged Lagrangian. The construction in

fact is reminiscent of the four-dimensional case where global symmetries that are only

on-shell realized can be gauged upon simultaneous introduction of magnetic vector and

two-form tensor fields which couple with topological terms [11, 12].

The structure emerging in two dimensions is the following. In addition to the

original physical fields, the Lagrangian of the gauged theory carries vector fields AM
µ

in a highest weight representation of ĝ. In addition, a finite subset of the tower of dual

scalar fields enters the Lagrangian, with their defining first-order equations arising as

genuine equations of motion. The gauging is completely characterized by a constant

embedding tensor ΘM in the conjugate vector representation and subject to a quadratic

consistency constraint. The local gauge algebra is a generically infinite-dimensional

subalgebra of ĝ. The result is a Lagrangian that features scalars and vector fields

in infinite-dimensional representations of the affine ĝ. However, for every particular

choice of the embedding tensor only a finite subset of these fields enters the Lagrangian

and only a finite-dimensional part of the gauge algebra is realized at the level of the

Lagrangian (with its infinite-dimensional part exclusively acting on dual scalar fields

that do not show up in the Lagrangian). We illustrate these structures with several

examples for the maximal (N = 16) theory for which the symmetry algebra is e9(9)

and vector fields and embedding tensor transform in the basic representation and its

conjugate, respectively.

2



In addition to the standard minimal couplings within covariant derivatives and the

new topological term, the gauging induces a scalar potential whose explicit form is

usually determined by supersymmetry. It is specific to two dimensions that in absence

of such a potential, the gauging merely induces a reformulation of the original theory.

I.e. the field equations imply vanishing field strengths, such that the only nontrivial

effect of the newly introduced vector fields is due to global obstructions. In absence

of such, the theory reduces to the original one. On the other hand, integrating out

the vector fields in this case leads to an equivalent (T-dual) formulation of the original

theory in terms of a different set of scalar fields. This procedure is well-known from

the study of non-Abelian T-duality [13, 14, 15], however the results here go beyond the

standard expressions, as the gaugings generically include non-target-space isometries.

In contrast, in presence of a scalar potential, as is standard in supersymmetric theories,

the gaugings constitute genuine deformations of the original theory.

It is worth to stress that although the construction we present in this paper is

worked out for a very particular class of two-dimensional models — the coset space

sigma-models coupled to dilaton gravity as the typical class of models obtained by

dimensional reduction of supergravity theories — it is by far not limited to this class.

The entire construction extends straightforwardly to the gauging of hidden symmetries

in arbitrary two-dimensional integrable field theories.

The paper is organized as follows. In section 2, we give a brief review of the un-

gauged two-dimensional supergravity theories and their global symmetry structure. In

particular, we give closed formulas for the action of the affine symmetry ĝ on the phys-

ical fields. In section 3, we proceed to gauge subalgebras of the affine global symmetry

by introducing vector fields in a highest weight representation of ĝ and coupling them

with a particular topological term. We present the full bosonic Lagrangian which is

entirely parametrized in terms of an embedding tensor transforming under ĝ in the

conjugate vector field representation and subject to a single quadratic constraint. In

section 4, we discuss various ways of gauge fixing part of the local symmetries by

eliminating some of the redundant fields from the Lagrangian. In particular, we show

that in absence of a scalar potential the presented construction leads to an equivalent

(T-dual) version of the ungauged theory whereas a scalar potential leads to genuinely

inequivalent deformations of the original theory. Finally, in section 5 we study various

examples of gaugings of the maximal (N = 16) two-dimensional supergravity. Among

the infinitely many components of the embedding tensor, we identify several solutions

to the quadratic constraint and discuss their higher-dimensional origin. The various

gradings of e9(9) provide a systematic scheme for this analysis.

2 Ungauged theory and affine symmetry algebra

The class of theories we are going to study in this paper are two-dimensional G/K coset

space sigma models coupled to dilaton gravity. These models arise from dimensional
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reduction of higher-dimensional gravities: pure Einstein gravity in four space-time

dimensions gives rise to the coset space SL(2)/SO(2) while e.g. the bosonic sector of

eleven-dimensional supergravity leads to the particular coset space E8(8)/SO(16). In

this chapter we briefly review the Lagrangian for these theories, their integrability

structure, and as a consequence of the latter the realization of the infinite-dimensional

on-shell symmetry ĝ, cf. [16, 17, 18] for detailed accounts.

2.1 Lagrangian

To define the Lagrangian of the theory we employ the decomposition g = k ⊕ p of the

Lie algebra g = Lie G into its compact part k and the orthogonal non-compact comple-

ment p. For the theories under consideration this is a symmetric space decomposition,

i.e. the commutators are of the form

[k, k] = k , [k, p] = p , [p, p] = k . (2.1)

We denote by tα the generators of g and indicate by subscripts the projection onto the

subspaces k and p, i.e. for Λ ∈ g it is

Λ = Λαtα = Λk + Λp , Λk ∈ k , Λp ∈ p . (2.2)

In addition, it is useful to introduce the following involution on algebra elements

Λ# = Λk − Λp . (2.3)

The (dim G−dim K) bosonic degrees of freedom of the theory are described by a group

element V of G which transforms under global G transformations from the left and local

K transformations from the right, i.e. the theory is invariant under

V → g V k(x)−1 , g ∈ G , k(x) ∈ K . (2.4)

It is sometimes convenient to fix the local K freedom by restricting to a particular set

of representatives V of the coset G/K, on which the global G then acts as

V → g V kg(x)−1 , (2.5)

where kg(x) ∈ K depends on g in order to preserve the class of representatives. This

defines the nonlinear realization of G on the coset space G/K.

The G-invariant scalar currents are defined by

V−1∂µV = Qµ + Pµ , Qµ ∈ k , Pµ ∈ p . (2.6)

The current Qµ is a composite connection for the local K gauge invariance, i.e. it

appears in covariant derivatives of all quantities that transform under K, in particular

DµPν = ∂µPν + [Qµ, Pν] . (2.7)
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The integrability conditions for (2.6) are then given by

D[µPν] = 0 , Qµν ≡ 2∂[µQν] + [Qµ, Qν] = −[Pµ, Pν] . (2.8)

The two-dimensional Lagrangian takes the form

L = ∂µσ ∂µρ − 1
2
ρ tr(PµP

µ) . (2.9)

In addition to the scalar current Pµ it contains the dilaton field ρ and the conformal

factor σ. The latter originates from the two-dimensional metric which has been brought

into conformal gauge gµν = e2σ ηµν , such that space-time indices µ in (2.9) are con-

tracted with the flat Minkowski metric ηµν . The only remnant of two-dimensional grav-

ity is the first term descending from the two-dimensional (dilaton coupled) Einstein-

Hilbert term ρR in conformal gauge. The Lagrangian (2.9) is manifestly invariant

under the symmetry (2.4). It is straightforward to derive the equations of motion

which take the form2

∂+∂−ρ = 0 , ∂+∂−σ + 1
2
tr(P+P−) = 0 , D+(ρP−) + D−(ρP+) = 0 , (2.10)

where we have introduced light-cone coordinates x± = (x0 ± x1)/
√

2. In addition, the

theory comes with two first order (Virasoro) constraints

∂±ρ ∂±σ − 1
2
ρ tr(P±P±) = 0 , (2.11)

which might equally be obtained from the Lagrangian before the fixing of conformal

gauge. It is straightforward to check that these first order constraints are compatible

as a consequence of the equations of motion for ρ and P± and moreover imply the

second order equation for the conformal factor σ.

2.2 Global symmetry and dual potentials

It is well known — starting from the work of Geroch on dimensionally reduced Einstein

gravity [6] — that the global symmetry algebra of the coset space sigma model (2.9) is

not only the algebra of target-space isometries g, but its affine extension ĝ. We denote

the generators of g by tα and those of ĝ by Tα,m, m ∈ Z. The latter close into the

algebra
[

Tα,m , Tβ,n

]
= fαβ

γ Tγ,m+n + m δm+n ηαβ K , (2.12)

where fαβ
γ and ηαβ = tr(tαtβ) are the structure constants and the Cartan-Killing

form of g, respectively, and K denotes the central extension of the affine algebra. In

addition to Tα,m and K we will find the Witt-Virasoro generator L1 to be crucial for

the construction of this paper. It obeys

[ L1, Tα,m ] = −m Tα,m+1 . (2.13)

2Our space-time conventions are ηµν = diag(+,−), ε01 = −ε01 = 1; i.e. η±∓ = 1, ε±∓ = ∓.
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The central extension K commutes with both Tα,m and L1. We denote by G ⊃ ĝ the

algebra spanned by {Tα,m , K, L1}.
To define the action of G on the fields V, ρ and σ that enter the Lagrangian (2.9) we

need to introduce an infinite hierarchy of dual potentials. These are additional scalar

fields that are defined as nonlocal functions of V (and ρ), but whose definition is only

consistent if one invokes the equations of motion. Therefore G is only realized as an

on-shell symmetry on (2.10).

To start with, the dilaton ρ is a free field, such that it gives rise to the definition

∂µρ̃ = −εµν∂
νρ , ⇐⇒ ∂±ρ̃ = ± ∂±ρ , (2.14)

of its dual ρ̃. Obviously, the dual of ρ̃ gives back ρ. More interesting are the nonlinear

equations of motion for V that can be rewritten as a conservation law ∂µIµ = 0 for the

current Iµ = ρVPµV−1. This allows the definition of the first dual potential Y1

∂±Y1 = ∓I± = ∓ ρVP±V−1 , (2.15)

which is g valued and according to (2.4) transforms in the adjoint representation of the

global G. Integrability of these equations is ensured by ∂µIµ = 0. From the point of

view of higher-dimensional supergravity theories, equations (2.15) constitute nothing

but a particular case of the general on-shell duality between p forms and D − p − 2

forms (D = 2, p = 0). In two dimensions however, these equations are just the starting

point for an infinite hierarchy of dual potentials [19] of which the next members Y2, Y3

are defined by

∂±Y2 =
(
±ρρ̃ + 1

2
ρ2

)
VP±V−1 + 1

2
[Y1, ∂±Y1] ,

∂±Y3 =
(
∓1

2
ρ3 ∓ ρρ̃2 − ρ2ρ̃

)
VP±V−1 + [Y1, ∂±Y2] − 1

6
[Y1, [Y1, ∂±Y1]]] . (2.16)

Again, integrability of these equations is guaranteed by the field equations ∂µIµ = 0

and the defining equation (2.15) of the lower dual potentials. A convenient way to

encode the definition of all dual potentials (and the action of the affine symmetry) is

the linear system [7, 8] which we will describe in the next subsection. In order make

the symmetry structure more transparent we will restrict the discussion in the present

subsection to the lowest few dual potentials and to the action of the lowest few affine

symmetry generators Tα,m.

We identify the zero-modes Tα,0 with the generators tα of the off-shell symmetry g.

These zero-mode symmetries do not mix the original scalars and the dual potentials of

different levels, i.e. V transforms according to (2.4) and all the Ym (m > 0) transform

in the adjoint representation. The fields ρ, ρ̃, and σ are left invariant by Tα,0.

The dual potentials ρ̃, Ym are defined by (2.14)–(2.16) only up to constant shifts

ρ̃ 7→ ρ̃+λ, Ym 7→ Ym+Λm. The generators in G corresponding to these shift symmetries

are L1 and Tα,m (m > 0), i.e.

δ(1) ρ̃ = 1 , δα,m Y β
n =

{
δβ
α m = n

0 m > n
, (2.17)
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where δ(1) and δα,m denote the action of L1 and Tα,m, respectively, and Ym = Y α
mtα .

Since the definition of the dual potentials also involves ρ̃ and lower dual potentials, it

follows that L1 and Tα,m also act nontrivially on the higher dual potentials Yn (m < n),

e.g.

δ(1) Y2 = −Y1 , δ(1) Y3 = −2Y2 ,

Λα δα,1 Y2 = 1
2
[Λ, Y1] , etc. (2.18)

None of the shift symmetries L1 and Tα,m (m > 0) acts on the physical fields V, ρ or

σ. So far we have thus not introduced any new physical symmetry. The crucial point

about the symmetry structure of the model is the existence of another infinite family

of symmetry generators Tα,m (m < 0). Their action on the physical fields is expressed

in terms of the dual potentials and thus nonlinear and nonlocal in terms of the original

fields. For the lowest generators, this action is given by

Λαδα,−1 V = [Λ, Y1]V − ρ̃ V[V−1ΛV]p ,

Λαδα,−2 V =
{
[Λ, Y2] + 1

2
[[Λ, Y1], Y1] − ρ̃[Λ, Y1]

}
V +

(
1
2
ρ2 + ρ̃2

)
V[V−1ΛV]p .

(2.19)

The field ρ is left invariant while the action on the dual potentials Ym and on the

conformal factor σ follows from (2.11), (2.15). We find for example

Λαδα,−1 σ = tr(ΛY1) ,

Λαδα,−1 Y1 = [Λ, Y2] + 1
2
[[Λ, Y1], Y1] + 1

2
ρ2V[V−1ΛV]pV−1 , etc. (2.20)

One can easily check that the symmetries defined in (2.17) and (2.19) indeed close

according to the algebra (2.12). In particular, it follows that the central extension K

acts exclusively on the conformal factor [21]:

δ(0) σ = −1 . (2.21)

In order to define all dual potentials Ym (m > 0) and describe the action of all

symmetry generators Tα,m in closed form we will in the following introduce the linear

system [7, 8] showing the classical integrability of the theory.

2.3 The linear system

A compact way to encode the infinite family of dual potentials and the action of the

full symmetry algebra ĝ is the definition of a one-parameter family of group-valued

matrices V̂(γ) according to the linear system [7, 8, 16]

V̂−1∂µV̂ = Ĵµ , with Ĵµ = Qµ +
1 + γ2

1 − γ2
Pµ +

2γ

1 − γ2
εµν P ν , (2.22)

7



where γ is a scalar function

γ =
1

ρ

(
w + ρ̃ −

√
(w + ρ̃)2 − ρ2

)
, (2.23)

of the constant spectral parameter w which labels the family. As γ is a double-valued

function of w we will in the following restrict to the branch |γ| < 1, i.e. in particular

γ = 1
2
ρ w−1 − 1

2
ρρ̃ w−2 + 1

8

(
ρ3 + 4ρρ̃2

)
w−3 + . . . , (2.24)

around w = ∞.

It is straightforward to verify that the compatibility of (2.22) is equivalent to (2.8)

and the equations of motion (2.10):

2∂[µĴν] + [Ĵµ, Ĵν] = Qµν + [Pµ, Pν] +
1 + γ2

1 − γ2
2D[µPν] − εµν

2γ

1 − γ2
ρ−1 Dσ(ρPσ) .

(2.25)

Expanding V̂ around w = ∞

V̂ = . . . ew−4 Y4ew−3 Y3ew−2 Y2ew−1 Y1 V , (2.26)

defines the infinite series of dual potentials Yn. In particular, the expansion of (2.22)

around w = ∞ reproduces (2.15), (2.16). For later use we also give the linear system

in light-cone coordinates

V̂−1D±V̂ =
1 ∓ γ

1 ± γ
P± . (2.27)

Using the matrix V̂ , the action of the symmetry algebra G can be expressed in closed

form. To this end, we parametrize the loop algebra of g by a spectral parameter w and

identify the generators Tα,m with w−mtα. Elements Λ = Λα,mTα,m of ĝ are represented

by g-valued functions Λ(w) = Λα,mw−mtα, meromorphic in the spectral parameter

plane. In terms of Λ(w), the action on the physical fields V, σ can be given in closed

form as

V−1 δΛV =

〈
2γ(w)

ρ (1 − γ2(w))
Λ̂p(w)

〉

w

,

δΛ σ = − tr
〈
Λ(w) ∂wV̂(w) V̂−1(w)

〉
w

. (2.28)

Here we have defined the dressed parameter3

Λ̂(w) = V̂−1(w)Λ(w)V̂(w) = Λ̂k(w) + Λ̂p(w) , (2.29)

3For notational simplicity we use here and in the following the notation V̂(w) ≡ V̂(γ(w)), even

though by definition globally V̂ is a function of γ and thus on the double covering of the complex w-

plane. We will however be mainly interested in its local expansion around w = ∞ on the sheet (2.24).
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with the split according to (2.2). In addition, we have introduced the notation

〈f(w)〉w ≡
∮

`

dw

2πi
f(w) = −Resw=∞ f(w) , (2.30)

for an arbitrary function f(w) of the spectral parameter w. The path ` is chosen

such that only the residual at w = ∞ is picked up. For definiteness we will treat

the functions f(w) =
∑∞

m=−∞ fmwm in these expressions as formal power series with

almost all {fm|m > 0} equal to zero. Some useful relations for calculating with these

objects are collected in appendix A.

It is straightforward to check that the transformations (2.28) leave the equations of

motion invariant. Since the solution V̂(w) of the linear system (2.22) explicitly enters

the transformation, this is in general not a symmetry of the Lagrangian but only an

on-shell symmetry of the equations of motion (2.10). This will be of importance later

on. Moreover, it is straightforward to check, that the algebra of transformations (2.28)

closes according to (2.12). Relation (A.6) is crucial to verify the action (2.21) of the

central extension.

The group-theoretical structure of the symmetry (2.28) becomes more transparent

if we consider its extension to V̂(w) and thereby to the full tower of dual potentials [9]:

V̂−1 δΛV̂(w) = Λ̂(w) −
〈

1

v − w

(
Λ̂k(v) +

γ(v) (1 − γ2(w))

γ(w) (1 − γ2(v))
Λ̂p(v)

)〉

v

, (2.31)

in the above notation. This action may be rewritten as

δΛV̂(w) = Λ(w) V̂(w) − V̂(w) Υ(γ(w)) , (2.32)

with Υ(γ(w)) ≡
〈

1
v−w

(
Λ̂k(v) + γ(v) (1−γ2(w))

γ(w) (1−γ2(v))
Λ̂p(v)

)〉
v

,

and thus takes the form of an infinite-dimensional analogue of the nonlinear realiza-

tion (2.5), in which the left action of Λ(w) parametrizing ĝ is accompanied by a right

action of Υ(γ) ∈ k(ĝ) in order to preserve a particular class of coset representatives.

The algebra k(ĝ) is the infinite-dimensional analogue of k in (2.5), i.e. the maximal

compact subalgebra of ĝ, and is defined as the algebra of g-valued functions k(γ),

satisfying4

k#(γ) = k(1/γ) . (2.33)

We shall see in the following that the particular set of coset representatives starring

in (2.32) are the functions V̂(γ(w)) regular around w = ∞ in accordance with the

expansion (2.26).

For illustration, let us evaluate equation (2.32) for the particular transformation

Λ(w) = w−m Λ, Λ ∈ g, m ∈ Z . Expanding both sides around w = ∞, it follows directly

from (A.5) that for positive values of m, Υ(γ) vanishes, such that the transformation

4Note that k(ĝ) 6= k̂.
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merely amounts to a shift of the dual potentials Yn in the expansion (2.26); for m = 1, 2

this reproduces (2.17), (2.18). These transformations do not act on the physical fields

present in the Lagrangian (2.9). For a transformation with negative m on the other

hand the second term in (2.32) no longer vanishes but precisely restores the regularity

of V̂ at w = ∞ that has been destroyed by the first term [22]. These transformations

describe the nonlinear and nonlocal on-shell symmetries on the physical fields and

the dual potentials which leave the equations of motion and the linear system (2.27)

invariant. They are commonly referred to as hidden symmetries, for m = −1 one

recovers (2.19). Finally, for m = 0 one recovers the action (2.4) of the finite algebra g

acting as an off-shell symmetry on all the fields. Here, the local K freedom in (2.4) has

been fixed such that [V−1δV]k = 0.

To summarize, the negative modes Tα,m, m < 0 act as nonlocal on-shell symmetries

whereas the positive modes Tα,m, m > 0 act as shift symmetries on the dual potentials.

Only the zero-modes Tα,0 are realized as off-shell symmetries on the physical fields of

the Lagrangian (2.9).

In addition to the affine symmetry algebra ĝ described above, a Witt-Virasoro alge-

bra can be realized on the fields [20] which essentially acts as conformal transformation

on the inverse spectral parameter y = 1/w. From these generators we will in the

following only need

L1 = −y2∂y = ∂w , (2.34)

which acts only on the dual dilaton ρ̃ and the dual potentials Yn according to equations

(2.17), (2.18)

δ(1)ρ̃ = 1 =⇒ δ(1)V̂ = ∂w V̂ . (2.35)

The pair K and L1 which extends the loop algebra of g to G turns out to be crucial

for our construction of the gauged theory in section 3. The distinguished role of L1 in

this construction — as opposed to all the other Virasoro generators that can be realized

following [20] — stems from its action on the dual dilaton (2.17). The gaugings we are

mainly interested in will carry a scalar potential whose presence in particular deforms

the free field equation (2.10) of ρ by some source terms �ρ = Q. The only way to

maintain a meaningful version of the dual dilaton equation (2.14) in this case is by

gauging its shift symmetry ∂µρ = −εµν(∂
ν −Bν δ(1)) ρ̃ while imposing ∂[µBν] = −εµν Q.

We shall see that this indeed appears very natural in the subsequent construction.

In the following we will parametrize a general algebra element of G ≡ 〈Tα,m , K, L1〉
with a collective label A ∈ {(α, m), (1), (0)} for the generators of G as

Λ = ΛA TA = Λα,m Tα,m + Λ(1) L1 + Λ(0) K ≡ Λ(w) + Λ(1)L1 + Λ(0) K ,

(2.36)

with Λ(w) ≡ Λα,mw−m tα. The commutator between two such algebra elements takes

the form

|[ Λ, Σ ]| = [Λ(w), Σ(w)] + Λ(1)∂Σ(w) − Σ(1)∂Λ(w) + K
〈
Λ(w) ∂Σ(w)

〉
w

,(2.37)
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where we use the notation |[ , ]| in order to distinguish the general algebra commutator

from the simple matrix commutators [ , ].

Let us finally mention, that the symmetry algebra G is equipped with an invariant

inner product (TA, TB) = ηAB, given by

(Tα,m , Tβ,n) = ηαβ δm+n−1 , (L1, K) = −1 . (2.38)

2.4 Structure of the duality equations

For the following it turns out the be important to analyze in more detail the structure

of the duality equations (2.14) and (2.22) which have been used to define the dual fields

ρ̃ and V̂ . Let us for the moment consider these dual fields as a priori independent fields

and the duality equations as their first order equations of motion relating them to the

physical fields ρ and V. In particular, we may define the G-valued current Zµ as

Zµ = ZA
µ TA = Zµ(w) + Z(1)

µ L1 , (2.39)

Z(1)
µ ≡ −∂µρ̃ − εµν∂

νρ ,

Zµ(w) ≡ V̂
[
− V̂−1∂µV̂ + Qµ +

1 + γ2

1 − γ2
Pµ +

2γ

1 − γ2
εµνP

ν
]
V̂−1 − ∂wV̂ V̂−1 Z(1)

µ ,

which is a particular combination of the duality equations, i.e. on-shell we have Zµ = 0.

Under a generic symmetry transformation Λ ∈ G the constituents of Zµ transform

according to (2.28), (2.31), and (2.35) and some lengthy computation shows that alto-

gether Zµ transforms as

δΛZ± = |[ Λ, Z±]| − V̂
〈 1

v − w
V̂−1 |[ Λ, Z±]| V̂

〉
k,v
V̂−1

− 1 ∓ γ

1 ± γ
V̂

〈 1

v − w

1 ± γ

1 ∓ γ
V̂−1 |[ Λ, Z±]| V̂

〉
p,v
V̂−1 , (2.40)

in light-cone coordinates. In order not to overburden the notation here, all spectral pa-

rameter dependent functions within the brackets 〈·〉v depend on the parameter v which

is integrated over, whereas all functions outside depend on the spectral parameter w. In

slight abuse of notation, the commutators |[ , ]| represent the full G commutator (2.37)

however without the central term K.5 In particular, (2.40) shows that Zµ transforms

homogeneously under Λ — consistent with the fact that Zµ vanishes on-shell. This

current will play an important role in the following.

5Inclusion of this term would presumably require the extension of Zµ by a K-valued term pro-

portional to the Virasoro constraints (2.11). This is in accordance with the generalized linear system

proposed in [23]. For the purpose of this paper however this would complicate things unnecessarily.
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3 Gauging subgroups of the affine symmetry

In the previous section we have reviewed how the equations of motion of the ungauged

two-dimensional theory are invariant under an infinite algebra G of symmetry transfor-

mations. The symmetry action on the physical fields (2.28) is defined in terms of the

matrix V̂ which in turn is defined as a solution of the linear system (2.22). As a result,

the global symmetry is nonlinearly and nonlocally realized on the physical fields.

We will now attempt to gauge part of the global symmetry (2.28), i.e. turn a

subalgebra of G into a local symmetry of the theory. This is rather straightforward for

subalgebras of g = 〈Tα,0〉 ⊂ G, as g is the off-shell symmetry algebra of the Lagrangian.

In fact, since g is already the off-shell symmetry of the three-dimensional ancestor of

the theory, the corresponding gaugings are simply obtained by dimensional reduction of

the three-dimensional gauged supergravities [4, 24]. The gauging of generic subalgebras

of G is much more intricate, as their action explicitly contains the matrix V̂ which is

defined only on-shell as a nonlocal functional of the physical fields. This is the main

subject of this paper. The problem is analogous to the one faced in four dimensions

when trying to gauge arbitrary subgroups of the scalar isometry group – not restricting

to triangular symplectic embeddings – which has been solved only recently [11, 12]. We

will follow a similar approach here.

As a key point in the construction we will introduce the dual scalars ρ̃ and V̂
as independent fields on the Lagrangian level. The duality equations (2.39) relating

them to the original fields will naturally emerge as first order equations of motion.

Specifically, the field equations obtained by varying the Lagrangian with respect to the

newly introduced gauge fields of the theory turn out to be proportional to the current

Zµ introduced in section 2.4 which combines the duality equations.

3.1 Gauge fields and embedding tensor

In order to construct the gauged theory, we make use of the formalism of the embedding

tensor, introduced to describe the gaugings of supergravity in higher dimensions [4, 5].

Its main feature is the description of all possible gaugings in a formulation manifestly

covariant under the global symmetry G of the ungauged theory. As a first step we need

to introduce vector fields in order to realize the covariant derivatives corresponding to

the local symmetry. In contrast to higher dimensions where the vector fields come in

some well-defined representation of the global symmetry group of the ungauged theory,

in two dimensions these fields do not represent propagating degrees of freedom and are

absent in the ungauged theory.6 We will hence start by introducing a set of vector fields

AM
µ transforming in some a priori undetermined representation (labeled by indices M)

6Also in three dimensions it is most convenient to start from a formulation of the ungauged theory

in which no vector fields are present [4, 24]. In contrast to the present case, however, the vector fields

in three dimensions are dual to the scalar fields and thus naturally come in the adjoint representation

of the scalar isometry group.
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of the algebra G.

An arbitrary gauging then is described by an embedding tensor ΘM
A that defines

the generators

XM ≡ ΘM
A TA , (3.1)

of the subalgebra of G which is promoted to a local symmetry by introducing covariant

derivatives

Dµ = ∂µ − gAM
µ ΘM

A TA , (3.2)

with a gauge coupling constant g.7 The way ΘM
A appears within these derivatives

shows that under G it naturally transforms in the tensor product of two infinite-

dimensional representations. Gauge invariance immediately imposes the quadratic

constraint

fBC
A ΘM

B ΘN
C + TB,N

P ΘM
B ΘP

A = 0 , (3.3)

on ΘM
A, where fBC

A denote the structure constants of the algebra (2.12), (2.13), and

TB,N
P are the generators of G in the representation of the vector fields. Equivalently,

this constraint takes the form

[XM, XN ] = −XMN
K XK , (3.4)

with “structure constants” XMN
K = ΘM

A TA,N
K. We will impose further constraints

on ΘM
A in the sequel.

It will sometimes be convenient to expand the covariant derivatives (3.2) according

to (2.36) as

Dµ = ∂µ − gAα
µ(w) tα − gA(1)

µ L1 − gA(0)
µ K , (3.5)

with the projected vector fields

A(1)
µ = ΘM

(1) AM
µ , A(0)

µ = ΘM
(0) AM

µ , Aα
µ(w) =

m=∞∑

m=−∞

w−m ΘM
α,m AM

µ .(3.6)

While the appearance of the infinite sums (over m and over M) in the definition of

Aα
µ(w) (and thus the appearance of an infinite number of vector fields) looks potentially

worrisome, we will eventually impose constraints on ΘM
α,m such that only a finite

subset of vector fields AM
µ enters the Lagrangian.

7The coupling constant g always comes homogeneous with the embedding tensor and could simply

be absorbed by rescaling ΘM
A. We will keep it explicitly to have the deformation more transparent.
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Explicitly, the action of the covariant derivative on the various scalars reads8

Dµρ̃ = ∂µρ̃ − gA(1)
µ ,

Dµσ = ∂µσ + gA(0)
µ + g tr

〈
Aµ(w) ∂wV̂(w)V̂−1(w)

〉
w

,

V−1DµV = V−1∂µV − g
〈 2γ(w)

ρ (1 − γ2(w))
Âµ(w)p

〉
w

= Pµ + Qµ ,

V̂−1DµV̂(w) = V̂−1∂µV̂(w) − gA(1)
µ V̂−1∂wV̂(w) − g Âµ(w)

+ g

〈
1

v − w

(
[Âµ(v)]k +

γ(v) (1 − γ2(w))

γ(w) (1 − γ2(v))
[Âµ(v)]p

)〉

v

, (3.7)

with Âµ(w) = V̂−1(w)Aµ(w)V̂(w).

3.2 The Lagrangian

As a first step towards introducing the local symmetry on the level of the Lagrangian,

we consider the covariantized version of (2.9)

Lkin = ∂µρDµσ − 1
2
ρ tr(PµPµ) , (3.8)

with covariant derivatives according to (3.7). Obviously, (3.8) cannot be the full answer

since the equations of motion for the newly introduced vector fields will pose unwanted

(and in general inconsistent) first order relations among the scalar fields. Likewise,

according to (3.7) the Pµ now carry the dual potentials ρ̃ and V̂ which are to be

considered as independent fields. Variation with respect to these fields then gives rise

to even stranger constraints.

Remarkably, all these problems can be cured by adding to the Lagrangian what we

will refer to as a topological term

Ltop = −g εµν
{

tr
〈
Âµ

(
V̂−1(∂νV̂ − ∂wV̂ ∂ν ρ̃) − Qν −

1 + γ2

1 − γ2
Pν

)〉
w
−A(0)

µ ∂ν ρ̃
}

−1
2
g2 εµν A(0)

µ A(1)
ν − 1

2
g2 εµν tr

〈〈 1

v − w
[Âµ(w)]k [Âν(v)]k

〉
v

〉
w

(3.9)

−1
2
g2 εµν tr

〈〈 (γ(v) − γ(w))2 + (1 − γ(v)γ(w))2

(v − w)(1 − γ2(v))(1 − γ2(w))
[Âµ(w)]p [Âν(v)]p

〉
v

〉
w

,

which is made such that the vector field equations of motion precisely yield (a projection

of) the covariantized version of the duality equations (2.14), (2.22). Explicitly, the

variation of the Lagrangian L0 = Lkin + Ltop with respect to the vector fields reads

δL0 = −g ηAB ΘM
A εµνZB

µ δAM
ν , (3.10)

8Comparing (3.7) to (2.6) one notices that Qµ ≡ [V−1DµV ]k = Qµ does not depend on the coupling

constant g. This is due to our particular SO(16) gauge choice in equation (2.28).
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where Zµ is the properly covariantized version of the G-valued current defined in (2.39)

above. It contains the covariantized versions of the duality equations (2.14) and (2.22)

that render ρ̃ dual to ρ and V̂ dual to V, respectively. As vector field equations in the

gauged theory we thus find a Θ-projection of Zµ = 0 :

g ΘM
A ηAB ZB

µ = 0 . (3.11)

In the limit g → 0 back to the ungauged theory these equations consistently decouple.

The fact that the higher order g terms of (3.11) can be consistently integrated to

the variation (3.10) is nontrivial and puts quite severe constraints on the construction.

Namely, it requires the following constraint

tr
〈
Aµ(w) δAν(w)

〉
w
−A(1)

µ δA(0)
ν −A(0)

µ δA(1)
ν = 0 , (3.12)

on the variation with respect to the projected vector fields. Fortunately, this condition

translates directly into the G covariant constraint

ΘM
A ΘN

B ηAB = 0 , (3.13)

for the embedding tensor ΘM
A. For consistency, this constraint must thus be imposed

together with the quadratic constraint (3.3) ensuring gauge invariance. As in higher-

dimensional gaugings [5], we expect that the latter constraint (3.13) should eventually

be a consequence of (3.3). This is one motivation for the ansatz

ΘM
A = TB,M

N ηAB ΘN , (3.14)

for the embedding tensor parametrized by a single conjugate vector ΘM. In terms of

G representations this means that ΘM
A does not take arbitrary values in the tensor

product of the coadjoint and the conjugate vector field representation, but only in

the conjugate vector field representation contained in this tensor product. This is

the analogue of the linear representation constraint that is typically imposed on the

embedding tensor in higher dimensions [4, 5]. Indeed, it is straightforward to verify

that the ansatz (3.14) reduces the quadratic constraints (3.3) and (3.13) to the same

constraint for ΘM:

ηAB TA,M
P TB,N

Q ΘPΘQ = 0 . (3.15)

Further support for the ansatz (3.14) comes from the fact that all the examples of

gauged theories in two dimensions (presently known to us) turn out to be described by

an embedding tensor of this particular form. In particular, in all examples originat-

ing by dimensional reduction from a higher-dimensional gauged theory, the constraint

(3.14) is a consequence of the corresponding linear constraint in higher dimensions.

We will come back to this in section 5. This shows that (3.14) describes an important

class of if not all the two-dimensional gaugings.
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It is useful to give the projected vector fields (3.5) using (3.14)

A(1)
µ = −T(0),M

N AN
µ ΘM , A(0)

µ = −T(1),M
N AM

µ ΘN ,

Aα
µ(w) =

m=∞∑

m=−∞

w−m ηαβ (Tβ,(1−m))M
N AM

µ ΘN ≡ Aα,m
µ w−m . (3.16)

This further suggests that the vector fields AM
µ transform in some irreducible highest

weight representation of G. Namely, in that case there is for any given M an integer

M such that

(Tβ,m)N
M = 0 , for all m > M . (3.17)

Formula (3.16) then shows that for every gauging defined by an embedding tensor ΘM

with only finitely many non-vanishing entries, the projected vector fields Aα
µ(w) carry

only finitely many positive powers of w. As a consequence, only finitely many of the

AM
µ enter the Lagrangian (3.8), (3.9), which is certainly indispensable for a meaningful

action.

Moreover, it follows from (2.26) that the terms ∂wV̂V̂−1 and V̂Zµ(w)V̂−1 have ex-

pansions in 1/w starting with w−2 and w−1, respectively. From the variation (3.10) we

thus find that the positive mode vector fields Aα,m
µ , m > 0, do not enter the Lagrangian

at all. I.e. a gauging of the shift symmetries of the dual potentials is not visible in

the Lagrangian. From the Lagrangian itself this fact is not obvious since the quadratic

constraint was used to derive (3.10). Only a truncation of the full gauge group is thus

manifest in the Lagrangian. We will see this realized in explicit examples in section 5.

In the rest of this section, we will show that every embedding tensor of the form (3.14)

with ΘM satisfying (3.15) defines a gauge invariant Lagrangian.

3.3 The quadratic constraint

Let us pause for a moment and reconsider the present construction. We have con-

structed the gauged Lagrangian (3.8), (3.9) by covariantizing the ungauged theory and

adding a topological term such that variation with respect to the new gauge fields yields

the scalar duality equations. The gauging is entirely parametrized in terms of the em-

bedding tensor ΘM. At first sight the formalism of the embedding tensor may seem

unnecessarily heavy in two dimensions. As the new gauge fields enter the Lagrangian

only in the contracted form AA
µ ≡ AM

µ ΘM
A, could we not have started right away

from a set of vector fields AA
µ in the adjoint representation rather than introducing

AM
µ in some yet undetermined representation, and ΘM

A separately? The answer is no.

Consistency of the construction essentially depends on the quadratic constraint (3.15)

on the embedding tensor which in particular implies that not all components of the

projected AA
µ are independent. This is most conveniently taken care of by explicitly

introducing ΘM
A.
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Before proceeding with the proof of gauge invariance of the Lagrangian, we will

in this subsection closer analyze this quadratic constraint imposed on the embedding

tensor. It can be skipped on first reading. We have shown above that the linear

ansatz (3.14) for ΘM
A reduces the quadratic constraints (3.3) and (3.13) to the same

constraint

ηAB TA,M
P TB,N

Q ΘPΘQ = 0 , (3.18)

for the tensor ΘM. This exhibits an interesting representation structure underlying

the quadratic constraint. Formally, the constraint (3.18) lives in the twofold sym-

metric tensor product of the conjugate vector field representation. In particular, if

ΘM transforms in a level k highest weight representation, the constraint transforms in

an (infinite) sum of level 2k highest weight representations. As we are dealing with

infinite-dimensional representations, these are most conveniently described in terms of

the associated characters. Let us denote by χΘ the character of the conjugate vector

field representation, and by χi the characters associated with the different level 2k

representations Ri of ĝ. They are extended to representations of the Virasoro algebra

by means of the standard Sugawara construction. In terms of these characters, the

decomposition of the product ΘMΘN takes the form

χΘ ⊗sym χΘ =
∑

i

χvir
i · χi , (3.19)

where the sum is running over the level 2k representations of ĝ and the coefficients

χvir
i encoding the multiplicities of these representations carry representations of the

Virasoro algebra associated with the coset model [25]

ĝk ⊕ ĝk

ĝ2k
. (3.20)

For simplicity, we restrict to simply-laced Lie algebras g in the following. With the

central charge of the Virasoro algebra on ĝk given by ck = k dim(g)/(k + g∨) in terms

of the dual Coxeter number g∨ of g, the coset CFT has central charge

2k2 dim(g)

(k + g∨)(2k + g∨)
. (3.21)

The coset Virasoro generators acting on (3.19) are given by

Lcoset
m = Lbgk⊕bgk

m − Lbg2k
m , (3.22)

in terms of the Virasoro generators induced by ĝk ⊕ ĝk and ĝ2k, respectively. A brief

calculation reveals that they take the explicit form

(Lcoset
m )MN

PQ =
2

k + g∨

(
(Lm)(M

(P δ
Q)
N ) −

∞∑

n=0

ηαβ (Tα,m+n)(M
(P (Tβ,−n)N )

Q)
)

.
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In particular, we thus obtain

(Lcoset
1 )MN

PQ = − 1

k + g∨
ηAB TA,M

(P TB,N
Q) , (3.23)

which shows that the quadratic constraint (3.18) can be rewritten in strikingly compact

form as

Lcoset
1 (Θ ⊗ Θ) = 0 . (3.24)

The quadratic constraint thus takes the form of a projector on the product decom-

position (3.19) which acts on the multiplicities χvir
i . Only those components within

Θ whose products induce a quasi-primary state in the coset CFT (3.20) give rise to a

consistent gauging. While this CFT formulation of the quadratic constraint is certainly

very appealing we do at present have no good interpretation for the appearance of this

structure. We will show explicitly in the next subsection that (3.24), alias (3.18), is a

sufficient constraint for gauge invariance of the Lagrangian.

3.4 Gauge invariance of the Lagrangian

The Lagrangian (3.8), (3.9) was determined above by requiring that variation with

respect to the vector fields yields a properly covariantized version of the scalar duality

equations. In particular, this uniquely fixes all higher order g couplings. In the rest

of this section we will show that this Lagrangian is indeed invariant under the local

action of the generators (3.1)

δΛ ρ̃ = gΛ(1) ,

δΛ σ = −g tr
〈
Λ(w) ∂wV̂(w) V̂−1(w)

〉
w
− gΛ(0) ,

V−1 δΛV = g
〈 2γ(w)

ρ (1 − γ(w)2)
Λ̂p(w)

〉
w

,

V̂−1 δΛV̂(w) = g Λ̂(w) + g Λ(1) V̂−1 ∂wV̂

− g
〈 1

v − w

(
Λ̂k(v) +

γ(v) (1 − γ2(w))

γ(w) (1 − γ2(v))
Λ̂p(v)

)〉
v

, (3.25)

where

Λ = ΛM(x) ΘM
A TA = Λ(w; x) + Λ(1)(x) L1 + Λ(0)(x) K , (3.26)

now is a space-time dependent element of G induced by the gauge parameter ΛM(x).

In addition, the action of the generators on the vector fields needs to be properly

implemented.

To this end, we first compute the variation of L0 = Lkin + Ltop under generic

variation of vector and scalar fields. A somewhat tedious but beautiful computation
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shows that this variation may be cast in the following compact form

δL0 = −g TA,M
N ΘN εµνZµ

A (∆AM
ν ) − ∂µ∂µρ δσ −

(
D̂µDµσ + 1

2
trPµPµ

)
δρ

+ tr
(
D̂µ(ρPµ)

[
V−1δV

]
p

)
− 1

2
g εµν TA,M

N F̂M
µν ΘN δΣ̂A . (3.27)

The quadratic constraint (3.15) on ΘM is essential in the derivation of this result. In

expressing the generic variation we have introduced the “covariantized” variations

∆AM
± ≡ δAM

± + TA,N
M AN

± δΣ̂A
± ,

δΣ̂± ≡ V̂
{
V̂−1δV̂ − [V−1δV]k −

1 ∓ γ

1 ± γ
[V−1δV]p

}
V̂−1 + (L1 − ∂wV̂V̂−1) (δρ̃ ∓ δρ) ,

δΣ̂ ≡ 1
2
(δΣ̂+ + δΣ̂−) , (3.28)

and generalized field strength and covariant derivatives according to

F̂M
µν = 2∂[µA

M
ν] − 2 TA,N

M ZA
[µ AN

ν] + gXPQ
M AP

[µ AQ
ν] , (3.29)

D̂µDνσ = ∂µDνσ − g AM
µ

{
δNM Dν + ZC

ν TC,M
N

}
ΘN

A (TA ·σ) ,

D̂µPν = (∂µ + adQµ
)Pν

− g AM
µ

{
δNM (Dν + adQν

) + ZC
ν TC,M

N
}

ΘN
A [V−1(TA ·V)]p .

These expressions differ from the standard definitions of field strength and covariant

derivatives by the appearance of the current Zµ containing the duality equations of the

ungauged theory. Recall that in the gauged theory only its Θ-projection (3.11) is zero

by the equations of motion. Its natural appearance in (3.29) motivates the introduction

of generalized covariant derivatives D̂
D̂µ = ∂µ + (ZA

µ − g AM
µ ΘM

A) TA . (3.30)

Note that as Zµ contains only negative powers of w, it only couples to shift symmetry

generators in the covariant derivatives. Thus, for all physical fields ρ, V, there is no

difference between the full covariant derivative D̂ and (3.2) defined above.

In view of (3.27), (3.29), a natural ansatz for the transformation of the vector fields

is

δΛAM
µ = D̂µΛ

M ≡ DµΛM − ZA
µ TA,N

M ΛN . (3.31)

Indeed, the main result we establish in this section is the invariance of the full La-

grangian L0 = Lkin + Ltop under the combined action (3.25), (3.31) of the local gauge

algebra.

We now give a sketch of the proof. Computing the covariantized variations (3.28)

for the gauge transformations (3.25) yields

δΛΣ̂ = gΛ(w)− gkΛMΘM L1

− g V̂(w)
〈 1

v − w

(
Λ̂k(v) +

(γ(v) − γ(w))2 + (1 − γ(v)γ(w))2

(1 − γ2(v))(1 − γ2(w))
Λ̂p(v)

)〉
v
V̂−1(w) ,
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and

∆Λ AM
± = D̂±ΛM + (gΛ(w)− gkΛMΘM L1)

A TA,N
M AN

± (3.32)

− g
(
V̂

〈 1

v − w
Λ̂

〉
k,v
V̂−1 +

1 ± γ

1 ∓ γ
V̂

〈 1

v − w

1 ∓ γ

1 ± γ
Λ̂

〉
p,v
V̂−1

)A

TA,N
M AN

± .

Again, we use the short-hand notation according to which all spectral parameter depen-

dent functions within the brackets 〈·〉v depend on the parameter v which is integrated

over, whereas all functions outside depend on the spectral parameter w. Plugging all

the variations into the Lagrangian, one obtains after some lengthy computation and

up to total derivatives

δΛ L0 = −1
2
g ΘM

A ηAB ΛM εµν X B
µν , (3.33)

with

Xµν ≡ 2D[µZν] + |[Zµ,Zν]| + 2D̂[µJν] − |[Jµ,Jν]| − g F̂µν
M ΘM

A (TA · V̂) V̂−1 ,

Jµ ≡ V̂
{
Qµ +

1 + γ2

1 − γ2
Pµ +

2γ

1 − γ2
εµν Pν

}
V̂−1 . (3.34)

The calculation makes use of the covariantized version of (2.25) for Ĵµ = V̂−1JµV̂. The

subtle part in calculating (3.33) is the check that the various terms arising from the

different variations arrange into the correct covariant derivatives, as the Lagrangian and

the variations have no manifest covariance. E.g. the extra AM
µ contributions from (3.32)

are precisely the ones needed in order to complete the correct covariant derivatives Dµ

on Zν in Xµν. For this it is important to note that due to the extra contributions of

order g0 in (3.31) the variation of Zµ changes with respect to the ungauged theory (2.40)

to

δΛZ± = F (Λ,Z) − V̂
〈 1

v − w
V̂−1 F (Λ,Z) V̂

〉
k,v
V̂−1

− 1 ∓ γ

1 ± γ
V̂

〈 1

v − w

1 ± γ

1 ∓ γ
V̂−1 F (Λ,Z) V̂

〉
p,v
V̂−1 ,

with F (Λ,Z)A ≡ − g ΛM (ZB
µ ΘNB) TA

M
N , (3.35)

where indices A, B are lowered and raised with ηAB and its inverse. Indeed, this is

precisely consistent with the fact that in the gauged theory only the projection ZB
µ ΘNB

vanishes on-shell as a set of first order equations of motion for the dual potentials (3.11)

— accordingly, it must transform homogeneously under gauge transformations.

It remains to show that Xµν vanishes. In order to do so, we first note that with the

definition (3.30) of generalized covariant derivatives D̂µ, we find for the dual fields ρ̃, V̂

D̂µρ̃ = −εµν ∂νρ ,

D̂µV̂ V̂−1 = Jµ , (3.36)
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with Jµ from (3.34), changing drastically the previous expressions (3.7).9 Now, the

fact that Xµν = 0 is a direct consequence of (3.36) and

[D̂µ, D̂ν] V̂ = ĤA
µν TA · V̂ , (3.37)

where Ĥµν is the field strength associated with the full connection (3.30).

Summarizing, we have shown that under gauge transformations (3.25), (3.31) the

Lagrangian L0 = Lkin +Ltop remains invariant up to total derivatives. The local gauge

algebra is spanned by generators XM (3.1) and is a subalgebra of the global symmetry

algebra G of the ungauged theory. In particular, the gauge algebra may include hidden

symmetries which in the ungauged theory are realized only on-shell.

4 Gauge fixing

In the previous section we constructed the deformation of the ungauged Lagrangian

(2.9) that is invariant under the local version of a subalgebra of the affine symmetry

algebra G of (2.9). The gauged Lagrangian has been obtained by coupling vector

fields with minimal couplings in covariant derivatives (3.8) and adding a topological

term (3.9). The gauging is entirely parametrized in terms of the embedding tensor ΘM

which in particular encodes the local gauge algebra with generators (3.1).

With the new gauge fields and a number of dual scalar fields the gauged Lagrangian

contains more fields than the original one, however as the new fields couple topologically

only they do not introduce new degrees of freedom. More specifically, these fields

arise with the first order field equations (4.3) below, such that the additional local

symmetries precisely eliminate the additional degrees of freedom. In this section, we

illustrate the various ways of gauge fixing the action and discuss the resulting different

equivalent formulations of the theory. Before that, we describe the generic properties

of the scalar potential which completes the construction of the bosonic sector of gauged

supergravity.

4.1 Scalar potential and equations of motion

An important additional feature of gauged supergravity theories is the presence of

a scalar potential V which is enforced in order to maintain supersymmetry of the

deformed Lagrangian. Its explicit form depends on the particular ungauged theory, in

particular on the number of supercharges. It must thus be computed case by case in the

various supersymmetric theories and we leave this for future work. Here we will just

summarize the generic properties of this potential and discuss their consequences for

the gauged theory. As a general property, the potential arises quadratic in the coupling

constant g, i.e. the deformed Lagrangian is supplemented by a term Lpot = −g2 V where

9In fact, equations (3.36) suggest to think of Zµ as some composite connection within the full affine

algebra.
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V is bilinear in ΘM, and generically depends on all scalar fields ρ, ρ̃, V, V̂, and σ. This

dependence is constrained in order that its variation takes the specific form

δV =
δV

δρ
δρ +

δV

δσ
δσ + tr

(δV

δΣ
[V−1 δV]p

)
+

δV

δΣ̂A
δΣ̂A , (4.1)

with δV
δΣ

∈ p, δΣ̂A ∈ G from (3.28). Furthermore the various variations of V are

constrained such that (4.1) vanishes for gauge transformations (3.25), i.e. the scalar

potential is separately gauge invariant. In particular, no further constraints on the

embedding tensor will arise from its presence.

The total Lagrangian of the gauged theory then reads

L = Lkin + Lpot + Ltop (4.2)

= ∂µρDµσ − 1
2
ρ tr(PµPµ) − g2 V

− g εµν
{

tr
〈
Âµ

(
V̂−1(∂νV̂ − ∂wV̂ ∂ν ρ̃) − Qν −

1 + γ2

1 − γ2
Pν

)〉
w
−A(0)

µ ∂ν ρ̃
}

−1
2
g2 εµν A(0)

µ A(1)
ν − 1

2
g2 εµν tr

〈〈 1

v − w
[Âµ(w)]k [Âν(v)]k

〉
v

〉
w

−1
2
g2 εµν tr

〈〈 (γ(v) − γ(w))2 + (1 − γ(v)γ(w))2

(v − w)(1 − γ2(v))(1 − γ2(w))
[Âµ(w)]p [Âν(v)]p

〉
v

〉
w

.

It gives rise to the following equations of motion:

∂µ∂µρ = −g2 δV

δσ
, D̂µDµσ = −1

2
trPµPµ − g2 δV

δρ
, D̂µ(ρPµ) = g2 δV

δΣ
,

TA,M
N ΘN ZA

µ = 0 , TA,M
N F̂M

µν ΘN = −2g
δV

δΣ̂A
. (4.3)

The duality equation TA,M
N ΘN ZA

µ = 0 is not affected by the presence of the scalar

potential while all other equations change. In particular, a vanishing field strength is

in general no longer compatible with the field equations, i.e. the gauge fields have a

nontrivial effect despite the fact that they are non-propagating in two dimensions. Note

further, that the full covariant derivatives D̂µ defined in (3.30) contain nontrivial ZA
µ

contributions even on-shell, as only the Θ-projection of ZA
µ vanishes by the equations

of motion.

4.2 Gauge fixing

As anticipated above, the new fields V̂ , AM
µ entering the gauged Lagrangian induce

first order equations of motion (4.3). Together with the additional local symmetry this

implies that no new degrees of freedom are present in the gauged Lagrangian. In order

to make this manifest, it may be useful to gauge-fix the local symmetry. Also in order
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to make contact with the theories arising from particular compactification scenarios, it

will often be required to fix part of the extra local gauge symmetry, thereby effectively

reducing the number of fields. In this subsection we will discuss various ways of gauge

fixing the action (4.2).

Let us first illustrate the relevant structures with an extremely simple toy example,

we consider the Lagrangian

L = −1
2
∂µϕ ∂µϕ , (4.4)

of a free scalar field. The global shift symmetry ϕ → ϕ + c can be gauged by in-

troducing covariant derivatives Dµϕ ≡ ∂µϕ − gAµ. The analogue of the full gauged

Lagrangian (4.2) then carries a gauge field Aµ as well as a dual scalar field χ and is of

the form

L = −1
2
DµϕDµϕ − g2 V (χ) − gεµνAµ ∂νχ , (4.5)

with the three terms representing the kinetic, the potential, and the topological term,

respectively. This action is obviously invariant under δϕ = gλ(x) , δAµ = ∂µλ(x), in

particular, this restricts the potential V to depend on the dual scalar field χ only. The

equation of motion derived from (4.5) are

∂µDµϕ = 0 , Dµϕ = εµν ∂νχ , Fµν = gεµν V ′(χ) , (4.6)

where the first equation consistently coincides with the integrability condition of the

second equation. There are (at least) three different ways of fixing the gauge freedom

in (4.5).

i) In the case of a vanishing potential V = 0, and on a topologically trivial back-

ground, the vector field is pure gauge and may be put to zero, yielding the original

Lagrangian (4.4). In this case, the deformation (4.5) thus is just a reformulation

of the original model.

ii) For arbitrary potential V , the duality equation can be used to express Aµ in

terms of scalar currents. On the Lagrangian level this leads to a theory expressed

exclusively in terms of the dual scalar field χ

L(1) = −1
2
∂µχ ∂µχ − g2 V (χ) . (4.7)

According to the reasoning of i), in the absence of a scalar potential this provides

a dual formulation of the original model (4.4). This is (trivial) T-duality for the

free scalar field. For more complicated systems the very same procedure yields

the known T-duality rules in the Abelian and the non-Abelian case [13]. For non-

vanishing potential, we obtain an equivalent formulation of the ’gauged’ theory

(4.5) in which the kinetic term is replaced by a T-dual version in terms of dual

scalar fields, in which no gauge fields are present. The theory is in general no

longer equivalent to the the original Lagrangian (4.4) due to the presence of the

scalar potential in order g2.
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iii) For a quadratic potential V (χ) = V0 + 1
2
m2χ2, i.e. considering the lowest order

expansion around a stationary point, the equations of motion may be used to

replace mgχ = Fµν . Simultaneously fixing the gauge freedom by setting ϕ = 0,

one arrives at a Lagrangian

m2L(2) = −1
4
F µνFµν − 1

2
g2m2 AµAµ − g2m2V0 , (4.8)

of a massive vector field which now carries the degree of freedom of the system.

This is the standard Higgs mechanism in two dimensions.

Gauge fixing of the general Lagrangian (4.2) is considerably more complicated due

to the high nonlinearity of the system, but schematically follows precisely the same

pattern. In applications to describe the effective actions of concrete compactifications

with non-vanishing cosmological constant, the last procedure iii) will be often the most

appropriate one in order to identify the correct distribution of the degrees of freedom

among different supermultiplets. From a systematic point of view, the gauge fixing

according to ii) is the most interesting. In the context of the full model (4.2) it extends

to the following: the duality equations TA,M
N ΘN ZA

µ = 0 can be solved as algebraic

equations for the vector fields ΘM
AAM

µ . The explicit formulas may be arbitrarily

complicated of course. Plugging this back into the Lagrangian leads to an equivalent

formulation of the model in which the vector fields have been completely removed from

the action. As in ii) this exchanges the kinetic term by a T-dual version in terms

of dual scalar fields. In this formulation the only effect of the gauging is the scalar

potential which remains unaffected by the gauge fixing. We conclude that for every

gauging in two dimensions there is a formulation in a T-dual frame, i.e. a formulation

in terms of a combination of original and dual scalars, in which no gauge fields enter

the Lagrangian and the only effect of the gauging is the scalar potential. (In general,

this will not be the most convenient frame to identify a particular higher-dimensional

origin.)

Let us consider as an example a gauging in which a subalgebra of the zero-modes

of ĝ, i.e. of the algebra of target-space isometries g is gauged. According to (3.9) this

will induce a topological term which couples the gauge fields to the (algebra-valued)

dual potentials Y1. No higher dual potentials enter the Lagrangian. Apart from some

additional subtleties related to the coset structure of (3.8), the resulting couplings are

precisely of the type considered in [14]. Integrating out the vector fields in absence

of a scalar potential gives rise to a dual formulation of the model and reproduces the

known formulas of non-Abelian T-duality [13, 14, 15, 26, 27, 28, 29]. In particular, since

(in contrast to the simplified example (4.6)) the duality equations in this case carry

the vector fields on both sides, the procedure gives rise to antisymmetric couplings

εµν ∂µY1
α ∂νY1

β B[αβ] among the dual scalar fields in the new frame. For maximal

supergravity, an example of different scalar frames has been worked out in [30].

As discussed above, the gauge groups appearing in our construction (4.2) will in

general go beyond the off-shell symmetry of the ungauged theory, i.e. beyond the
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target-space isomorphisms of the original σ-model. They will thus naturally lead to

a far broader class of equivalent formulations of the kinetic sector, obtained after in-

tegrating out the vector fields. The proper framework to systematically incorporate

these different formulations is presumably Lie-Poisson T-duality, see [31, 32, 33, 34].

We defer a systematic treatment to future work. Let us stress once more that due to

the presence of a scalar potential, the gaugings (4.2) describe genuinely inequivalent

deformations of the ungauged Lagrangian (2.9).

5 Maximal supergravity

One of the richest examples in two dimensions is the theory obtained by dimensional

reduction from eleven-dimensional supergravity giving rise to maximal N = 16 su-

pergravity with scalar coset space G/K = E8(8)/SO(16) as a particular case of the

integrable structures introduced above [35, 36, 37, 10]. The symmetry of the ungauged

theory is the affine algebra e9(9) ≡ ê8(8). In this section we will illustrate with a number

of examples the general construction of gaugings in two dimensions starting from the

maximal theory. In subsection 5.2 we describe gaugings that are naturally formulated

in the e8 grading of e9(9). These have a natural interpretation as reductions from three-

dimensional supergravity theories. In subsection 5.3 we describe gaugings in the sl(9)

grading of e9, these include the SO(9) gauging corresponding to an S8 compactifica-

tion of the ten-dimensional IIA theory as well as flux gaugings from eleven dimensions.

Gaugings with type IIB origin are discussed in subsection 5.4.

5.1 The basic representation of E9

In order to construct the gaugings of the maximal E8(8)/SO(16) theory the first task

is the choice of representation of vector fields used in the gauging. Extrapolating the

representation structures from higher dimensions it turns out that the relevant repre-

sentation for the gauge fields is the basic representation of e9(9), i.e. the unique level 1

representation of this affine algebra. In the following we will see more specifically that

the basic representation reproduces precisely the structures expected from dimensional

reduction; the complete proof will ultimately include consistency with the supersym-

metric extension.

Branching the basic representation of e9(9) under e8, the vector fields hence transform

as

basic → 10 ⊕
248−1 ⊕
(1⊕248⊕3875)−2 ⊕
(1⊕ 2·248⊕3875⊕30380)−3 ⊕
(2·1⊕ 3·248⊕ 2·3875⊕30380⊕27000⊕147250)−4 ⊕ . . . , (5.1)
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where the subscript denotes the L0 charge of the associated Virasoro algebra. The

embedding tensor ΘM transforms in the conjugate vector field representation, i.e. its

components carry L0 charges opposite to (5.1). Counting the L0 charge in powers of

a variable y, the character of the basic representation of e9 is given by the famous

McKay-Thompson series

χω0
(y) = j1/3(y) = 1 + 248 y + 4124 y2 + 34752 y3 + 213126 y4 + 1057504 y5 + . . . ,(5.2)

in terms of the modular invariant j(y) [38, 39]. The symmetric product (3.19) takes

the form [40]

χω0
(y) ⊗sym χω0

(y) = χvir
(1,1)(y) χ2ω0

(y) + χvir
(2,1)(y) χω7

(y) , (5.3)

where χ2ω0
and χω7

denote the characters of the level 2 representations starting from

a 1 and a 3875 of e8, respectively. As discussed in section 3.3 above, the multiplicities

χvir
(1,1), χvir

(2,1) carry representations of the coset CFT with central charge given by (3.21),

which in this case yields c = 1/2, i.e. the Ising model. Accordingly

χvir
(1,1)(y) = 1 + y2 + y3 + 2y4 + 2y5 + . . . ,

χvir
(2,1)(y) = 1 + y + y2 + y3 + 2y4 + 2y5 + . . . , (5.4)

denote the lowest c = 1/2 Virasoro representations. Consistent gaugings of two-

dimensional maximal supergravity thus correspond to components within the expan-

sion (5.2) such that their two-fold symmetric product is sitting in a quasi-primary state

of (5.4) on the r.h.s. of (5.3). In principle, all gaugings can be determined this way. In

the next subsections we work out a few examples.

5.2 Gaugings in the E8 grading

According to (3.14), the embedding tensor Θ transforms in the conjugate vector field

representation. It describes the couplings of vector fields to e9(9) symmetry generators

according to (3.2)

Dµ = ∂µ − gAM
µ ΘM

A TA . (5.5)

It is instructive to visualize these couplings as in Figure 1. The e9(9) symmetry gen-

erators are plotted horizontally with the L0 charge increasing from left to right, the

vector fields are plotted vertically. The diagonal lines represent the couplings induced

by each component of Θ. The figure shows that every gauging defined by a particular

component of Θ involves only a finite number of hidden and zero-mode symmetries and

an infinite tower of unphysical shift symmetries. As discussed above this implies in par-

ticular that only the finite number of vector fields coupled to the physical symmetries

appears in the Lagrangian.

The simplest gauging in this description is defined by the lowest Θ component in

the basic representation, i.e. by the highest weight singlet 10 in (5.1). According to
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Figure 1: Couplings induced by different components of the embedding tensor ΘM.

Figure 1 this is a gauging of only shift symmetries. As a consequence, the quadratic

constraint is automatically satisfied as can be seen from its form (3.13), such that

this component indeed represents a consistent gauging. Moreover, as only unphysical

symmetries are involved, the gauging will be invisible in the kinetic and topological

part Lkin+Ltop of the Lagrangian. Its only contribution to the total Lagrangian (4.2) is

via the scalar potential V . This gauging has in fact a simple higher-dimensional origin

descending from dimensional reduction of the three-dimensional maximal ungauged

theory [41]. With the ansatz

em
a =

(
δα
µ eλ ρBµ

0 ρ

)
, m, a ∈ {1, 2, 3} , µ, α ∈ {1, 2} , (5.6)

for the three-dimensional vielbein in terms of a conformal factor λ, dilaton ρ and

Kaluza-Klein vector field Bµ, the three-dimensional Einstein field equations give rise

to

∂µ(ρ3λ−2∂[µBν]) = 0 , (5.7)

which is solved by ∂[µBν] = ρ−3λ2C εµν with a constant C. The ungauged two-

dimensional theory is obtained by setting C = 0. In contrast, keeping a non-vanishing

C and thus a non-vanishing field-strength of the Kaluza-Klein vector field precisely

corresponds to the singlet gauging induced by the lowest components of Θ. In accor-

dance with the above observations the only effect of C in the Lagrangian is the creation

of a scalar potential ρ−3λ3C2 descending from the kinetic term LB ∝ ∂[µBν]∂
µBν. As

discussed after equation (2.35) the effect of this scalar potential is a deformation of the

free field equation satisfied by the dilaton ρ which necessitates gauging of the L1 shift
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symmetry by the Kaluza-Klein vector field Bµ. This is precisely the lowest coupling

exhibited in Figure 1.

At the next level in Θ comes the 2481. According to Figure 1, the corresponding

gaugings involve apart from the infinite tower of unphysical symmetries a single gen-

erator of the e8 zero-modes which couples to the Kaluza-Klein vector field. Again one

verifies that the quadratic constraint is automatically satisfied. These are precisely the

Scherk-Schwarz gaugings [42, 43, 5] obtained from three dimensions, singling out one

among the generators of the global symmetry algebra e8 in three dimensions.

At the third level, Θ has three components 12, 2482, 38752. As can be seen

from Figure 1, the gaugings induced by the 2482 for the first time involve the hidden

symmetries Tα,−1 coupled to the Kaluza-Klein vector field. Those gaugings described

by the 12⊕38752 on the other hand involve only the e8 zero-mode symmetries coupled

to the 248−1 vector fields. These are the theories obtained by dimensional reduction

of the three-dimensional maximal gauged theories described by an embedding tensor

in precisely this representation [4]. For all these theories there is a nontrivial quadratic

constraint to be satisfied by the components of Θ.

To summarize, all the gaugings with three-dimensional origin are naturally identi-

fied within Figure 1. The lowest components of the vector fields in the expansion (5.1)

correspond to the Kaluza-Klein vector field 10 and the vector fields 248−1 descending

from the three-dimensional vector fields, respectively. Higher components of the em-

bedding tensor involve higher hidden symmetries and increasingly nontrivial quadratic

constraints. A priori, it is not clear if there are nontrivial solutions of the quadratic

constraint that involve arbitrarily high components of Θ in the expansion (5.1). The

higher-dimensional origin of the associated gaugings remains to be elucidated.

5.3 Gaugings in the SL(9) grading

By far not all gaugings of two-dimensional maximal supergravity have a natural place

in Figure 1. Although all of them can be identified among the components of the

expansion (5.2) of the embedding tensor ΘM, the major part will be hidden at higher

levels and in linear combinations of these components. In some cases it may however

be possible to naturally identify them within other gradings of the affine algebra.

As an example we will present in this section the theory obtained by dimensional

reduction of the IIA theory on a (warped) eight-sphere S8 [44, 45, 46], which plays a

distinguished role in (a low dimensional version of) the AdS/CFT correspondence [47,

44, 48]. Its gauge group contains an SO(9) as its semisimple part. Closely related are

the compactifications on the non-compact manifolds Hp,8−p that result in gauge groups

SO(p, 9 − p). We will identify the embedding tensors ΘM that define these theories.

These gaugings are most conveniently described in the sl(9) grading of e9(9). The

intersection of zero-modes of this grading and the e8 grading of the previous section is

given by

e8(8) ∩ sl(9) = sl(8) ⊕ gl(1) . (5.8)
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Denoting by `e8 and `sl 9 the charges associated with the e8 and the sl(9) grading,

respectively, they are related by

`sl 9 = `e8 + q , (5.9)

where q ∈ 1
3
Z is the charge associated with the gl(1) factor in (5.8). E.g. the level ` in

the e8 grading of the adjoint representation decomposes as

248` → 8′
`+1 ⊕ 28`+2/3 ⊕ 56′

`+1/3 ⊕ 1` ⊕ 63` ⊕ 56`−1/3 ⊕ 28′
`−2/3 ⊕ 8`−1 ,

under sl(8) where the subscript on the r.h.s. indicates `sl 9. This shows in particular

that the sl(9) algebra building the zero-modes in this grading is composed out of the 8′,

1 ⊕ 63, and 8 with `e8 charges −1, 0, and 1, respectively. The adjoint representation

in the sl(9) grading takes the well known form

adj → . . . ⊕ 80−1 ⊕ 84′
−2/3 ⊕ 84−1/3 ⊕ 800 ⊕ 84′

1/3 ⊕ 842/3 ⊕ 801 ⊕ . . . .

(5.10)

Similarly, one computes the form of the basic representation (5.1) in the sl(9) grading

which gives rise to

basic → 9′
0 ⊕

36−1/3 ⊕
126′

−2/3 ⊕
(9′ ⊕ 315)−1 ⊕
(36 ⊕ 45 ⊕ 720′)−4/3 ⊕ . . . . (5.11)

It is instructive to note that the parts with coinciding (`sl 9 mod 1) in (5.11) constitute

the three irreducible representations under the ŝl(9) subalgebra of (5.10) (this can be

inferred, for example, from the decompositions given in [49]).

With the vector fields decomposed as (5.11), it is straightforward to identify the

eleven-dimensional origin of the lowest components. These are the Kaluza-Klein vector

(9′
0), the vector fields that originate from the three-form (36−1) and the vector fields

coming from the dual six-form (126′
−2) of eleven-dimensional supergravity. A priori,

a possible eleven-dimensional origin of the higher components remains unclear. Note

however, that we have already identified a higher-dimensional origin for different vector

fields than in the reduction from three dimensions discussed in the previous section.

Analysis of more complicated dimensional reductions may disclose a higher-dimensional

origin of yet other vector fields within the basic representation of e9(9).

The embedding tensor ΘM transforms in the conjugate vector field representa-

tion. Accordingly, we may try to identify the gaugings associated with the various

components of Θ in the expansion conjugate to (5.11). The induced couplings are

schematically depicted in Figure 2. Similar to the discussion in the previous section,
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Figure 2: Couplings induced by different components of the embedding tensor ΘM.

the lowest components 90, 36
′
1/3, 1262/3 correspond to nontrivial fluxes associated with

the vector fields in the reduction from eleven dimensions. As manifest in the figure,

these gaugings involve only shift symmetries in the sl(9) grading.

We will be interested by the gaugings induced by the 45′
4/3. With a little effort one

may show that an embedding tensor in this representation automatically satisfies the

quadratic constraint (3.13). Namely, working out the couplings induced by this 45′
4/3

in Figure 2, it follows from the sl(9) representation structure that the lowest symmetry

generators which are involved in the gauging are sitting in the 800, the 842/3, and the

801. In particular, the latter couple only to the 45−4/3 of the vector fields.10 The

form of the quadratic constraint (3.13) then shows that its only nontrivial contribution

can sit in the component where M and N take values in the 36′
1/3 and the 45′

4/3,

respectively, i.e. live in the sl(9) tensor product 36′ ⊗ 45′ = 630′ ⊕ 990′. Since there

is no overlap with the representations actually present in the square of this embedding

tensor (45′⊗sym 45′ = 495′⊕540′), the quadratic constraint is automatically satisfied.

We have thus shown that an embedding tensor in the 45′
4/3 defines a consistent gauging

in two dimensions. This representation can be parametrized by a symmetric 9×9 matrix

Y . By fixing part of the SL(9) symmetry this matrix can be brought into the form

Y = diag( 1, . . . ,︸ ︷︷ ︸
p

−1, . . . ,︸ ︷︷ ︸
q

0, . . .︸ ︷︷ ︸
r

) , (5.12)

10This can be seen as follows. According to (3.2) and (3.14) the vector fields couple to generators

as AM
µ (TB,M

N ηAB ΘN ) TA. Since ηAB is invariant under L1, indices in the range A ∈ 801 couple

to B ∈ 800, i.e. in this case TB is just the SL(9). Since (5.11) is a decomposition into irreducible

SL(9) components and the indices ’N ’ are in the range N ∈ 45
′
4/3 (as this is the only non-vanishing

Θ-component) the range of indices ’M’ is restricted to M ∈ 45−4/3.
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with p + q + r = 9. Such an embedding tensor gauges a subalgebra cso(p, q, r) of

the zero-mode algebra sl(9) in (5.10). The corresponding gauge fields come from

the 36−1/3. For r = q = 0 this is the SO(9) gauging corresponding to the IIA S8

compactification mentioned above. In addition there is the infinite tower of shift-

symmetries accompanying this gauging, starting from the full 84+2/3, a 44 inside the

80+1, etc.

It is instructive to visualize this SO(9) gauging within the e8 grading of Figure 1.

In that table, the SO(9) singlet component of Θ which defines the gauging is a linear

combination of the two SO(8) singlets appearing in the branching of the 38752 and

the 1472504 under SO(8). In the e8 grading this gauging thus involves a number of

hidden and zero-mode symmetries. More precisely, the gauge group appearing in the

Lagrangian (4.2) is of the non-semisimple form

G = SO(8) n

(
(R28

+ × R8
+)0 × (R8

+)−1

)
, (5.13)

with the (R28
+ ×R8

+)0, and (R8
+)−1 corresponding to zero-mode symmetries and hidden

symmetries from level −1, respectively. From this perspective it is thus not at all

obvious that an SO(9) gauge group is realized. Instead, the “off-shell gauge group”

involves the maximal Abelian (36-dimensional) subalgebra of the zero-mode e8.

5.4 Other gradings

The SO(9) example presented in the last section already shows that particular gaugings

may be far more transparent within one grading than within another. It will thus be

interesting to analyze the gaugings manifest in the different gradings of e9(9). A table

of the 112 maximal rank subalgebras of e8 corresponding to the zero-mode algebras in

the different gradings can be found in [50]. Of particular interest may be the so(8, 8)

grading giving rise to a decomposition

adj → . . . ⊕ (128s)−1/2 ⊕ 1200 ⊕ (128s)1/2 ⊕ 1201 ⊕ . . . ,

basic → 160 ⊕
(128c)−1/2 ⊕
(16 ⊕ 560)−1 ⊕
(128c + 1920s)−3/2 ⊕ . . . , (5.14)

of the adjoint and the basic representation, respectively. This grading is particularly

adapted to identify the transformation behavior of the different Θ components (e.g.

fluxes, twists, etc.) under the SO(8, 8) duality group.
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Another grading of interest is the one w.r.t. sl(8) × sl(2)

adj → . . . ⊕ (28′, 2)−1/4 ⊕ ((63, 1)⊕(1, 3))0 ⊕ (28, 2)1/4 ⊕ (70, 1)1/2

⊕ (28′, 2)3/4 ⊕ ((63, 1)⊕(1, 3))1 ⊕ . . . ,

basic → (8′, 1)0 ⊕
(8, 2)−1/4 ⊕
(56, 1)−1/2 ⊕
(56′, 2)−3/4 ⊕
((8′, 1 ⊕ 3) ⊕ (216, 1))−1 ⊕
((216′, 2) ⊕ 2·(8, 2))−5/4 ⊕ . . . , (5.15)

related to the ten-dimensional IIB theory, with sl(8) and sl(2) reflecting the torus T 8

and the IIB symmetry, respectively. By regarding the representation content, it is easy

to verify that the lowest entries of the basic representation in this grading correspond

to the gaugings induced by IIB p-form and geometric fluxes on T 8.

6 Conclusions and outlook

In this paper, we have presented the construction of gaugings of two-dimensional su-

pergravity. We have shown how to consistently gauge subalgebras of the affine global

symmetry algebra G of the ungauged theory by coupling vector fields in a highest weight

representation of the affine algebra with a particular topological term (3.9). The gaug-

ings are described group-theoretically in terms of a constant embedding tensor ΘM

in the conjugate vector representation and subject to the quadratic consistency con-

straint (3.15). This tensor parametrizes the different theories, defines the gauge algebra

and entirely encodes the gauged Lagrangian (4.2). The resulting gauge algebras are

generically infinite-dimensional and include hidden symmetries which are on-shell and

not among the target-space isometries of the ungauged theory. Yet, only a finite part

of the gauge symmetry is realized on the Lagrangian level (with its infinite-dimensional

tail exclusively acting on dual scalar fields that are not present in the Lagrangian) and

only a finite number of gauge fields enters the Lagrangian. As a main result, we have

shown that the total Lagrangian (4.2) is invariant under the action (3.25), (3.31) of

the local gauge algebra. In absence of a scalar potential, particular gauge fixing shows

that the gauging, merely amounts to a (T-dual) reformulation of the ungauged theory.

A scalar potential on the other hand induces a genuine deformation of the original

theory. We have worked out a number of examples for maximal (N = 16) supergravity

in two dimensions which illustrate the generic structure of the gaugings. In particular,

we have discussed the gaugings corresponding to those components of the embedding

tensor with lowest charge with respect to several gradings of e9(9) which allow for a

straightforward higher-dimensional interpretation.
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The presented construction opens up a number of highly interesting questions con-

cerning its applications as well as possible generalizations. E.g. we have motivated the

particular ansatz (3.14) for the embedding tensor by the observation that it reduces

the quadratic consistency constraints (3.3) and (3.13) to the same equation (3.15).

Moreover, it seems in line with the findings in higher-dimensional theories that the

embedding tensor transforms in the dual representation of the (D−1)-forms in a given

dimension D. Yet, it would be interesting to study, if the present construction could

be generalized to more general choices of the embedding tensor. A related question is

the particular choice of the vector field representation. While the general bosonic con-

struction seems to yield no preferred representation for the gauge fields (and thus for

the embedding tensor) it is presumably consistency with the supersymmetric extension

that puts severe constraints on this choice.

The analysis of this paper has been performed for a general two-dimensional bosonic

coset space sigma-model. Above all, it remains to extend the presented construction to

the fermionic sector of the various supersymmetric theories. Of particular interest is the

maximal (N = 16) supergravity theory. As the integrable structures of the ungauged

bosonic theory naturally extend to the full theory [36, 37, 10] the construction should

straightforwardly extend. In particular, this should elucidate the role of the basic rep-

resentation which we have found relevant for the maximal theory. The construction

will fix the fermionic mass terms and yield the specific form of the scalar potential. A

crucial ingredient will be the representation structure of the infinite-dimensional subal-

gebra k(e9) of e9(9) under which the fermions transform [22, 51, 52]. What we have only

started in section 5 of this paper is the study of the various resulting two-dimensional

theories; this analysis needs to be addressed systematically and completed. In particu-

lar, at present it remains an open question if among the infinitely many parameters of

the embedding tensor — combining higher-dimensional fluxes, torsion, etc. — there re-

main infinitely many inequivalent solutions of the quadratic constraint (3.15). Likewise,

it will be interesting to analyze the possible higher-dimensional origin of higher-charge

components of the embedding tensor in the various gradings.

Finally, we have seen in this paper and in particular in the examples discussed, how

the algebraic structures exhibited in higher-dimensional maximal gaugings are natu-

rally embedded into infinite-dimensional representations of the affine algebra e9(9). E.g.

Figure 1 shows how the general formulas of this paper can reproduce in particular all

the properties and constraints of maximal three-dimensional gaugings. It is moreover

interesting to note that reducing in dimensions, the two-dimensional theory is the first

one in which the global (and subsequently gauged) symmetry ed(d) combines — via the

central extension of e9(9) — an action on the scalar matter sector with an action on the

(non-propagating) gravitational degrees of freedom. It would be highly interesting to

identify the higher-dimensional ancestor of this mechanism.11 From this unifying point

11The explicit form of (3.16) suggests that in higher dimensions this corresponds to gaugings defined

by an embedding tensor of the particular form ΘM
A = ηABtB,M

NθN , ΘM
0 = θM , parametrized in

terms of a θM in the conjugate vector field representation, where the global symmetry algebra 〈tA〉
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of view, it would of course be of greatest interest to push the construction of gauged

supergravities further down to even lower dimensions, embedding these structures into

the group theory of the exceptional groups E10 [35, 54] and E11 [55, 56, 57].
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A The algebra G – useful relations

The algebra G extending the affine algebra ĝ by L1 is generated by generators Tα,m,

L1, K , with commutation relations

[ Tα,m , Tβ,n ] = fαβ
γ Tγ,m+n + m δm+n ηαβ K ,

[ L1, Tα,m ] = −m Tα,m+1 , (A.1)

and all other commutators vanishing. We parametrize an arbitrary algebra element as

Λ = ΛA TA = Λα,m Tα,m + Λ(1) L1 + Λ(0) K ≡ Λ(w) + Λ(1)L1 + Λ(0) K ,(A.2)

with Λ(w) ≡ Λα,mw−m tα, such that the commutators (A.1) translate into

|[ Λ, Σ ]| = [Λ(w), Σ(w)] + Λ(1)∂Σ(w) − Σ(1)∂Λ(w) + K
〈
Λ(w) ∂Σ(w)

〉
w

, (A.3)

and the invariant bilinear form (2.38) is given by
(
Λ, Σ

)
= tr

〈
Λ(w) Σ(w)

〉
w
− Λ(1)Σ(0) − Σ(1)Λ(0) . (A.4)

Strictly speaking, we will consider only such elements Λ ∈ G for which almost all

{Λα,m |m < 0} are equal to zero, i.e. for which the power series Λ(w) has only a finite

number of positive powers.

For a general power series f(w) =
∑∞

m=−∞ fmwm with almost all {fm |m > 0}
equal to zero, one proves the relation

〈
f(v)

v − w

〉

v

=

〈∑

m≥0

f(v) wm

vm+1

〉

v

=
∑

m≥0

fmwm . (A.5)

Another relation that we will repeatedly make use of is

〈〈f(w, v)

v − w

〉
v

〉
w
−

〈〈f(w, v)

v − w

〉
w

〉
v

= 〈f(w, w)〉w . (A.6)

has been extended by the generator t(0) defining the global (on-shell) scaling symmetry of metric and

p-forms. These theories have not yet been considered in [4, 5] and belong to the class of supergravities

without actions whose nine-dimensional members have been studied in [53].
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