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ABSTRACT

Multifractal Analysis is nowadays commonly used in real-life data

analyses and involved in standard signal processing tasks such as

detection, identification or classification. In a number of situations,

mostly in Image Processing, the data are available for the analyses

only in (possibly severely) quantized versions. The present contri-

bution aims at analyzing the robustness of standard multifractal esti-

mation procedures against quantization. To this end, we analyze the

behaviors and statistical performance of these procedures when ap-

plied to a large number of realizations of known synthetic multifrac-

tal processes subject to various quantization levels. Our study shows

that immunity against quantization can be obtained by restricting

the range of scales involved in multifractal parameter estimation to

the largest ones. Comparing multifractal analyses based on differ-

ent multiresolution quantities, increments, wavelet coefficients and

leaders, we show that wavelets, thanks to their good frequency lo-

calization, bring robustness against quantization when increments

do not. This study provides the practitioner with a clear guide line to

perform multifractal analysis over quantized data.

Index Terms— Fractals, Multifractal Analysis, Quantization,

Wavelet Leader, Increments

1. MOTIVATION

Self-similar and multifractal stochastic processes are nowadays com-

monly used to model or describe real-life data coming from a vari-

ety of applications of different natures and possessing some form of

scale invariance or scaling property. Empirical scaling analysis usu-

ally amounts to measuring scaling exponents that fully characterize

the process used for the modeling. In turns, these scaling attributes

are involved in standard signal processing tasks, such as detection,

identification or classification. Most stochastic models used to de-

scribe scaling in real-life data are continuous time and continuous

valued processes. However, for most applications, the analyzed data

are sampled in time, and the impact of this sampling of the estima-

tion of the multifractal parameters has been analyzed in various arti-

cles (cf. e.g., [1, 2, 3, 4]). In a number of situations, the data avail-

able for the analysis also present quantization in amplitude. This is

very often the case in Image Processing where the necessarily lim-

ited sizes of images yield quantized boundary lines (separating vari-

ous regions in the image). An informative example is provided by the

analysis of crack propagations, where the data consist of boundary

lines that split images into two binary regions. It is conjectured that

the characteristics of the crack propagation can be inferred from the

analysis of the scaling properties of these boundary lines. Because

it is often needed that a large number of such images are captured

along time, this may impose that sensors are used at poor resolu-

tion levels, hence resulting into the fact that the boundary lines are

available for the analysis only through (possibly severely) quantized

versions (cf. [4, 5] for a thorough description of this application).

To the best of our knowledge, the impact of this quantization

effect on the statistical performance of the procedures aiming at es-

timating multifractal attributes received little attention and precisely

constitutes the goal of the present contribution.

For this study, we make use of a synthetic multifractal process,

commonly referred to as Multifractal Random Walk [6], chosen both

for its simplicity and its ability to relevantly model a large class of

scaling properties observed in real-life data. The empirical multi-

fractal analysis we use here consists of the estimation of specific

multifractal attributes, recently shown to be interesting and referred

to as the log-cumulant [7]. Also, we compare analysis procedures

designed from different multiresolution quantities, increments, wave-

let coefficients and wavelet leaders. These latest were very recently

shown to be the most relevant quantities multifractal analysis should

be based on [8]. Multiresolution quantities, multifractal analysis,

log-cumulants and Multifractal Random Walks are introduced and

detailed in Section 2. One of the goals of the present contribu-

tion consists of studying the robustness against quantization that the

choice of a particular multiresolution quantity brings (or not) to em-

pirical multifractal analysis. Quantization and numerical simulations

are described in Section 3, while results are reported in Section 4.

2. MULTIFRACTAL ANALYSIS AND PROCESSES

Multiresolution Quantities. Performing the empirical multifractal

analysis (EMA), or scaling analysis, of some data X implies first

to chose a multiresolution quantity, TX(a, t), i.e., a quantity that

depends jointly on the time position t and the analysis scale a. His-

torically, EMA was based on first order increments [6]. The use of

higher order increments as a generalization has also been proposed.

Wavelet coefficients are nowadays widely used as standard quanti-

ties for EMA [9]. Very recently, new theoretical results showed that

EMA has to be based on wavelet leaders instead of wavelet coeffi-

cients. Because of their being hierarchical quantities, leaders can be

shown to enable a theoretically exact and practically accurate anal-

ysis of the multifractal properties for any type of multifractal pro-

cesses [8]. Such results have never been proven for increments or

for wavelet coefficients.

Let us now define the different TX(a, t). Let X(t), t ∈ [0, n)
denote the process or data under analysis and n its observation du-

ration. Let ψ0(t) denote a reference pattern with fast exponential

decay, called the mother-wavelet and {ψj,k(t) = 2−jψ0(2
−jt −

k), j ∈ Z, k ∈ Z} its templates, dilated to scales 2j , and translated

to time positions 2jk. The wavelet coefficients of X are defined

as dX(j, k) = 〈ψj,k|X〉. The mother-wavelet is further character-

ized by its number of vanishing moments, a strictly positive integer

Nψ ≥ 1 defined as: ∀k = 0, 1, . . . , Nψ − 1,
R

R
tkψ0(t)dt ≡ 0

and
R

R
tNψψ0(t)dt 6= 0. Let us also introduce the indexing λj,k =



[k2j , (k+1)2j) and the union 3λj,k = λj,k−1∪λj,k ∪λj,k+1. The

wavelet leaders are defined as LX(j, k) = supλ′⊂3λj,k
|dλ′ |, where

the supremum is taken on the discrete wavelet coefficients dX(·, ·) in

the time neighborhood 3λj,k over all finer scales 2j
′

< 2j [8]. The 4
TX(a, t) studied here (Increments of orders 1 and 2, wavelet coeffi-

cients and leaders) are hence defined as follows, for dyadic analysis

scales a = 2j (τ0 stand for arbitrary units):

T
(I1)
X (2j , t) = X(t+ 2jτ0) −X(t), (1)

T
(I2)
X (2j , t) = X(t+ 2 · 2jτ0) − 2X(t+ 2jτ0) +X(t),(2)

T
(W )
X (2j , t) = dX(j, k) = 〈ψj,k|X〉, (3)

T
(L)
X (2j , t) = LX(j, k) = sup

λ′⊂3λj,k

|dλ′ |. (4)

Empirical Multifractal Analysis: Log-Cumulants. A process

X is said to possess scale invariance or scaling properties if, for

some statistical orders q, the time averages of the (q-th power of the

modulus of the) TX(a, t) taken at fixed scales display power law

behaviors with respect to scales:

Sn(q, a) =
1

na

na
X

k=1

|TX(a, ka)|q ≃ Fq|a|ζ(q), (5)

over a wide range of scales a ∈ [am, aM ], aM/am ≫ 1. The

ζ(q) are referred to as the scaling exponents of X and are closely

related to its theoretical multifractal spectrum [8, 9]. The ζ(q) can

be naturally expanded as a polynomial,

ζ(q) =
X

p≥1

cpq
p/p!, (6)

where, for truly multifractal processes, at least c1 and c2 differ from

0. It has been proven [7] that the multifractal parameters cp, p ≥ 1
can be defined from the p-th order cumulants Cjp of ln |TX(2j , t)|:

∀p ≥ 1 : Cjp = c0p + cp ln 2j . (7)

Thus, the measurements of the scaling exponents ζ(q) is now often

fruitfully replaced by those of the log-cumulants cp.

Estimation procedures. Given nj coefficients TX(2j , k2j), the

asymptotically unbiased and consistent standard estimators are em-

ployed to obtain estimates Ĉjp for the cumulants of ln |TX(2j , k2j)|,
where all |TX | below the threshold 10−10 are discarded. The cp can

then be estimated by linear regression (cf. Eq. (7)),

ĉp = log2 e

j2
X

j=j1

wjĈ
j
p. (8)

The weights wj have to satisfy the constraints
Pj2
j1
jwj ≡ 1 and

Pj2
j1
wj ≡ 0.

Multifractal Random Walk. For empirical studies and numeri-

cal simulations, we use a multifractal process, Multifractal Random

Walk (MRW), chosen for its being simple both from theoretical and

numerical synthesis points of view and yet representative for a large

class of multifractal processes. MRW has been introduced in [6]

as a multifractal (hence non Gaussian) process with stationary in-

crements: X(k) =
Pn

k=1GH(k)eω(k), where GH(k) consists of

the increments of a normalized fractional Brownian motion (FBM)

with self-similarity parameter H . The process ω is independent of

GH , Gaussian, with non trivial covariance: cov(ω(k1), ω(k2)) =

λ ln
“

L
|k1−k2|+1

”

when |k1 − k2| < L and 0 otherwise. It has

been shown that MRW has interesting scaling properties as in Eq.

(5), with ζ(q) = (H + λ2)q − λ2q2/2. The simplicity of MRW

hence lies in its multifractal properties being entirely controlled by

the single c2 = −λ2.
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Fig. 1. Quantization and empirical distributions. Empirical dis-

tribution of ln |TX(2j , ·)| (j = 3) for non quantized (gray area) and

quantized, b = 12, (solid line) signals.

3. QUANTIZATION AND NUMERICAL STUDY

Quantization. The quantized signal is defined as:

X∆(n) = [X(n)/∆] · ∆, b = − log2 ∆,

where [·] denotes the rounding operation, ∆ the quantization interval

width and b the quantization level (in bit).

Monte Carlo Simulations. The impact of quantization on the

estimation procedures is assessed by applying them to a large num-

ber NMC of realizations of MRW. The influence of quantization on

the performance of the estimation of cp is assessed through the mean

squared error: MSE =

r

“

bEĉp − cp
”2

+ dVar ĉp, where bE and dVar

denote the sample mean and sample variance over Monte Carlo re-

alizations, respectively. To better understand the impact of quanti-

zation, we also study the empirical distributions of ln |TX(j, ·)|, as

well as the mean over realizations of Ĉjp .

Simulation Setup. The results are obtained using Daubechies2

wavelets (i.e., with Nψ = 2). Simulation parameters are set to

NMC = 1000 and n = 214, and process parameters to (H,λ) =

(0.72,
√

0.08), i.e., (c1, c2) = (0.8,−0.08).

4. QUANTIZATION IMPACTS

4.1. Distributions of ln |TX(2j , ·)|
Fig. 1 compares the empirical distributions of ln |TX(2j , ·)| (for a

given j) for a non quantized and quantized at level b signals. We

observe that while quantization does not have any visible impact on

the distributions of ln |T (W )
X (2j , ·)| and ln |T (L)

X (2j , ·)|, the distri-

butions of ln |T (I1)
X (2j , ·)| and ln |T (I2)

X (2j , ·)|, obtained from quan-

tized data, are lattice and significantly different from the distribution

obtained for the non quantized signal. This will, in turns, affect the

estimation of the Ĉjp .

4.2. Ĉjp as linear functions of j

Fig. 2 compares the means over Monte Carlo realizations of Ĉj1 and

Ĉj2 as functions of j, for non quantized data and for data quantized at

different levels. It yields a central observation: Quantization affects

Ĉjp at fine scales first, and then at coarser and coarser scales as ∆ in-

creases (equivalently b decreases). Also, we observe that this impact
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Fig. 2. Ĉjp as linear functions of j. Ĉj1 (left column) and Ĉj2 (right

column) vs. j for non quantized data (dashed dotted line) and data

quantized at different levels b.

is much more dramatic for increments than for wavelet coefficients

and leaders. Whereas for increments the influence of quantization

propagates very fast up to the coarsest scale as ∆ increases, it re-

mains restricted to fine scales for wavelet coefficients and leaders,

leaving the coarser scales unchanged and usable to perform the lin-

ear regressions yielding ĉp. For wavelet coefficients and leaders, a

meaningful range of scales for linear regression can still be found

for quantizations significantly below b = 5 for ĉ1 and b = 8 for ĉ2,

whereas for increments, linear regression is meaningless already for

b = 7 for ĉ1 and b = 12 for ĉ2.

This can be understood as follows. The increments T
(I1)
X (2j , t)

and T
(I2)
X (2j , t) can be read as wavelet coefficients obtained with

specific mother-wavelets: ψ0(t) = δ(t − τ0) − δ(t) and ψ0(t) =
−δ(t − 2τ0) + 2δ(t − τ0) − δ(t), respectively. Such ψ0 possess

respectively Nψ = 1 and Nψ = 2 vanishing moments and are com-

monly referred to as poor man’s wavelets, because they act as band

pass filters whose Fourier transforms Ψ0(ν) are poorly localized in

frequency, compared to those of standard mother wavelets, such as

the Daubechies’. This is illustrated in Fig. 3 where the Fourier

transforms of the increments are compared to that of a Daubechies2

wavelet. For simplicity the frequency axis is in octaves j = − log2 ν.

For small frequencies, the behavior of the Fourier transforms is con-

trolled by Nψ according to |Ψ0(ν)| ∼ C · |ν|Nψ , |ν| → 0. For

large frequencies, |Ψ(W )
0 (ν)| is characterized by a good frequency

localization, while |Ψ(I1)
0 (ν)| and |Ψ(I2)

0 (ν)| show much poorer fre-

quency localizations with important side lobes whose amplitudes do

not decrease. This poor frequency localization turns out to have a
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Fig. 3. Band pass filters. Fourier transforms of the mother wavelets

|2j0Ψ0(2
j0ν)| versus j = − log2(ν) for Daubechies2 (solid dotted

line), Increments of first (solid line) and second (dashed line) orders.

significant impact on the robustness of the multifractal parameter

estimation procedures against quantization. Indeed, a major conse-

quence of quantization consists of mimicking noise superimposition

to the original non quantized data. Fig. 2 suggests that this noise

mostly contributes at fine scales, or equivalently, at high frequen-

cies. Hence, any estimates involving such scales are poor whatever

the chosen multiresolution quantity. However, the well-localized in

frequency nature of the wavelet band pass filters significantly limits

the contamination of larger scales by the noise. Therefore, restricting

the linear regressions to larger scales yields satisfactory estimates.

Conversely, the poor frequency localization of the increment band

pass filters results in a significant pollution of the large scales by

the fine scale noise. This implies that, to perform estimation, one

has to restrict the regression range to much larger scales, if there are

any left that are not polluted, which hence significantly degrades the

performance.

4.3. Statistical Performance

Increments. T
(I1)
X (2j , ·) and T

(I2)
X (2j , ·) take on fewer and fewer

different discrete values as ∆ increases, until eventually they only

consists of 0 or ∆ values. Then, Ĉj1 = E ln |T (I)
X (2j , ·)| → ln ∆

and Ĉj2 = Var ln |T (I)
X (2j , ·)| → 0 (cf. Fig. 2, top row and second

row). In turns, the final log-cumulant estimates become ĉ1 = 0 and

ĉ2 = 0, no matter what values c1 and c2 actually take. Therefore,

the estimations based on T
(I1)
X and T

(I2)
X become meaningless for

severely quantized signals. Hence, for large ∆, their statistical per-

formance are no longer discussed. Ultimately, as ∆ → ∞, a similar

effect occurs for all TX however, at significantly higher ∆ than for

increments.

Fixed regression range. Fig. 4 (top row) compares the MSEs

of the estimations of c1 and c2, using a fixed regression range, at

coarse scales j1 = 5 and j2 = 11. For non quantized signal, we

observe that increments and coefficients based estimators achieve

comparable performance, whereas the leaders based estimation is

better, and significantly so for c2. When the signal is quantized, the

performance of the increments based procedures degrade dramati-

cally and fast when b decreases, whereas the coefficient and lead-

ers based estimations maintain their performance over an impressive

range of coarse quantization levels: For c1, the performance of the

increments based procedures start degrading at b = 15, while that of

coefficients and leaders at b = 9, a factor of ≈ 60 in ∆; with a dif-

ference in MSE of up to a factor 7 ! For c2, the situation is similar:

The performance of the increments based procedures start degrading

as soon as b = 13, while that of coefficients and leaders are main-

tained up to b = 7 and b = 10, respectively, a factor of ≈ 60 in ∆,

with a difference in MSE of up to a factor 10 ! Further, we note that

the MSE mainly reproduces standard deviation, apart from at severe
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quantization levels, where the bias becomes dominant.

Optimal regression range. In practice, the range of scales used

to perform the linear regressions yielding the final estimates ĉp is

not fixed a priori but by visual inspection of Ĉjp vs. j in order to

determine a region in which the scaling model is valid. Fig. 4 (bot-

tom row) shows the MSEs obtained by choosing the regression range

such that the MSE of the estimation is minimal. Comparing top and

bottom rows in Fig. 4, we observe that, as expected, estimation can

in general be improved by choosing an appropriate regression range.

Whereas for increments, this improvement is small and confined to

b > 14, relevant estimates of c1 and c2 are obtained still at b = 5
when using coefficients or leaders, a significant improvement com-

pared to the fixed regression region. We note further that whereas

leaders consistently outperform coefficients for sufficiently large b,
their performance eventually degrades faster for very heavily quan-

tized signals. Fig. 5 shows the optimal regression ranges. As ex-

pected, increasing ∆ forces j1 to increase, restricting the estimation

to coarser and coarser scales. This happens much earlier for incre-

ments than for coefficients and leaders.

Conclusions. These analyses lead us to conclude that increments

can not be used when the data are quantized, even for low quantiza-

tion levels. We found that coefficients and leaders are significantly

more robust to quantization than increments of any order. By choos-

ing an appropriate regression region, the effects of quantization on

ĉp can be circumvented even for coarse ∆ levels when using coeffi-

cients and leaders, whereas this is not the case for increments.

5. CONCLUSIONS AND PERSPECTIVES

We showed here that signal quantization significantly impairs empir-

ical multifractal analysis. Mostly, it pollutes the finest scales hence

implying a restriction towards the largest scales of the range of scales

used in the linear regression involved in multifractal parameter esti-

mation. However, we showed that choosing mother wavelets with a

good frequency resolution contains the noise pollution to as low as

possible scales, hence limiting the necessary narrowing of the regres-

sion range and the estimation performance degradation. Conversely,

the absence of localization of the frequency response of the incre-

ment based band pass filters results in a stronger narrowing of the re-

gression range for a given quantization level and hence in poorer per-

formance. Therefore, wavelet coefficients and leaders are to be pre-

ferred to increments of any orders to analyze quantized data. Also,

we showed that leaders consistently outperform coefficients for non

quantized data as well as for a large range of quantization levels. It

is only for very heavily quantized signals that coefficients eventually

become more robust than leaders. This study, which, to the best of

our knowledge had never been conducted, provides the practition-

ers with a careful framework for real life data analysis, in situations

where quantization occurs, such as the one described in Section 1.

An automatic selection of the most relevant regression range of

scales given a quantization level is currently being studied. It can be

assisted by the use of promising statistitical techniques such as boot-

strap [10]. Also, the impact of quantization will be further studied

in image processing in situations where textures are described using

multifractal models, but where the amplitudes are quantized.
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