R. Fletcher, Practical methods of optimization, 1987.
DOI : 10.1002/9781118723203

T. Joachims, Making large-scale svm learning practical Advances in Kernel Methods -Support Vector Learning, pp.169-184, 1999.

O. Michel and P. Flandrin, Application of methods based on higher-order statistics for chaotic time series analysis , Signal Proc, pp.133-148, 1996.

S. Mukherjee, E. Osuna, and F. Girosi, Nonlinear prediction of chaotic time series using support vector machines, Neural Networks for Signal Processing VII. Proceedings of the 1997 IEEE Signal Processing Society Workshop, p.511, 1997.
DOI : 10.1109/NNSP.1997.622433

K. Müller, A. Smola, G. Rätsch, B. Schölkopf, O. Kohlmorgen et al., Predicting time series with support vector machines, Artificial Neural Networks -ICANN 97, 1997.
DOI : 10.1007/BFb0020283

A. E. Omidvar, Configuring radial basis function network using fractal scaling process with application to chaotic time series prediction, Chaos, Solitons & Fractals, vol.22, issue.4, pp.757-766, 2004.
DOI : 10.1016/j.chaos.2004.03.008

T. Sauer, Time series prediction by using delay coordinate embedding, Time series prediction : Forecasting the future and understanding the past, pp.175-193, 1994.

M. Small and C. K. Tse, Minimum description length neural networks for time series prediction, Physical Review E, vol.66, issue.6, p.66701, 2002.
DOI : 10.1103/PhysRevE.66.066701

V. Vapnik, The nature of statistical learning theory, 1995.

B. W. Wah and M. Qian, VIOLATION-GUIDED NEURAL-NETWORK LEARNING FOR CONSTRAINED FORMULATIONS IN TIME-SERIES PREDICTIONS, International Journal of Computational Intelligence and Applications, vol.01, issue.04, pp.383-398, 2001.
DOI : 10.1142/S1469026801000317

E. A. Wan, Time series prediction by using a connectionist network with internal delay lines, Time series prediction : Forecasting the future and understanding the past, pp.195-217, 1994.