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S U M M A R Y
Melt generation and extraction are typically modelled using the two-phase equations developed
by McKenzie or Scott and Stevenson. Various approximations are often made to simplify the
problem which may lead to some unphysical results (e.g. thermodynamically inconsistent
conditions of melting and unrealistic porosity profiles). We discuss a generalized version of
the set of equations introduced by Bercovici et al. that allows for mass transfer between the
two phases in a single component system and consider a self-consistent set of equations. In our
description the two phases, solid and melt, are submitted to individual pressure fields whose
difference is related to the surface tension at the interfaces, changes in porosity and the melting
rate. A kinetic relation for the melting rate arises from the second law of thermodynamics.
The condition of chemical equilibrium corresponds to the usual univariant equality of the
chemical potentials of each phase when the matrix and melt are motionless. In the most general
form, phase equilibrium is influenced by both the Gibbs–Thomson effect that arises naturally
from thermodynamic considerations on surface tension and by the viscous deformation of the
phases. We apply these new equations to a steady state problem of pressure release melting in
a univariant system. We treat melting and compaction simultaneously and observe several new
effects including multiple domains near the onset of melting that correspond to various force
balances. A consequence of matrix compaction and melt expulsion (or matrix dilation and melt
accumulation) is a pressure difference between melt and solid that facilitates (inhibits) melting.
For parameters corresponding to mid-oceanic ridge magmatism, compaction permits melting
to start as much as ∼2 km below the standard solidus. Numerical solutions are necessary to
determine the magnitude of the melt zone shift. Numerical results support the boundary layer
solutions obtained analytically and suggest that in most of the melting zone the movement
of melt and matrix should be close to the Darcy equilibrium where the buoyancy of melt is
balanced by the viscous drag between the phases. The Darcy equilibrium follows an initial stage
where the matrix viscous stresses balance Darcy drag. In all situations the steady state porosity
profile remains a monotonic function of depth. The existence of a compaction layer following
a melting zone where the porosity is maximum as described in various earlier publications has
never been found.

Key words: melt generation, mid-ocean ridges, phase transitions, thermodynamics.

1 I N T RO D U C T I O N

Melting and melt migration are important processes within the Earth to transport heat and mass and to drive chemical differentiation. Below
mid-ocean ridges upwelling material undergoes pressure release melting and new oceanic lithosphere is created (e.g. McKenzie & Bickle
1988). Partial melting processes are responsible for continental crust formation (e.g. White & McKenzie 1989). There are suggestions that
dehydration-induced partial melting occurs in the transition zone (Bercovici & Karato 2003; Ohtani et al. 2004). Partial melting may also
occur in the region above the core–mantle boundary (Williams & Garnero 1996). A rigorous theoretical framework is, therefore, necessary to
account for melting in geodynamic modelling of various processes in the Earth.

Description of melting and subsequent melt migration requires a continuum model with at least two distinct phases. Since the pioneering
work of Frank (1968) and Sleep (1974) the dynamics of two-phase flows has been extensively discussed in the geophysical literature (e.g. Ahern
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Melting and compaction in two-phase media 965

& Turcotte 1979; McKenzie 1984; Ribe 1985a,b; Scott & Stevenson 1986; Rabinowicz et al. 1987; Spiegelman 1993a,b). However, in previous
papers (Bercovici et al. 2001a; Bercovici & Ricard 2003), we have shown that the self-consistent introduction of surface tension and surface
free energy between two phases imposes additional rigor to the theoretical modelling. With surface tension, the two phases are clearly submitted
to two different pressure fields. The partitioning of the surface energy and interface forces between the two phases also has to be defined.
This led us to propose a new set of equations that is also applicable to non-equilibrium situations and provides a model of damage (Bercovici
et al. 2001b; Bercovici & Ricard 2003; Ricard & Bercovici 2003). Close to thermodynamic equilibrium, neglecting surface tension, assuming
that µm, the viscosity of the solid matrix phase, is infinitely larger than µf , the viscosity of the fluid phase, and assuming small porosity, our
equations become equivalent to those proposed by McKenzie (1984), when the bulk viscosity, ζ , is replaced by the porosity dependent factor
proportional to µm/φ. Such a porosity-dependent bulk viscosity was also suggested by others (Nye 1953; Fowler 1985; Scott & Stevenson
1986; Schmeling 2000); it hinders the squeezing of the matrix and expulsion of melt at low porosity and favours it at large porosity where
bulk and shear viscosity become comparable.

In Bercovici et al. (2001a) and Bercovici & Ricard (2003) however, we were not concerned with the possible transfer of matter between
phases (i.e. with melting of the matrix or solidification of the fluid melt). While some previous studies (e.g. Ribe 1985a; Schmeling 2000)
discussed the effect of a prescribed melting rate on matrix compaction, to our knowledge, no previous study considered the full feedback
between viscous two-phase deformation and the thermodynamic conditions for melting/solidification. The usual simplifying assumptions
(ascribing identical pressure to both phases or maintaining the matrix pressure to the lithostatic pressure, neglecting the interfacial effects,
decoupling melting from viscous compaction, using empirical laws to relate degree of melting to temperature and pressure) can only be
justified by comparison with results based on a more general description. In this study, we offer such a general framework. After formulating
the theory for a single component system in Section 2, with the mass transfer between phases explicitly taken into account, we apply our new
set of equations to a simple 1-D steady-state model of pressure-release melting in Section 3. Concluding remarks follow in Section 4.

2 G E N E R A L T H E O RY

We describe a two-phase continuum consisting of a solid matrix and a fluid (melt) phase. We assume that the individual phases have constant
densities, ρ f in the fluid phase and ρm in the solid, and constant Newtonian viscosities µf and µm. Despite this notation that uses indices f
and m, however, in its most general form the theory is symmetrical with respect to swapping the phases. For any quantity q with values qf

and qm in the fluid and matrix phase, we define average and difference quantities by q = φq f + (1 − φ)qm and �q = qm − qf .
Equations presented below result from averaging the ‘true’ or microscopic quantities of the mixture assumed isotropic over a control

volume. This control volume is sufficiently small to be regarded as a ‘point’ in the continuum mechanical sense but also sufficiently large to
contain many pores or grains (see Bear 1988; Bercovici et al. 2001a).

2.1 Mass conservation

The derivation of the two mass conservation equations is fairly standard (see McKenzie 1984; Bercovici et al. 2001a) and leads to

∂φ

∂t
+ ∇ · [φv f ] = ��

ρ f
, (1)

−∂φ

∂t
+ ∇ · [(1 − φ)vm] = −��

ρm
, (2)

where φ is porosity or the volume fraction of the fluid phase, the fluid and matrix phases have volume averaged velocities vf and vm and
�� is the rate of mass exchange per unit volume (kg m−3 s−1) between the phases. A positive �� corresponds to melting, a negative �� to
solidification.

2.2 Momentum conservation

The momentum equations remain identical to those without phase change, at least in the approximation of infinite Prandtl number. Strictly
speaking, new source terms of momentum could arise from the phase change. When matrix material melts, it undergoes a velocity jump from
vm to vf which imposes an impulse discontinuity (Drew 1983). These terms are however of the order of the kinetic energy which is neglected
in this study, as are the terms related to acceleration.

As discussed in Bercovici et al. (2001a), the total momentum conservation is

−∇P + ∇ · τ − ρg ẑ + ∇(σα) = 0. (3)

In this equation, P, τ and ρ are the average pressure, viscous stress and density, ẑ is the unit vector in vertical direction, g is the magnitude
of gravitational acceleration, and σ is the coefficient of surface tension. The quantity α is the melt–solid interfacial area per unit volume of
the mixture; it has units of m−1 and basically represents the inverse of the average size of grains and pores in the mixture. Here we do not
consider grain–grain contacts; these are subject of a study by Hier-Majumder et al. (2006).
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966 O. Šrámek, Y. Ricard and D. Bercovici

The total momentum equation is the sum of equations for fluid and matrix which, individually, are (Bercovici & Ricard 2003)

−φ[∇Pf + ρ f g ẑ] + ∇ · [φτ f ] + c∆v + ω[�P∇φ + ∇(σα)] = 0, (4)

−(1 − φ)[∇Pm + ρm g ẑ] + ∇ · [(1 − φ)τm] − c∆v + (1 − ω)[�P∇φ + ∇(σα)] = 0, (5)

where ∆v = vm − v f is the difference in velocities, and likewise �P = Pm − Pf is the difference in pressures between the phases. The
interaction coefficient c is related to permeability which is itself a function of porosity. A symmetrical form compatible with the usual Darcy
term is (see Bercovici et al. 2001a)

c = µ f µm

k0[µ f (1 − φ)n−2 + µmφn−2]
, (6)

where the permeability of the form k0φ
n was used (the exponent n is usually found to be about 2–3). In the following we assume n = 2 and

also µm � µ f . The interaction coefficient then becomes c = µ f /k 0 (independent of porosity). The parameter ω is discussed in Section 2.2.1
The relationship between stress and velocities does not include an explicit bulk viscosity term (Bercovici et al. 2001a), and for each

phase j the deviatoric stress is simply

τ j = µ j

(
∇v j + [∇v j ]

T − 2

3
∇ · v j I

)
, (7)

where j stands for f or m, [·]T denotes tensor transpose and I is the identity tensor.
Instead of using the two force balance eqs (4) and (5), it is often easier to use the total momentum eq. (3) and the ‘action–reaction’

equation that can be deduced by combining the two former equations,

−φ(1 − φ)[∇�P + �ρg ẑ] + ∇ · [φ(1 − φ)�τ ] − τ · ∇φ − c∆v + (φ − ω)[�P∇φ + ∇(σα)] = 0. (8)

2.2.1 Interfacial quantities

The interface between the phases exerts a surface force on the two-phase mixture. The coefficient ω, 0 < ω < 1, controls the partitioning
of the interface surface force between the two phases (Bercovici & Ricard 2003) and represents the fraction of the volume-averaged surface
force exerted on the fluid phase. The exact value of ω is related to the microscopic behaviour of the two phases (molecular bond strengths and
thickness of the interfacial region or ‘selvedge’ layer) and represents the extent to which the interface is embedded in one phase more than
the other. The only general physical constraints that we have is that ω must be zero when the fluid phase disappears (when φ = 0) and when
the fluid phase becomes unable to sustain stresses (when µ f = 0). A symmetrical form like

ω = φµ f

φµ f + (1 − φ)µm
(9)

would satisfy these conditions.
Given the surface force partitioning, the velocity that controls the surface work is consequently found to be the ω-weighted sum of the

phase velocities

vω = ωv f + (1 − ω)vm , (10)

which reflects the extent to which the interface is advected by each of the phases (Bercovici & Ricard 2003).
On the microscopic level, a phase change contributes to the interface motion with the velocity of the propagating phase front. However,

this phase front velocity has opposite directions at opposite sides of a grain/pore. The velocity of the interfaces due to a phase change averaged
over a control volume is proportional to the integral

∫
��n̂ d S, where the integration is over all the interfacial surfaces with normal n̂ (pointing

say, from the matrix phase to the fluid phase). Assuming that the two-phase mixture is isotropic then the interfaces are randomly oriented,
in which case the integral

∫
��n̂ d S is zero if �� is uniform or slowly varying relative to fluctuations in n̂. The average interface velocity,

therefore, remains vω with or without melting, that is, is independent of the instantaneous melting rate.
Bercovici & Ricard (2003) show that the pressure Pi on the interface between the two fluids is (see also Drew 1983)

Pi = (1 − ω)Pf + ωPm . (11)

Note that the weighting factors ω and 1 − ω appear in a reverse order in (11) compared to (10). The behaviour of Pi can be understood
by rewriting the pressure jump �P as the difference between the pressure jump across the matrix selvedge layer and that across the fluid
selvedge layer, �P = (Pm − Pi) − (Pf − Pi). In the case where the surface effects are totally embedded in the matrix (µ f = 0 and ω = 0), the
entire pressure drop across the interface should be accounted for by the matrix contribution, and therefore, controlled by the first term Pm −
Pi containing the matrix pressure. One thus gets Pi = Pf . Later (in Section 2.3) we will find it necessary to introduce an effective interface
density weighted in the same way as the interface pressure Pi

ρi = (1 − ω)ρ f + ωρm . (12)
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Melting and compaction in two-phase media 967

2.3 Energy conservation

No terms related to phase change appear in the creeping momentum equations, and only appear in a trivial way in the two mass conservation
equations. In contrast, the energy equation is modified in a substantial way and is now discussed in detail.

Each phase has a specific (per mass) internal energy, ε f and εm , respectively. In our model where individual phases are incompressible,
the internal energy density of each phase is uniquely determined by the temperature. We assume the same temperature T in both phases (local
thermal equilibrium). We can write dε j = Cj dT , where Cj is the heat capacity of phase j. To account for its thermodynamic presence, the
interface is treated as an independent phase. The mechanical and thermodynamic state of the interface is described by its surface energy ξ i,
entropy si (both per unit area), and surface tension coefficient σ ; these quantities are (for chemically homogeneous systems) related according
to (Bailyn 1994; Bercovici et al. 2001a)

si = − dσ

dT
, ξi = σ − T

dσ

dT
. (13)

The interfacial surface energy is transported by the moving continuum with the average interface velocity vω defined by eq. (10).
The conservation of energy is expressed by the following equation where the left-hand side represents the temporal change of energy

content in a fixed control volume and the right-hand side represents the different contributions to this change, namely internal heat sources,
Q, loss of energy due to diffusion, ∇ · q, advection of energy, and rate of work of both surface and body forces.

∂

∂t

[
φρ f ε f + (1 − φ)ρmεm + ξiα

]
= Q − ∇ · q − ∇ · [φρ f ε f v f + (1 − φ)ρmεmvm + ξiαvω]

+∇ · [−φPf v f − (1 − φ)Pmvm + φv f · τ f + (1 − φ)vm · τm + σαvω]

−φv f · ρ f g ẑ − (1 − φ)vm · ρm g ẑ. (14)

The last equation is manipulated in the standard way using the mass and momentum equations. We also use expressions for dε j and
relationship between interfacial energy and entropy, (13). After some algebra we get

φρ f C f
D f T

Dt
+ (1 − φ)ρmCm

Dm T

Dt
− T

Dω

Dt

(
α

dσ

dT

)
− T α

dσ

dT
∇ · vω

= Q − ∇ · q + � −
(

�P + σ
dα

dφ

)
Dωφ

Dt
+

[
�ε + Pm

ρm
− Pf

ρ f

]
��, (15)

where �ε = εm − ε f is the difference between the specific internal energies of the phases, and � is the rate of deformational work,

� = c�v2 + φ∇v f : τ f + (1 − φ)∇vm : τm . (16)

The fundamental derivatives are defined by

D j

Dt
= ∂

∂t
+ v j · ∇, (17)

where j is to be substituted with the appropriate subscript f , m or ω.
Eq. (15) is arranged in such a way as to group the terms related to temporal entropy variations on the left-hand side (−dσ /dT is the

interfacial entropy). The right-hand side then contains terms related to entropy sources and fluxes. In addition to the usual heat production,
diffusion and deformational work, two other expressions appear with clear physical meanings. One of them includes �P + σ dα/dφ. As
the quantity dα/dφ is the sum of the average curvatures of grain/pores, 2/〈R〉 (here curvature is defined positive when concave to the fluid;
see Bercovici et al. 2001a), the Laplace’s condition on the pressure drop across a curved interface is recovered when the pressure difference
between the two phases is �P = −σ dφ/dα (Landau & Lifshitz 1959). The Laplace’s equilibrium condition can only be satisfied if the
phases are stationary. Thus �P + σ dφ/dα is the out-of-equilibrium pressure difference, that is due to the viscous deformation of the phases.
The other term contains the difference in the specific enthalpies �h = hm − hf , where the enthalpy of phase j is defined by hj = ε j + Pj/ρ j .
The energy eq. (15) corresponds to the one found in Bercovici et al. (2001a, eq. 59). It contains one additional source term, �h��, which
arises from the phase change.

The mass conservation eqs (1) and (2), the momentum eqs (4) and (5), augmented by the viscous stress relations (7), and the energy
eq. (15) need to be supplemented with two more relations. In particular, we need to determine the pressure difference �P between the phases
and the melting rate ��. To this end, we examine entropy production in the system and employ the method of non-equilibrium thermodynamics
(e.g. de Groot & Mazur 1984) to arrive at the two requisite equations, similar to the approach that was presented in Bercovici et al. (2001a).
In the case with no phase change (�� identically zero) this non-equilibrium thermodynamics approach led to a relationship between the
interphase pressure drop �P and viscous compaction (Bercovici et al. 2001a).

The entropy conservation writes in the most general case (de Groot & Mazur 1984)

∂

∂t

[
φρ f s f + (1 − φ)ρmsm − dσ

dT
α

]
= −∇ ·

[
φρ f s f v f + (1 − φ)ρmsmvm − dσ

dT
αvω

]
− ∇ · J + S, (18)

where J represents the microscopic non-convective entropy flux and S is the internal entropy production. According to the second law of
thermodynamics, S cannot be negative. To identify the entropy sources and the microscopic flux in our particular case, we compare the energy
and the entropy eqs (15) and (18) taking into account that, for each incompressible phase, dsj = CjdT/T = dε j/T . After some algebra, one
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968 O. Šrámek, Y. Ricard and D. Bercovici

gets

J = q

T
, (19)

TS = Q − 1

T
q · ∇T + � −

(
�P + σ

dα

dφ

)
Dωφ

Dt
+ ���µ, (20)

where we have introduced the difference in chemical potential between the two phases

�µ = �ε + Pm

ρm
− Pf

ρ f
− T �S, (21)

where �S = sm − sf is the change in specific entropies. In addition to the usual entropy sources related to heat production, diffusion, and
dissipation � (see eq. 16), we find two additional entropy sources: one is related to the out-of-equilibrium pressure difference and goes as
−(�P + σ dα/dφ) multiplied by the temporal change in porosity Dωφ/Dt; the other arises from the phase change rate ��, which is multiplied
by the difference of chemical potential of the bulk phases �µ.

It is tempting to recognize two thermodynamic scalar forces and their conjugate fluxes in the last two terms of the entropy production (20).
However, with this choice, the individual forces and fluxes are not independent; the pressure jump affects the chemical potential difference,
and the porosity change is affected by the melting rate. Therefore, we reorganize the entropy production term S in a somewhat different form.
We write

TS = Q − 1

T
q · ∇T + � −

(
�P + σ

dα

dφ

) (
Dωφ

Dt
− ρi

ρ f ρm
��

)
+ ��

[
�µ − ρi

ρ f ρm

(
�P + σ

dα

dφ

)]
. (22)

In this expression, the pressure jump in excess of Laplace’s condition appears as conjugate to the porosity change in excess of melting, which
can be expressed, using (1), (2), (10) and (12), as

Dωφ

Dt
− ρi

ρ f ρm
�� = (1 − ω)(1 − φ)∇ · vm − ωφ∇ · v f . (23)

Using (11), (12) and (21), we can write

�µ − ρi

ρ f ρm

(
�P + σ

dα

dφ

)
= �ε − T �S − Pi

�ρ

ρ f ρm
− σ

dα

dφ

ρi

ρ f ρm
. (24)

The expressions (23) and (24) are chosen as the thermodynamic forces. Following the standard procedure of non-equilibrium thermo-
dynamics (e.g. de Groot & Mazur 1984), we assume that there is a coupled linear relationship between the two thermodynamic scalar fluxes,
and the two thermodynamic forces, to wit

−
(

�P + σ
dα

dφ

)
= L11

(
Dωφ

Dt
− ρi

ρ f ρm
��

)
+ L12

(
�ε − T �S − Pi

�ρ

ρ f ρm
− σ

dα

dφ

ρi

ρ f ρm

)
, (25)

�� = L21

(
Dωφ

Dt
− ρi

ρ f ρm
��

)
+ L22

(
�ε − T �S − Pi

�ρ

ρ f ρm
− σ

dα

dφ

ρi

ρ f ρm

)
. (26)

The phenomenological coefficients Lij form a 2 by 2 matrix L. The off-diagonal coefficients of this matrix can be constrained using the Onsager’s
theorem (de Groot & Mazur 1984). The two forces (23) and (24) in our problem are odd and even functions of velocities, respectively; then
following Onsager’s findings we have L 21 = −L 12, that is, the matrix L is antisymmetric. To insure the positivity of the entropy production,
the symmetric part of the matrix L must be positive definite; this constraint gives us L 11 > 0 and L 22 > 0.

The existence of a non-zero coupling phenomenological coefficients like L12 is possible in irreversible thermodynamic but is not always
the case. In our context, a thought experiment suggests that the two fluxes decouple (L 12 = L 21 = 0). Let us consider a situation of homogeneous
isotropic melting without surface tension where the melt has such a low viscosity that it cannot sustain viscous stresses and cannot interact
with the solid by Darcy terms. For such an inviscid melt ω = 0 according to (9). In this case, as the melt can escape instantaneously, the matrix
should not dilate (i.e. using 23, the first term on the right-hand side of 25 is zero), and thus the two pressures should be the same (therefore,
the left-hand side should disappear). The only solution for the eq. (25) to hold is to have L 12 = 0 as the term containing �µ can be arbitrarily
imposed.

Another requirement is that (25) should correspond to what was found in Bercovici et al. (2001a) and Bercovici & Ricard (2003) when
�� = 0. Simple micromechanical models (e.g. Nye 1953) allow us to evaluate L11,

L11 = K0
µ f + µm

φ(1 − φ)
. (27)

The dimensionless constant K 0 accounts for grain/pore geometry and is of O(1).
Using these constraints we can, therefore, restate the two phenomenological equations as

�P + σ
dα

dφ
= −K0

µ f + µm

φ(1 − φ)

(
Dωφ

Dt
− ρi

ρ f ρm
��

)
, (28)

�� = L22

(
�ε − T �S − Pi

�ρ

ρ f ρm
− σ

dα

dφ

ρi

ρ f ρm

)
. (29)
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Melting and compaction in two-phase media 969

The first equation establishes a general relationship controlling the pressure drop between phases. The left-hand side represents the
out-of-equilibrium pressure difference due to deformation of the two-phase mush. This deformation is represented on the right-hand side by
the temporal change in porosity less the contribution from the phase transition. This condition is in agreement with that found in previous
papers without phases changes (Bercovici et al. 2001a; Ricard et al. 2001; Bercovici & Ricard 2003). In the former, it was argued that some
deformational work could also affect this pressure drop. This hypothesis led to a damage theory developed in Bercovici et al. (2001b), Ricard
& Bercovici (2003) and Bercovici & Ricard (2005). Here we assume that the system remains close enough to mechanical equilibrium that no
damage occurs and we use (28). The generalization would anyway be straightforward.

The second equation gives the melting rate in terms of departure from thermodynamic equilibrium between the phases, represented by
the parentheses on the right-hand side. The linear relationship assumes that the departures from equilibrium are small. The positive coefficient
L22 is related to the usual rate constant kr of kinetic theory (see e.g. Lasaga 1998).

2.4 The equilibrium condition

In the case of mechanical equilibrium (i.e. when Laplace’s condition holds), (29) recovers the usual proportionality of the melting rate to the
difference in chemical potentials of single phases �µ (see also 24). In general the non-equilibrium pressure drop affects the melting rate. We
thus define a new chemical equilibrium state from (29) with ��/L22 → 0, which requires

�ε − T �S − Pi
�ρ

ρ f ρm
− σ

dα

dφ

ρi

ρ f ρm
= 0. (30)

This equilibrium is controlled by the interface properties, interface pressure Pi and interface density ρ i (see 11 and 12).
In the following we assume that the melting occurs at equilibrium and use (30) rather than the kinetic relation (29) (this is equivalent to

using (29) with a very large kinetic coefficient L22). We also make the assumption that the heat capacities are constant; in this case, for each
phase j one has

ε j = ε0
j + C j (T − T0), (31)

s j = s0
j + C j ln

(
T

T0

)
, (32)

where T 0, ε0
j and s0

j are reference values. We assume that the two heat capacities are equal, Cf = Cm = C , and the equilibrium condition (30)
thus simply writes

(T − T0)�S + Pi
�ρ

ρ f ρm
+ σ

dα

dφ

ρi

ρ f ρm
= 0, (33)

where �S = �s0 and T 0 = �ε0/�s0; T 0 is, therefore, the melting temperature of a flat interface at zero pressure. In this equation one
can introduce the classical Clapeyron slope γ ′ = −�ρ/(ρ f ρm�S) (in K Pa−1). We can also express the melting temperature in terms of the
measurable average pressure P:

T = T0 + γ ′ P − σ

�S

ρ

ρ f ρm

dα

dφ
+ γ ′K0(1 − ω − φ)

µm + µ f

φ(1 − φ)

(
Dωφ

Dt
− ρi

ρ f ρm
��

)
. (34)

This equation shows that two new terms affect the Clapeyron static melting condition, T = T0 + γ ′ P , that would hold in a single phase
modelling. The third term on the right side of (33), containing the surface tension σ , represents the Gibbs–Thomson effect. For grains of
silicates in contact with the melt, the values of surface tension are around 1 J m−2. With ρ ∼ 3000 kg m−3 and �S ∼ −(300–400) J K−1 kg−1,
this term is quite small for grain size of 10 µm–1 mm, spanning a range of about 0.001–0.1 K. In this calculation we took 1/grain size as
the measure of characteristic interface curvature. In theory the Gibbs–Thomson effect could be significant, depending on the behaviour of
dα/dφ, which is a more appropriate measure of the average curvature, that is, depending on the microscopic model of the interfaces. In the
case where all interfaces are between matrix and magma (i.e. when grain–grain interfaces are not considered), the dependence of α on φ is
such that dα/dφ becomes very large as φ → 0, remains positive at small φ and changes sign at some φ c. The nucleation of a new phase (at
φ = 0) requires lower pressure or larger temperature than those of the Clapeyron curve to overcome the pressure jump associated with interface
surface tension. Similar behaviour was found in the model that includes grain–grain interfaces in the case of large (> 60◦) dihedral angle. If
the dihedral angle is small (< 60◦), the presence of grain–grain interfaces causes the sum of average curvatures dα/dφ > 0 to become negative
and nucleation of melt occurs at higher pressure or lower temperature compared to Clapeyron conditions (Hier-Majumder et al. 2006). The
question remains as to the nature of the first melt to appear. If the first liquid forms at some localized nucleation sites as tiny droplets, the
pressure will be increased due to large positive interface curvature, and the Gibbs–Thomson effect will act against melting. This case could be,
at least qualitatively, modelled using a simple interface model without grain–grain interfaces (discussed above); the model could be adjusted
such that the change in curvature sign occurs at some very small porosity φ c. On the other hand, if the first melt behaves as a wetting grain
boundary phase, then melting is probably facilitated by the Gibbs–Thomson effect.

The last term on the right side of (34) is the dynamic pressure perturbation caused by matrix dilation or compaction (that is not associated
with melting of freezing). With µ f 	 µm and thus ω = 0, the dynamic pressure perturbation simplifies to K 0µm(1 − φ)/φ ∇ · vm. In a
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970 O. Šrámek, Y. Ricard and D. Bercovici

compacting melting matrix (∇ · vm < 0), the dynamic pressure is negative and melting thus occurs at larger mean pressure P or at lower
temperature than in a static case. Reciprocally, in a dilating matrix (∇ · vm > 0) melting requires lower pressure or higher temperatures. When
ρ f < ρm , the bulk volume increases upon melting. The melt is extracted since it is lighter than the matrix and rises faster. Whether the matrix
compacts or dilates depends on how efficient the melt extraction is relative to the bulk volume increase. We have thus identified two effects
that change the Clapeyron melting condition based on the average pressure P: Gibbs–Thomson effect and dynamic pressure perturbation.
Both can influence the phase equilibrium in either direction. The dynamic pressure effect will be quantified in Section 3.3.

2.5 Simplifying assumptions and governing equations

The introduction of surface tension was crucial to derive our equations properly by forcing us to be explicit in the definitions of the various
quantities, pressures, densities and velocities, pertaining to surfaces or phases. However, the surface tension also induces the well-known
Gibbs–Thomson effect in which case melting may be totally forbidden by capillary forces unless a more sophisticated model of heterogeneous
nucleation is considered. This physical difficulty could be removed by considering a more realistic case wherein the matrix itself contains
both grain–fluid and grain–grain interfaces, each with different surface tension (see Hier-Majumder et al. 2006, for a complete discussion).
We leave the discussion of the surface tension effects for future studies and assume in the rest of the paper that σ = 0.

We further assume that the matrix is much more viscous than the fluid phase (µ f 	 µm) as typical for melting scenarios, which implies
that τ f = 0, ω = 0, ρi = ρ f , Pi = Pf , and vω =vm . For convenience we summarize the governing equations with these assumptions (σ =
0, µ f 	 µm).

By combining eqs (1) and (2) we obtain the mass conservation for the two phase material

∇ · ρv = 0, (35)

where ρv = ρ f φv f + ρm(1 − φ)vm . It must supplemented by another mass conservation equation, for example, the matrix equation

−∂φ

∂t
+ ∇ · [(1 − φ)vm] = −��

ρm
. (36)

The equations of conservation of momentum for the fluid phase is

−φ∇[Pf + ρ f gz] + c∆v = 0, (37)

and the force-difference (or action–reaction) equation is

−∇[(1 − φ)�P] − (1 − φ)�ρgẑ + ∇ · [(1 − φ)τm] − c∆v

φ
= 0. (38)

The deviatoric stress in the matrix is given by

τm = µm

(
∇vm + [∇vm]T − 2

3
∇ · vmI

)
. (39)

The pressure jump between phases becomes

�P = −K0
µm

φ
∇ · vm . (40)

Here K 0µm/φ represents the bulk viscosity. The value of the dimensionless factor K 0 depends on the geometry of the two-phase mixture.
In the case of non-interacting cylindrical inclusions Bercovici et al. (2001a) found K 0 = 1. Some more complicated functional dependence
of bulk viscosity on porosity was suggested (see discussion in Schmeling 2000) that takes into account the interaction between individual
pores/grains. Here we will assume the simple 1/φ dependence as it captures the most important characteristic of the bulk viscosity in the limit
of small porosity. For the sake of compact mathematical expressions here we adopt the value K 0 = 4/3.

In general, when the phases are not in thermodynamic equilibrium, the rate of melting is determined by (29), which, with (31) and (32),
yields

�� = −L22

[
(T − T0)�S + Pf

�ρ

ρ f ρm

]
, (41)

where Pf could be replaced by P + K0µm(1 − φ)∇ · vm/φ to emphasize the effect of compaction on the melting condition. In the following
we assume thermodynamic equilibrium, that is, an infinitely fast reaction rate (L22 → ∞).

The energy equation is

ρ f φC
D f T

Dt
+ ρm(1 − φ)C

Dm T

Dt
− T �S�� = Q − ∇ · q + ��2

L22
+ K0µm

1 − φ

φ
(∇ · vm)2 + �. (42)

On the right-hand side one recognizes the various dissipative terms, in particular, the chemical relaxation term ��2/L22 (de Groot & Mazur
1984), and the bulk compression term K 0µm(1 − φ)/φ(∇ · vm)2.

In the case of thermodynamic equilibrium (L22 → ∞) the Gibbs equilibrium condition (41) is no longer an equation for the melting rate.
It can be interpreted as an equation for the temperature while the energy eq. (42) controls the melting rate.
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Melting and compaction in two-phase media 971

3 1 - D S T E A DY- S TAT E M E LT I N G

Various studies have dealt with 2-D simulations of melt migration with a simplified set of equations (Ribe 1988; Spiegelman 1993c; Choblet
& Parmentier 2001). However, to understand the physics of two-phase medium near the onset of melting we restrict our study to a simple 1-D
melting problem. Similar problems were discussed by McKenzie (1984), Ribe (1985a) and Turcotte & Phipps Morgan (1992). Although some
of these studies described simultaneous melting and compaction, they did not account for the feedback between the viscous deformation and
the thermodynamics of melting. McKenzie (1984) considered isentropic batch melting (i.e. no melt extraction) and prescribed a dependence
of the degree of melting on temperature and pressure. Turcotte & Phipps Morgan (1992) and Ribe (1985a) used an a priori melting relation;
Turcotte & Phipps Morgan (1992) actually decoupled the processes of melting and compaction. Only Fowler (1989) discussed the effect of
compaction on the melting behaviour in the case of simultaneous melting and compaction. However, Fowler’s basic equations differ from
ours in that he assumed the matrix pressure is lithostatic. The Darcy interaction term present in his fluid momentum equation that goes as
v f − v does not have its equal and opposite counterpart in the matrix momentum equation. Therefore, Fowler’s formulation violates Newton’s
3rd law; in particular, when the two momentum equations are added to describe the force balance on the entire mixture, the Darcy drag term
remains as a spurious body force (i.e. the drag of the fluid on the matrix must be equal and opposite to the drag of the matrix on the fluid).

In our model we consider the melting of a simple univariant system. In the melting region temperature follows the Clapeyron slope,
which describes equilibrium between the phases. Melt extraction occurs simultaneously with melting, which leads to viscous deformation of
the matrix and consequently to different pressure fields in the two phases.

We assume matrix material initially ascends with an upward velocity V before melting starts. No heat is supplied to the ascending matrix.
As the matrix is incompressible, before melting starts, there is no adiabatic gradient and the far-field temperature T 0 remains uniform. The
melting starts when the ascending solid reaches the melting pressure. This point is considered as the origin of the coordinate z, which is positive
upward. From this point on two phases coexist until all the matrix has melted. Above the melting zone, melt is transported isothermally again.
As in the previous section we assume that the matrix is much more viscous than the fluid and we neglect surface tension. We only study the
steady-state solution of this problem.

First, we write the equations in the dimensionless form. The natural length scale for this melting problem is the width of the melting
zone. It can be estimated from a simplified form of the energy eq. (42) assuming that the drop in temperature is purely due to heat consumed
by melting, that is, �� = ρmVC(dT/dz)/(T �S), where the temperature gradient dT /dz is the Clapeyron slope. For the purpose of scaling,
T can be replaced with T 0, the initial temperature, and the melting rate �� can be assumed constant; in this case, integration of (36) in 1-D
steady state over the depth of the partial-melt layer H leads to �� = ρm V /H . The previous two expressions for �� combine to give H =
ρ f T 0�S2/(�ρgC). Velocity and temperature are scaled with their initial values V and T 0. Pressure is scaled with ρm gH . Performing this
scaling, the dimensionless thermal conductivity kT = ρ f k ′

T T 0/(ρm�ρgVH2) (where k′
T is dimensional conductivity), buoyancy velocity VB

= �ρg/(cV ), dimensionless compaction length δ = √
4µm/(3cH 2) (McKenzie 1984), and dimensionless Clapeyron slope γ = γ ′ρmgH/T 0

appear. The dimensionless Clapeyron slope is also simply the ratio of entropy difference to heat capacity, γ = −�S/C . At last we introduce
R as the density ratio R = ρ f /ρm . We assume ρ f < ρm and �S < 0, therefore, all the dimensionless parameters are positive. Note that in
our description, the Darcy interaction coefficient c is constant. More generally it is written as c = µ f φ

2/k(φ) in the case of µm � µ f (see
eq. 6) with k(φ) a porosity-dependent permeability. We assume k(φ) = k 0φ

2 which leads to a constant c = µ f /k 0.
With these definitions, the 1-D steady-state governing equations are the dimensionless form of the action–reaction eq. (38) (with eqs 39

and 40),

δ2φ
d

dz

(
1 − φ2

φ

dvm

dz

)
− �v = VBφ(1 − φ), (43)

where �v = vm − v f can be expressed in terms of porosity and matrix velocity from integrated mass conservation eq. (35) (continuous mass
flux implies ρv = const. = ρm V ),

�v = [1 − (1 − R)φ]vm − 1

Rφ
, (44)

the equation for the fluid pressure (37),

d Pf

dz
= −R + 1 − R

VB

�v

φ
, (45)

the equilibrium condition (41) assuming L22 → ∞,

T = 1 + γ Pf , (46)

the energy eq. (42) with equilibrium melting (L22 → ∞),

1

γ 2

dT

dz
+ 1

γ
T �� = kT

d2T

dz2
+ R�v2

VB
+ Rδ2

VB

1 − φ2

φ

(
dvm

dz

)2

, (47)

and the matrix mass conservation (36),

d

dz
[(1 − φ)vm] + �� = 0. (48)
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972 O. Šrámek, Y. Ricard and D. Bercovici

This set of equations must be supplemented by their boundary conditions, which, as usual in two phase flows, are not trivial. The porosity
φ goes continuously from 0, for z ≤ 0, to 1, for z ≥ zf , where zf is the as yet unknown position of where melting is complete (φ = 1). The
matrix and melt fluxes, (1 − φ)vm and Rφv f (or ρm(1 − φ)vm and ρ f φv f in dimensional form), are also continuous; this implies that vm is
continuous and equal to 1 (the upward velocity) at z = 0, while v f is continuous and equal to R−1 (the upward velocity augmented by the
matrix to melt density ratio) at z = zf . However, v f is not necessarily continuous at z = 0 nor is vm at z = zf . By definition T = 1 and Pf = 0
at z = 0. Eliminating �v between (43) and (45) we obtain

d Pf

dz
= −1 + (1 − R)φ + (1 − R)δ2

VB

d

dz

(
1 − φ2

φ

dvm

dz

)
. (49)

To assure Pf = 0 at z = 0, we introduce an integration constant

z0 = (1 − R)δ2

VB

1

φ

dvm

dz

∣∣∣∣
z=0

, (50)

which has to be finite for the solution to be non-singular at z = 0. We thus have dvm/dz = 0 at z = 0 since φ = 0 there. Comparing (50)
to the 1-D dimensionless form of (40), one finds that z0 = −�P|z=0 = −Pm |z=0 = −P|z=0, the second equality coming from Pf |z=0 = 0
and the third using also φ = 0 at z = 0. The finite pressure difference at the onset of melting results from the viscous deformation of the
matrix; it is the dynamic pressure perturbation discussed in Section 2.4. The consequence is that the melting zone is shifted by z0 (upwards
for positive z0) relative to what suggests the simple Clapeyron curve based on the average pressure. Finally, eq. (43) at φ = 1 implies that
2δ2(dφ/dz)(dvm/dz) + �v = 0 at z = zf .

In order to constrain the dimensionless parameters of the governing equations, we estimate values of various material parameters for
typical conditions of oceanic spreading centres. The viscosity of the solid µm could be about 1018–1019 Pa s. For the viscosity µf of the basaltic
melt we adopt 10 Pa s. These values of viscosities are however not well constrained and they span a wide range in the literature. Moreover, a
shift of several orders of magnitude in viscosity might be expected in the presence of water (e.g. Karato 1989; Mei & Kohlstedt 2000; Karato
& Jung 2003). Here we will assume dry conditions. We choose k 0 = 5 × 10−10 m2, which corresponds to grain size of the order of 1 mm. The
value of the compaction length δ then spans a range 8–26 km. A characteristic upwelling velocity of the mantle below the melting region is
few cm yr−1, up to about 10 cm yr−1. We take ρm = 3200 kg m−3 and ρ f = 2800 kg m−3 for the densities of the solid and melt. The buoyancy
velocity scale VB, therefore, spans a range of 60–160, the lower value corresponding to high upwelling velocity. We note that these values of δ

and VB were obtained for relatively low viscosity basaltic melt. These numbers would be smaller for more viscous siliceous melts. The usual
values of heat capacity and entropy of fusion found in literature fall into C = 1000–1300 J K−1 kg−1, and �S = −(250–400) J kg−1 K−1 (see
Kojitani & Akaogi 1995, and references therein). The Clapeyron slope of melting can be calculated from the given parameters. Alternatively,
one can look at the solidus values inferred from experiments on peridotite samples. Compilation by Hirschmann (2000) of experimental data
gives a depth-dependent solidus, where the slope changes from 133 K GPa−1 at ambient pressure to 100 K GPa−1 at 6.5 GPa (200 km depth).
The parameters are listed in Table 1.

For calculations in this study we use the following preferred values: µm = 1018 Pa s, µ f = 10 Pa s, V = 10 cm yr−1, k 0 = 5 × 10−10 m2,
�S = −340 J kg−1 K−1, C = 1200 J K−1 kg−1, k ′

T = 3.7 W m−1 K−1. We take the Clapeyron slope γ ′ = 1.3 × 10−7 K Pa−1 (or 3.6 K km−1).
For initial matrix temperature T 0 = 1673 K we get a length scale H = 115 km. This choice of parameters leads to dimensionless numbers
δ = 0.07, kT = 0.03, VB = 60, R = 0.875 and γ = 0.28.

Table 1. Table of parameters applicable to dry melting below mid-ocean spreading centres.

Symbol Description Definition Possible ranges Preferred value Units

µf Fluid shear viscosity 10 Pa s
µm Matrix shear viscosity 1018–1019 1018 Pa s
k0 Constant in permeability relationship 10−10–10−9 5 × 10−10 m2

c Darcy interaction coefficient µf /k0 1010–1011 2 × 1010 Pa s m−2

ρ f Fluid density 2800 kg m−3

ρm Matrix density 3200 kg m−3

g Gravitational acceleration 9.8 m s−2

�S Entropy of fusion sm − sf -(250–400) −340 J K−1 kg−1

C Heat capacity 1000–1300 1200 J K−1 kg−1

T 0 Initial temperature of upwelling 1573–1673 1673 K
V Initial velocity of upwelling 4–10 10 cm yr−1

H Length scale ρ f T 0�S2/(�ρg C) 60–150 115 km
k′

T Thermal conductivity 3.7 W m−1 K−1

kT Dimensionless thermal conductivity ρ f k′
T T 0/(ρm�ρgVH2) 0.03 –

γ ′ Clapeyron slope �ρ/(ρ f ρm�S) 100–133 130 K GPa−1

γ Dimensionless Clapeyron slope γ ′ρm gH /T 0 = −�S/C 0.28 –
δ′ Compaction length

√
4µm/(3c) 8–26 8 km

δ Dimensionless compaction length δ′/H 0.07–0.23 0.07 –
VB Buoyancy velocity scale �ρg/(cV ) 60–1000 60 –
R Density ratio ρ f /ρm 0.875 –
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Figure 1. Porosity profiles in the melting zone in the Darcy equilibrium approximation (δ = 0). All are curves calculated with γ = −�S/C = 0.28, R =
ρ f /ρm = 0.875. The values of dimensionless buoyancy velocity VB = �ρg/(cV ) are indicated. For VB larger than ∼5.9, porosity becomes a multivalued
function in the Darcy approximation.

3.1 Darcy equilibrium: the outer solution

In magmatic settings the compaction length is usually much smaller than the thickness of the melting zone. The dimensionless compaction
length δ is a small parameter, and therefore, the force balance on the phases should be similar to that with a simpler state where δ = 0. We call
this state, where gravity is balanced by Darcy drag, the Darcy equilibrium. In Darcy equilibrium the force balance (43) becomes an algebraic
relation where the velocity difference and the matrix and melt velocities are explicit functions of porosity, that is, combining (43) and (44)
and using �v = vm − v f leads to

�v = −VBφ(1 − φ) (51)

vm = 1 − RVBφ2(1 − φ)

1 − (1 − R)φ
, (52)

v f = 1 + VBφ(1 − φ)2

1 − (1 − R)φ
. (53)

Numerical solutions for the Darcy equilibrium are easily obtained since four of the equations are algebraic in this case (46, 47 with thermal
diffusion neglected, 52 and 53) and a single quadrature is needed in (45). Porosity as a function of vertical coordinate is shown in Fig. 1 for
several values of the dimensionless buoyancy velocity VB. When VB is large, (i.e. when VB

>∼ 5.9 for R = 0.875 and γ = 0.28), porosity
becomes a multivalued function of z and Darcy equilibrium cannot be a legitimate solution over the whole extent of the melting region. To
understand the limit of the Darcy approximation near the end of the melting zone, a new quantity has to be introduced.

The degree of melting X at a point z is the mass fraction of matrix which has undergone melting all the way from 0 to z, which in
dimensional quantities is

X (z) = 1

ρm V

∫ z

0
��(z′) dz′. (54)

Contrary to the porosity, which is the instantaneous volume fraction of fluid, the degree of melting accounts for the melting history. Integrating
the mass conservation eq. (36) with the appropriate boundary conditions and using eq. (35), the degree of melting can also be written in
dimensionless quantities as

X = Rφv f = 1 − (1 − φ)vm . (55)

The degree of melting is thus also the magma mass flux divided by the total mass flux (Ahern & Turcotte 1979; Ribe 1985b). If the densities
are kept distinct but velocities are assumed the same as in the case of batch melting, then we have the relation X = φρ f /ρ, which is what
McKenzie (1984) and Iwamori et al. (1995) use. The batch melting approximation implies that X ∼ φ as ρm ∼ ρ f . In the general case however
φ and X can be largely different as v f can be much larger than vm. As long as melt is lighter than matrix and can escape easily, X can be close
to 1 even at small porosity. At the end of the melt zone, z = zf , however, one must have X = 1, φ = 1 and v f = 1/R simultaneously. The
Darcy equilibrium solutions for large VB do not satisfy these boundary conditions; when X reaches 1, φ < 1 and v f � 1/R. This implies
that near the end of the melting zone φ has to increase and v f has to decrease rapidly relative to Darcy equilibrium values. The magnitude of
Darcy drag �v thus decreases while the matrix viscous term ∇ · [(1 − φ)τm], or at least its component −τm : ∇φ, increases. At the end of
the melting zone, the viscous forces become important relative to Darcy drag even for small values of the compaction length δ, and the Darcy
approximation does not hold.
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974 O. Šrámek, Y. Ricard and D. Bercovici

To understand the complete behaviour of the system, we must drop the assumption of Darcy equilibrium and take into account the
viscous terms near the origin and near the end of the melting. We focus on the behaviour of our equations at low porosity as this case is more
interesting geophysically. An analytical expression is useful to understand the limitations of the Darcy solution near z = 0. The matrix and
fluid velocities (52) and (53) can be expressed at small φ as

vm = 1 + (1 − R)φ − [
VB R − (1 − R)2

]
φ2 + O(φ3), (56)

v f = 1 + (VB + 1 − R)φ − [
VB(1 + R) − (1 − R)2

]
φ2 + O(φ3). (57)

According to (45) and (46) and using (51), we get γ −1 dT/dz = −1 + (1 − R)φ. As T = 1 at z = 0, the initial melting rate deduced from (47)
is �� ≈ −γ −1 dT/dz = 1 − (1 − R)φ. Integration of the mass conservation (48) implies in turn that 1 − (1 −φ)vm = ∫

�� dz′. Combining
these results and introducing the expression for vm from (56) we get, after some algebra,

φ + (VB + 1 − R)φ2 = z

R
− 1 − R

R

z∫
0

φ dz′ + VB

z∫
0

φ2(1 − φ)2

γ −1 − z + (1 − R)
∫ z′

0 φ dz′′
dz′. (58)

In the typical case, 1 − R 	 1 	VB. In the vicinity of z = 0 we neglect the two integral terms on the right of (58) of order (1 − R)φz and
VBφ2 z; we also neglect 1 − R with respect to VB. We get the z-dependence of porosity
z

R
≈ φ + VBφ2. (59)

The porosity has, therefore, a parabolic form and varies as φ ≈ (
√

1 + 4VB z/R − 1)/(2VB). The initial slope at z = 0 is equal to 1/R.
Practically for all simulations that we performed, R gives a rough estimate of the total thickness of the two-phase melting zone. The parabolic
form of the porosity profile is a consequence of n = 2 in the permeability-porosity law (see text after eq. 6). Schmeling (2006) finds identical
z(φ) behaviour to our eq. (59) when he restricts his melt extraction model for plumes to a single component case.

The matrix velocity increases initially with φ increasing (see 56). This effect is due to the dilation of the matrix by the introduction of
less dense melt that cannot easily escape. As soon as the porosity reaches (1 − R)/(2RVB) (see 56), the draining of the fluid towards the surface
allows the matrix to compact and vm starts decreasing. With parameters appropriate for a ridge, the matrix would inflate until φ = 0.001 which
would occur at

zD = 1 − R

2VB
(60)

after the first 120 m of melting.
Near z = 0, however, the Darcy equilibrium cannot be sustained. Indeed, the viscous compaction term that was neglected goes as δ2φ−1

dvm/dz and is thus predicted by the Darcy approximation to vary as δ2(1 − R)/z; therefore, this term will dominate the Darcy term �v (�v ≈
− VBz/R) at small enough z.

3.2 Initiation of melting

How melting initiates is not obvious in the framework of the Darcy approximation. The presence of φ in the denominators of (43), (45) and
(47) introduces a singularity at the onset of melting. The first drop of liquid requires more volume than the equivalent mass of solid it replaces.
This raises the pressure in the fluid because the necessary dilation of the matrix is inhibited by the large equivalent bulk viscosity µm/φ. This
excess pressure tends in turn to bring the thermodynamic conditions back to freezing. From the mass continuity eq. (35) at z = 0 where φ =
0, vm = 1 and dvm/dz = 0, one has [Rvf − 1] dφ/dz = 0. One possibility to satisfy this equation would be dφ/dz = 0 at z = 0. However,
then from (48) the melting rate �� would also be zero, that is, at the onset of melting no melting would occur. Therefore, one necessarily has
v f = 1/R; unlike in the Darcy approximation there is a finite difference in velocities �v = −(1 − R)/R at the onset of melting. From (45)
the gradient in Pf is infinite at z = 0 and through the equilibrium melting condition (46), this singularity translates into a singularity of the
temperature gradient that should not exist in the presence of thermal diffusion.

In fact, eqs (43)–(48) do not necessarily even have a solution when the starting condition is a pure matrix with zero porosity. There are
various possibilities to circumvent this difficulty. One could consider that a finite porosity is present in the solid even before melting starts.
This removes the difficulty but in a somewhat unphysical way since it assumes melt is already present before melting starts. One could account
for the fluid phase compressibility (Connolly & Podladchikov 1998; Richard et al. 2006) since liquids are indeed more compressible than
solids (Stolper et al. 1981). At high pressures this effect might even favour melt initiation by a release of pressure accompanying melting.
Another possibility is to remove the discontinuity in temperature gradient at the onset of melting by taking into account the kinetics of the
fusion reaction and replace (46) by (41). This would require the knowledge of the reaction rate factor L22 which is likely to be a complex
function of φ, T and Pf . We will further constrain L22 in Section 3.2.3. A simpler approach is to accept the singularity of the thermal gradient
but to neglect the thermal diffusion in the energy conservation (47). This is the approach that we take in the following of this paper.

3.2.1 The squirting solution

The finite value of �v at the onset of melting induces a Darcy friction that can only be balanced by the compactive viscous stress since the
buoyancy forces which go as �ρφ, are zero at z = 0 (see 43). We call this equilibrium between the viscous compaction term and the Darcy
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Melting and compaction in two-phase media 975

drag the ‘squirting’ solution because the fluid pressure gradient has a singularity at z = 0, that is, by (45) and using �v = −(1 − R)/R, goes
as

d Pf

dz
≈ − (1 − R)2

RVBφ
. (61)

According to the Clapeyron relation (46), the gradient in Pf is also the gradient in temperature dT /dz, which, is therefore, also singular at
z = 0. Furthermore, by matrix mass conservation (48), with the condition dvm/dz|z=0 = 0, �� near z = 0 obeys

dφ

dz
≈ ��. (62)

In the energy eq. (47), assuming the absence of thermal conduction, the singularity in dT /dz can only be balanced by an infinite rate of melting
(all the other terms are negligible or zero at z = 0)

�� ≈ − 1

γ

d ln T

dz
≈ (1 − R)2

RVBφ
, (63)

since T = 1 at z = 0. From (62) and (63) one obtains

φ ≈ (1 − R)

√
2z

RVB
. (64)

With the initial behaviour of φ determined, we search for a solution of (43)–(48) in the form of a series in
√

z. After a bit of algebra we obtain
the following terms of the expansions,

φ = (1 − R)

√
2z

RVB
+ 2

3

[
R + 2γ (1 − R)2

RVB

]
z + O(z3/2), (65)

Pf = −(1 − R)

√
2z

RVB
− 2

3

[
R − γ (1 − R)2

RVB

]
z + O(z3/2), (66)

vm = 1 + 2

3

z0

δ2

√
2VB

R
z3/2 + O(z2). (67)

These analytical solutions will be compared to the numerical solutions in the Section 3.3. The expansion for vm remains a function of z0 that
cannot be determined by an analytical study at z = 0 but is controlled by the boundary condition at the end of the melting zone. Getting an
analytical estimate for z0 is feasible but cumbersome. It consists of using the boundary condition 2δ2(dφ/dz)(dvm/dz) + �v = 0 at z = zf ,
obtained from (43) with the use of φ = 1, with the expansions previously found for φ and vm, the end of the melting zone zf being obtained by
solving φ(zf ) = 1. The sign of z0 is, however, easy to estimate from a simple physical consideration. At low buoyancy velocity VB, the melt
is somewhat locked in the matrix, and the volume expansion associated with first melting induces matrix dilation at the base of the melting
zone; therefore, according to (50), z0 will be positive. At high buoyancy velocity VB, the easy extraction of melt allows the matrix to readily
compact upon first melting, and z0 is negative. This change in sign of z0 will be demonstrated later in Fig. 7. During the initial squirting
equilibrium the porosity increases and for large VB the gravity term VBφ(1 − φ) can overcome the Darcy term �v = −(1 − R)/R. This may
lead to a new force balance.

3.2.2 Viscogravitational equilibrium

The potential of balance between viscous compaction and buoyancy is called viscogravitational equilibrium. When the Darcy term �v is
negligible the pressure is simply (see 45 and 46)

Pf = (T − 1)γ ≈ −Rz. (68)

From the energy eq. (47) the melting rate is simply

�� ≈ R

1 − Rγ z
. (69)

Knowing the melting rate, the other variables are readily computed; one obtains from (48) and (50)

φ ≈ Rz, (70)

vm ≈ 1 + z0VB R

2δ2(1 − R)
z2, (71)

where the expansion of both φ and vm was truncated after the first non-zero term in z. Again, as in the squirting approximation, the value of
z0 can only be obtained by solving the equations in the whole integration domain. However, the sign of z0 can be determined: Darcy drag is
negligible in this approximation, therefore, the easy extraction of melt will allow the matrix to compact and z0 will be negative.
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976 O. Šrámek, Y. Ricard and D. Bercovici

3.2.3 Ordering of boundary regions

Up to now we have defined three possible force equilibria: Darcy, squirting and viscogravitational. In each case one force term was neglected:
the viscous compaction term, the buoyancy term, VBφ(1 − φ), and the Darcy drag term, �v, respectively. From the first order solutions
given in each domain (56, 57 and 59 for Darcy equilibrium; 65–67 for squirting approximation; 68–71 for viscogravitational balance), these
neglected terms amount to δ2(1 − R)/(Rz) (viscous compaction term), (1 − R)

√
2VB z/R (buoyancy force), and −(1 − R)/R (Darcy drag),

respectively. We compare the magnitude of the neglected terms between pairs of equilibrium approximations and introduce three coordinates

z1 = 1

2RVB
squirt. (z < z1) vs. viscograv.(z > z1), (72)

z2 = δ2 viscograv. (z < z2) vs. Darcy(z > z2), (73)

z3 = 3

√
δ4

2RVB
squirting (z < z3) vs. Darcy(z > z3). (74)

The squirting solution is thus valid from z = 0 to min (z1, z3), above which is possibly the viscogravitational equilibrium up to z2. These inner
solutions then give place to the outer Darcy equilibrium. As z1z2

2 = z3
3, the three domains have a common point where 2δ2RVB = 1.

This study of the squirting solution nearest the origin can be used to illustrate the problems when the thermal diffusivity is not neglected.
The derivative of the fluid pressure remains always singular (proportional to 1/φ, see 61) although the presence of the thermal diffusivity in
the energy eq. (47) forbids the singularity of dT /dz. There is, therefore, no possibility to insure the thermodynamic equilibrium. We could
instead replace the thermodynamic equilibrium (46) by the kinetic law (41), but this puts some constraints on the functional form of the kinetic
coefficient L22. For example, if φ varies like zn, the leading term of Pf will be in z1−n (see 61) and that of �� in zn−1 (see 62). To balance these
terms into the kinetic equation we need to choose L22 ∝ z2n−2 ∝ φ2−2/n. To have Pf (0) = 0 we need n < 1, and therefore, L22 should depend on
a negative power of φ. The kinetic rate should, therefore, be infinite at z = 0 for a solution with diffusion to exist. Rather than exploring this
situation, and in the absence of a clear experimental or theoretical form for the kinetic rate, we simply assume that the very small parameter
kT is zero. In fact a layer dominated by thermal conduction should exist close to z = 0. Its thickness

zT = k ′
T

ρmCV
(75)

should be of order 300 m.
We summarize the various domains near z = 0 in Fig. 2. The first domain of thickness k′

T /(ρm CV ) corresponds to a diffusive layer. It has
not been explicitly studied as it requires one to take into account the kinetics of melting which would introduce various additional unknowns
and difficulties. The second domain corresponds to the domain of the squirting equilibrium. It is replaced either by the Darcy equilibrium at
low compaction lengths or by the viscogravitational equilibrium at larger compaction lengths. Near the end of the melting zone, where z >R
and φ <∼ 1, the viscous force becomes again important and limits the validity of the Darcy approximation. This diagram has been computed
for VB = 60 and changes with VB, however its topology remains similar. For smaller values of VB, one can distinguish a dilational and a
compacting regime in the Darcy domain (zD, which was defined in Section 3.1, becomes larger than the thermal diffusive layer thickness
zT ). In the situation of the Earth the force equilibrium changes directly from squirting regime to Darcy equilibrium even for the least viscous
magmas.

10−4
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10−2

10−1

100

z

10−3 10−2 10−1 100 101

δ

z1

z2

z3zT

zD

Darcy equilibrium

z=R

Visco
gravitational

Squirting

Diffusive

−

Figure 2. Graphical representation of the various regions along the melting zone (dimensionless z coordinate plotted on the vertical axis in logarithmic scale,
melting starts at z = 0) as a function of the dimensionless compaction length δ =

√
4µm/(3cH2) (on horizontal axis with logarithmic scaling). Plotted for

buoyancy velocity VB = �ρg/(cV ) = 60. The compaction length appropriate for melting under a ridge is indicated by an arrow.
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Figure 3. Calculated porosity profile in the melting zone (thick solid line) compared to the Darcy approximation (dotted line) and the initial squirting equilibrium
approximation (dashed line). The details of the curves near the origin are zoomed in the embedded panel. All curves are calculated with γ = 0.28, R = 0.875
and VB = 10, δ = 0.26. As expected the viscous equilibrium prevails in a very thin boundary layer near the origin.

3.3 Numerical solutions

The full system of eqs (43)–(48) can be solved numerically. We choose a domain of integration from z = 0 to a sufficiently large zmax (remember
that the width of the melting zone is yet unknown). From a guessed porosity we obtain the matrix velocity using a tridiagonal solver of eq. (43)
with boundary conditions vm = 1 at z = 0 and dvm/dz = 0 at z = zmax. Fluid pressure is then calculated from (45) and the temperature from
(46). We use the inner squirting solution, (66), to estimate Pf for the first two grid points to avoid the numerical indeterminacy of the integral
of �v/φ near z = 0. The energy eq. (47) is used to calculate the melting rate. Finally, porosity is updated from eq. (48) (we actually use the
time dependent form of this equation, i.e. 36). We iterate this scheme to obtain the steady-state solution.

This numerical solution can be compared to the analytical solutions (65) and (59). For this case we choose a rather low buoyancy velocity
VB = 10 and rather large compaction length δ = 0.26 in order to emphasize the thickness of the boundary region near z = 0 where the viscous
term is dominant. The results are depicted in Fig. 3 where the complete numerical solution (solid line) is compared to the Darcy solution
(dotted line) and the squirting solution (dashed line). This figure confirms the accuracy of the analytical solutions and shows that the Darcy
approximation remains very close to the real solution over the 2/3 of the melting zone. The blow up panel shows the initial behaviour of the
numerical solution and confirms the validity of the squirting approximation in the vicinity of z = 0.

Porosities for three different values of the compaction length δ are shown in Fig. 4. When δ is small compared to the width of the melting
zone, the porosity follows the δ = 0 Darcy equilibrium profile (gravity is balanced by Darcy resistance). At the end of the melting zone
there is a narrow region where the contribution of viscous forces becomes important again relative to Darcy drag. In this region porosity
increases rapidly with z until it reaches 1 where melting is complete. The overall thickness of the two-phase melting zone increases with δ.

0.0

0.2

0.4

0.6

0.8

1.0

z

0.0 0.2 0.4 0.6 0.8 1.0
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δ=0.87

δ=0.26

Figure 4. Porosity profiles in the melting zone for different values of the compaction length δ. All curves are calculated with γ = 0.28, R = 0.875 and VB =
100. Values of the compaction length are 2.6 (300 km; dashed line), 0.87 (100 km; dot–dashed line) and 0.26 (30 km; solid line). Porosity in Darcy equilibrium
(δ = 0) is shown as thin dotted line.
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Figure 5. Degree of melting in the melting zone for different values of the compaction length δ. Values of parameters and line textures correspond to those in
Fig. 4.

This behaviour is due to the contribution to the fluid pressure gradient by the viscous deformation (the last term in eq. 49 that is multiplied
with δ2). In the limit of very large compaction length the force balance in the melting zone is basically between the viscous compaction and
buoyancy, and the difference in velocities remains small between the two phases (numerical results for velocities are shown in Fig. 6). Then
the pressure gradient in the melt is dPf /dz ≈ − R (i.e. the fluid pressure is controlled by the magma density; see 68, also 49). In the limit of
very small compaction length one can see from eq. (49) that dPf /dz ≈ −1 (i.e. the fluid pressure is controlled by the matrix density, since
porosity also remains small in most of the melt zone; see Fig. 4). When δ is comparable to (or exceeds) the size of the melting zone, the
deviation from the Darcy equilibrium is more pronounced. This case however is far from geophysical interest: in the ridge case when the
buoyancy velocity is large and the Darcy equilibrium is close to the real force balance, the porosity profile is essentially identical to the Darcy
solution, from which it deviates only at the very end of the melting zone. Taking the limit VB � 1 at the end of the melting zone (z ≈ R) in
the approximate Darcy equilibrium solution (59) suggests that the porosity jumps abruptly from a value close to φ ≈ R−1V−1/2

B (or about 0.1
for the characteristic values of R ≈ 0.9 and VB ≈ 100) to φ = 1. This means that even in the case of extensive melting (degree of melting of
several tens per cent) the porosity remains quite small (<10 per cent).

Curves in Fig. 4 depict porosity in the case of complete melting of a univariant material. In real geophysical situations the matrix is a
multicomponent material which partially melts up to some limited degree of melting. In the case of pressure release melting under mid-ocean
ridges the degree of melting typically does not exceed 20–30 per cent (Turcotte & Phipps Morgan 1992). In the numerical simulations the
degree of melting increases in an approximately linear fashion throughout the melting zone as is seen in Fig. 5. This behaviour is very different
from the parabolic evolution of φ. In particular, when VB is very large, φ is much smaller than X everywhere except at the end of the melting
zone. Using the values of parameters suggested in the previous section, porosity is only ∼0.05 when X = 0.2. Although the porosity profile
is very dependent on the compaction length, the melting rate is not.

Fig. 6 shows matrix (left panel) and fluid (right panel) velocities. The matrix enters the melting zone at dimensionless velocity vm =
1 and decreases regularly during the compaction process. The first drop of melt is already moving at velocity v f = 1/R as already seen in
Section 3.2. This velocity is also the melt velocity at the end of the melting zone. For the figure we used compaction lengths larger than
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Figure 6. Matrix (left panel) and fluid (right panel) velocities in the melting zone. Values of parameters and line textures correspond to those in Fig. 4.
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Figure 7. Shift of the melting z0 zone as a function of the compaction length δ for the following values of the buoyancy velocity: VB = 100 (solid line,
diamonds), VB = 10 (dashed line, circles), VB = 1 (dot–dashed line, triangles), VB = 0.1 (dotted line, squares). Both dimensionless values (bottom and left
axes) and values in km (top and right axes) are shown. Positive (negative) z0 means shallower (deeper) melting. Calculated with γ = 0.28, R = 0.875.

appropriate for a ridge. The case with δ = 0.07 (8 km) would however be very similar to the case δ = 0.26 but the final viscous boundary layer
would be somewhat thinner. The maximum fluid velocity is about 10 times the velocity of the upwelling mantle, that is of order of 1 m yr−1.
The matrix velocity curves are terminated at the end of the melting zone; no matrix is present above the partial-melt zone, and matrix velocity,
is therefore, undefined here.

In the present theory the two phases are submitted to different pressure fields. The fluid pressure Pf , the matrix pressure Pm and the
average pressure P are different. The pressure difference �P is a dynamic effect that comes from changes in porosity in excess to those
due to melting as discussed in Section 2.3. In the limit where the fluid phase is much less viscous than the matrix, the pressure difference is
directly related to deformation of the matrix. It is positive when matrix compacts and negative when matrix dilates (eq. 40). The observer at
the surface of the Earth does not know the variation of the fluid pressure with depth. He may believe to have a better understanding of the
variations with depth of the matrix pressure, Pm = Pf + �P, or the average pressure, P = Pf + (1 −φ)�P and may expect melting to start at
the melting conditions Pm = 0 or P = 0 when T = 1. However, at the onset of melting where Pf = 0, Pm = P = �P = −z0 (see discussion
around eq. 50). As a consequence the melting does not start where expected but the onset of melting is shifted by the distance z0. When z0 is
negative, the fluid pressure is lower than the average pressure which favours melting at greater depths. On the contrary a positive z0 implies
higher pressure in the melt, and therefore, the melting condition is only reached at shallower depth.

Fig. 7 shows z0 as a function of the compaction length δ for several values of the dimensionless buoyancy velocity VB. No simple
functional dependence of z0 on δ of VB is found. As seen from Fig. 7, z0 can be positive or negative depending on the value of VB, the change of
sign occurring near VB ∼ 1. When the buoyancy velocity is small, the melt extraction from the matrix is difficult. The only way to compensate
for the bulk volume increase upon melting is that both matrix and fluid velocities increase. Pressure in the fluid is in this case larger than in
the matrix, and melting starts at a shallower depth (z0 > 0). This corresponds to the case of squirting equilibrium. On the other hand when
VB � 1 (viscogravitational balance), the melt extraction is efficient and the matrix compacts while the fluid velocity increases. Pressure is in
this case decreased in the fluid and the melting can start deeper (z0 < 0). When δ decreases, the Darcy equilibrium prevails and as expected,
z0 tends to zero. An asymptotic behaviour is obtained at very large compaction lengths. For values appropriate for a ridge the melting is likely
to occur at most a few kilometres deeper than what could be expected from the average pressure.

The sign of z0 is indicative of the sign of the difference between pressure of the two phases �P. In Fig. 8 we show the pressure difference
in the melting region as a function of z for three values of the buoyancy velocity VB and a fixed value of the compaction length δ = 0.26. This
value corresponding to 30 km is somewhat too large for a ridge but it is used to emphasize the difference between the various cases. In the
extreme case of very large or very small buoyancy velocity the melt is either uniformly under-pressured or over-pressured with respect to the
matrix. For intermediate values of VB the pressure difference can change sign twice. The pressure difference between matrix and fluid is about
5 MPa (50 bar) even far from the incipient melting for typical ridge parameters. The fact that the fluid is under-pressured should somewhat
inhibit hydro-fracturing of the matrix by the rising magma. For moderate buoyancy velocities, however (dot–dashed line), there is significant
tendency for the fluid pressure to overcome that of the matrix.

4 D I S C U S S I O N A N D C O N C L U S I O N

In this paper we developed a theoretical model of two-phase flow in the presence of melting in a single component system. Our model properly
accounts for the feedback between the viscous deformation of the phases and the thermodynamic conditions of melting. As in previous papers
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Figure 8. Pressure difference �P = Pm − Pf in the melting zone calculated with δ = 0.26 (30 km) and the following values of the buoyancy velocity: VB =
100 (solid line), VB = 1 (dot–dashed line), VB = 0.1 (dotted line). Both dimensionless values of pressure difference (bottom axis) and values in MPa (top axis)
are shown. Calculated with γ = 0.28, R = 0.875.

(Bercovici et al. 2001a; Ricard et al. 2001; Bercovici & Ricard 2003), we accounted for the presence of surface tension on the interface
between the two phases which imposes a clear distinction between the properties of each phase and those of the interface (pressures, velocities
and densities). The conditions of equilibrium between the two phases are naturally deduced from the second law of thermodynamics. The
usual Clapeyron slope is affected by the presence of the surface tension (Gibbs–Thomson effects) and by the dynamic pressure difference
between the phases. This pressure difference is proportional to the rate of matrix compaction and to the inverse of porosity; its role is somewhat
equivalent to the bulk viscosity of other theories (McKenzie 1984). It is only in the case of motionless mixture without surface tension that
the usual Clapeyron slope is recovered. In the motionless case with surface tension, the pressure difference between the phases verifies the
Laplace’s condition but the phase equilibrium is affected by the Gibbs–Thomson effect. The model also allows for non-equilibrium situations,
in which case a kinetic relation links the melting rate to the departure from equilibrium. The general non-equilibrium treatment will be useful
in future extended models where the realistic chemical composition of Earth material will be taken into account.

We use our equations in the simple case of 1-D melting. The equations are very complex by the presence of various singularities near
φ = 0. Neither the length of the melting zone nor the position of melt initiation (z0) are known a priori. The solutions are primarily controlled
by two parameters, the compaction length δ and the buoyancy velocity VB. We discuss the existence of various possible boundary regions near
the onset of melting. The onset of melting corresponds to a balance between the viscous forces and the Darcy friction. This first boundary
region is followed at large enough δ2VB by a zone of balance between gravity forces and viscous matrix stresses. Then the Darcy balance
(equilibrium between gravity force and Darcy friction) dominates in most of the melting region. The Darcy equilibrium can itself be divided
into a domain where the fluid does not escape fast enough to avoid matrix dilation (caused by volume increase upon melting), and a domain
where matrix compacts while the fluid is extracted. This already very complex structure should also include a thin thermal diffusion boundary
zone (that was neglected in this study) which cannot be understood at exact thermodynamic equilibrium unless the kinetics of the melting is
taken into account. The effect of dynamic pressure on the onset of melting can raise or depress the depth of melting by few kilometres with
respect to what would be expected from the average pressure. With parameters appropriate for melting under an oceanic ridge (δ ∼ 0.1, VB ∼
100) all these boundary zones occur in the first few kilometres of the two-phase region. The melting starts up to a few km deeper that what
could be expected from matrix pressure only.

The 1-D model suggests that for VB
>∼ 1, z0 is negative, and therefore, melting begins deeper than standard Clapeyron slope predicts;

likewise for VB
<∼ 1, z0 is positive, and melting does not begin until lower pressure is reached. Parameters that determine the value of VB are

the density difference between phases, average grain size, upwelling velocity, and melt viscosity, the latter parameter exhibiting the largest
variation in Earth. Thus, for example, differences in melt viscosity at two otherwise similar geological locations would result in different
depths of melting; a more mafic magma of lower viscosity at oceanic arcs would facilitate deeper melting compared to more felsic magma
of higher viscosity at continental arcs. We stress that these predictions are based on a fairly simple model and that further refinement of the
description is needed to generate more reliable predictions. In particular, the effect of surface tension, which was neglected in the 1-D model
application, could either facilitate or inhibit melting, depending on the geometry of the first melt to appear; localized spheroidal pockets of
first melt of positive average curvature would hamper melting by Gibbs–Thomson effect, while melting along grain boundaries resulting in
melt network of negative curvature would favour melting. More experimental evidence is needed on the geometrical distribution of the first
melt within the solid matrix. Moreover, the effect of viscous compaction/dilation on solid–melt phase equilibria of multicomponent Earth
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material should be studied. In fact, the main asset of the present study, rather than offering accurate predictions of geological observables, is
the development of a framework to consistently account for the interplay between two-phase viscous flow and the melting condition.

The results of our 1-D model cannot be directly compared to those obtained by other authors. Most previous studies had not attempted
to solve the self-consistent set of equations but have employed various approximations that do not seem to be supported by our study. Various
authors have imposed the melting rate as a simple function of depth (average pressure). This decouples the melting problem from the compaction
problem and may generate a spurious layer of compaction where the porosity decreases (Turcotte & Phipps Morgan 1992). In our simulation
the porosity is always increasing function of the vertical coordinate and the porosity remains much smaller than the degree of melting (φ <

V −1/2
B ). With ridge parameters this porosity corresponds to a threshold ∼10 per cent after which the melt accumulates instantaneously at some

depth and the porosity jumps to 1 above it. This contradicts the adiabatic batch melting model where porosity and degree of melting are closely
related (McKenzie 1984). Our results are more similar to those of Fowler (1989), at least in their goals, although significant difference in the
starting equations makes a detailed comparison difficult: however, we agree with him about the presence of significant pressure difference
(5 MPa or 50 bar) between the two phases all along the melting zone.

The present theory offers a framework for treatment of physical situations where melting of viscously deformable media is concerned.
Although our focus was on geological settings, the description is applicable to much wider spectrum of problems. Various extensions to what
was discussed in the present study are possible, including melting of multivariant material, non-equilibrium time-dependent melting, and 2-D
(3-D) flow modelling.
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