Algebraic Correlation Function and Anomalous Diffusion in the HMF model

Abstract : In the quasi-stationary states of the Hamiltonian Mean-Field model, we numerically compute correlation functions of momenta and diffusion of angles with homogeneous initial conditions. This is an example, in a N-body Hamiltonian system, of anomalous transport properties characterized by non exponential relaxations and long-range temporal correlations. Kinetic theory predicts a striking transition between weak anomalous diffusion and strong anomalous diffusion. The numerical results are in excellent agreement with the quantitative predictions of the anomalous transport exponents. Noteworthy, also at statistical equilibrium, the system exhibits long-range temporal correlations: the correlation function is inversely proportional to time with a logarithmic correction instead of the usually expected exponential decay, leading to weak anomalous transport properties.
Type de document :
Article dans une revue
Journal of Statistical Mechanics: Theory and Experiments, 2007, pp.P01020. 〈10.1088/1742-5468/2007/01/P01020〉
Liste complète des métadonnées

Littérature citée [31 références]  Voir  Masquer  Télécharger

https://hal-ens-lyon.archives-ouvertes.fr/ensl-00123263
Contributeur : Thierry Dauxois <>
Soumis le : vendredi 12 janvier 2007 - 22:20:22
Dernière modification le : jeudi 19 avril 2018 - 14:54:03
Document(s) archivé(s) le : mardi 6 avril 2010 - 21:48:36

Fichiers

ver6.4.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Yoshiyuki Yamaguchi, Freddy Bouchet, Thierry Dauxois. Algebraic Correlation Function and Anomalous Diffusion in the HMF model. Journal of Statistical Mechanics: Theory and Experiments, 2007, pp.P01020. 〈10.1088/1742-5468/2007/01/P01020〉. 〈ensl-00123263〉

Partager

Métriques

Consultations de la notice

88

Téléchargements de fichiers

134