Effective classes and Lagrangian tori in symplectic four-manifolds - Archive ouverte HAL Access content directly
Journal Articles J. Symplectic Geom. Year : 2007

Effective classes and Lagrangian tori in symplectic four-manifolds

(1)
1

Abstract

An effective class in a closed symplectic four-manifold $(X, \omega)$ is a two-dimensional homology class which is realized by a $J$-holomorphic cycle for every tamed almost complex structure $J$. We prove that effective classes are orthogonal to Lagrangian tori in $H_2 (X ; \Bbb{Z})$.
Fichier principal
Vignette du fichier
Tori.pdf (74.45 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

ensl-00121976 , version 1 (22-12-2006)

Identifiers

Cite

Jean-Yves Welschinger. Effective classes and Lagrangian tori in symplectic four-manifolds. J. Symplectic Geom., 2007, 5 (1), pp.9-18. ⟨10.4310/JSG.2007.v5.n1.a3⟩. ⟨ensl-00121976⟩
44 View
112 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More