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Abstract

The development of numerical algorithms requires the bounding image
domain of functions, in particular functions ε(x) associated to an ap-
proximation error. This problem can often be reduced to computing the
infinite norm ‖ε(x)‖∞ of the given function ε(x). For instance, the de-
velopment of elementary function operators in hard- and software makes
use of such algorithms.
Implementations for computing in practice highly accurate floating-point
approximations to infinite norms are known and available. Nevertheless,
no highly precise, sufficiently fast and certified or self-validating algo-
rithms are available. Their results could be seen as an element in the
correctness proof of safety critical or provenly guaranteed implementa-
tions.
We present an algorithm for computing infinite norms in interval arith-
metic. The algorithm is optimized for functions representing absolute
or relative approximation errors that are ill-conditioned because of high
cancellation. It can handle even functions that are numerically unstable
on floating-point points because they are defined there only by continu-
ous extension.
In addition the given algorithm is capable of generating a correctness
proof for an infinite norm instance by retaining its computational tree.

Keywords: infinite norm, optimization, interval arithmetic, certified algorithm, error
analysis, approximation error



Résumé

Le développement d’algorithmes numériques nécessite de borner cer-
taines fonctions, en particulier les fonctions représentant une erreur d’ap-
proximation. Ce problème se réduit au calcul de la norme infinie ‖ε(x)‖∞
de la fonction d’erreur ε(x). Par exemple, le développement de fonctions
élémentaires, tant au niveau logiciel que matériel, utilise ce genre de
calcul.
Il existe déjà des implémentations de la norme infinie fournissant une
très bonne approximation de la valeur réelle de la norme. Cependant, il
n’existe pas d’algorithme capable de fournir un résultat à la fois précis et
sûr. On entend par sûr, un algorithme qui renvoie une valeur majorant
la norme réelle et qui fournit par ailleurs un certicat prouvant la validité
de cette majoration.
Nous proposons un algorithme de calcul de la norme infinie utilisant
l’arithmétique d’intervalles. Cet algorithme est optimisé pour les fonc-
tions correspondant à une erreur relative ou absolue, c’est-à-dire des
fonctions numériquement très mal conditionnée du fait d’importantes
cancellations. Notre algorithme peut aussi, dans une certaine mesure,
travailler avec des fonctions numériquement instables à proximité de
certains points où elles ne sont définies que par continuité.
Enfin, notre algorithme peut retenir l’arbre des calculs qu’il a effectués
afin de produire une preuve de correction du résultat de son calcul.

Mots-clés: norme infinie, optimisation, arithmétique d’intervalles, algorithme certifié,
analyse d’erreur, erreur d’approximation
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1 Introduction

The development of a numerical algorithm, such as scientific code[8, 6], elementary function
implementation[1] or control applications, consists generally of three steps. Firstly, the given
problem is expressed as a mathematical model. This mathematical model may still make
usage of high level concepts or functions that are not directly supported by current combina-
tions of processors, programming languages etc. such as combined, non-elementary functions.
Secondly, the mathematical model is simplified to match already more closely the available
hardware and software system. In this step, approximations take place. For example, tran-
scendental functions may be approximated by rational functions. Or combined functions may
be replaced by a combination of approximations of elementary functions. In a third step, the
simplified and approximated rational mathematical model is implemented in a floating-point
environment, provided, for example, by the IEEE 754 standard[2]. Floating-point numbers
generally are finite dyadic approximations to real numbers in a finite range around zero.

All three steps of modelling a given problem imply errors. The mathematical model does
not exactly match reality. Simplified to a rational model, is it subject to approximation
errors. Finally, floating-point computations induce round-off error. In order to be certain
of the significance of a numerical result, quantities appearing in the given model must be
bounded. Computed values must be proven to be contained in the finite range of the floating-
point environment. In addition, approximation and round-off errors must be shown to be less
than a priori specified bound.

Round-off errors induced by a floating-point arithmetic are discrete, non-analytical, dis-
continuous functions of the inputs of the different basic arithmetical operators. Their bound-
ing has been studied for example in [6]. Automatic tight boundings can be computed and
proven using for example the Gappa∗ tool[4]. In this article we will not further consider them.

Values and approximation errors in an given model can be considered as almost everywhere
continuous functions ε : R

n 7→ R of the inputs. Bounding them means computing their
extrema in a given domain I ⊂ Rn. If quantities, especially errors, are mostly symmetric or
strictly positive or negative, sufficient bounding may be acheived by computing the infinite
(or infinity) norm (infnorm) of the function ε defined as

‖ε(x)‖I
∞ = sup

x∈I

|ε(x)|

Computing the infinite norm of a function ε, given as a expression or a numerical oper-
ator, is for itself a numerical problem. High-quality, approximate, floating-point solutions to
the infinite norm computational problem exist. General techniques and considerations are
described in [10]. In the case where ε is a multivariate function, computing a infinite norm
is a particular case of global optimization. In this article we will consider only univariate
functions. We attract the reader’s attention to [5] concerning the multivariate case.

Tools like Maple† or Matlab‡ implement general purpose numerical approximation al-
gorithms for computing an infinite norm of an univariate function. Both algorithms are not
clearly specified in terms of the quality of the returned approximation. Matlab uses hardware,
i.e. IEEE 754 double, precision and is hence limited to well-conditioned infnorm problems.
The infnorm algorithm in Maple’s numapprox package tends to provide overestimations of

∗
available at http://lipforge.ens-lyon.fr/www/gappa/

†
cf. www.maplesoft.com

‡
cf. www.mathworks.com

http://lipforge.ens-lyon.fr/www/gappa/
www.maplesoft.com
www.mathworks.com
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the infinite norm’s true value but can be shown also to return underestimations on some
particular functions.

Such approximate solutions may be sufficient in the development phase of a numerical
implementation. But whenever it comes to prove its correctness, in particular, if the im-
plementation is safety critical, numerical approximations do no longer suffice. An algorithm
that provides a certified or self-validating result such as an interval with guarenteed lower and
upper bounds of the computed approximation of the infinite norm is needed here.

The authors’ work has been motivated by infinite norm problems in the development of
correct rounding transcendental elementary functions such as ex, log x, sinx. The correct
rounding, i.e. bit-exact result, correctness proof mainly relies on showing a maximal ap-
proximation and round-off error bound[4]. Similar problems in the context of safety critical
implementations of combined transcendental functions have been considered for example in[3].
The computation of well-specified approximations to infinite norms are also at the base of
works like[11].

In this article we present an algorithm for computing a upper and a lower bound for
infinite norms on univariate functions ε(x) ∈ C

2 in self-validating and hence certified way.
The algorithm is especially optimized for functions ε(x) that are ill-conditioned because of
cancellation and numerically unstable at some floating-point numbers because they are defined
only by continous extension in these points. The implementation of the algorithm is still under
development and is integrated to a software tool§.

This article is organized as follows: in the next section 2, we give the specifications of
our algorithm and explain these design choices. In section 3.1 we give the algorithm as well
as a correctness proof sketch. This general algorithm makes use of some particular interval
arithmetic evaluation techniques that we present in section 3.2. These techniques are used in
particular for bracketing the zeros of a function. Section 3.3 clarifies this point. Our algorithm
is capable of retaining its computational tree for generating a proof of the generated result.
The main considerations on this point are given in section 4. Some examples in section 5 lead
the reader to our conclusions in section 6.

2 Specifications of our infnorm algorithm

Let be f : R 7→ R a function to be shown to be correctly implemented, i.e. approximated
within a specified error bound. Let be p : R 7→ R the approximation to f used in the imple-
mentation. So the absolute respectively relative approximation error of p with regard to f is a
function ε : R 7→ R defined as ε(x) = p(x)− f(x) respectively ε(x) = p(x)−f(x)

f(x) . In the frame-
work of elementary function development, f is a transcendental function and p a polynomial
with floating-point coefficients[1, 3]. If p and f are continuous and continously differentiable
functions that are not identically zero on no sub-interval and if ε is finite everywhere (which
is the case in pratical implementations), ε is almost everywhere continuous and continously
differentiable.

The first requirement our algorithm shall fullfil is implied by the fact that we want a
certified result:

Requirement 1. The algorithm implementing the infinite norm of a function must always
give an upper-bound of the real value of the infnorm of the function.

§
available under the GPL at http://lipforge.ens-lyon.fr/projects/arenaireplot

http://lipforge.ens-lyon.fr/projects/arenaireplot
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It would be possible to always answer +∞ but this would be perfectly useless in practice.
In order to estimate the order of error made by a certified infinite norm algorithm, a lower
bound for the actual value is needed. This can be obtained with this second requirement:

Requirement 2. The algorithm shall give a lower-bound of the real value of the infnorm
of the function. Thus if the orders of magnitude of the upper and the lower bounds are the
same, it can be concluded that the result of the algorithm is accurate enough for the problem
in consideration.

Since p approximates f , the order of magnitude of ε(x) is much lower than the order of
magnitude of p or f . In other words, the functions ε(x) = p(x) − f(x) respectively ε(x) =
p(x)−f(x)

f(x) are ill-conditioned due to the cancellation in the substraction p(x) − f(x).
Even if we want the algorithm to handle also other functions as functions defined as

ε(x) = p(x) − f(x) or ε = p(x)−f(x)
p(x) , this observation leads to a third requirement to our

algorithm:

Requirement 3. The algorithm shall take in input functions defined by an explicite expres-
sion tree. Ill-conditionned functions defined in this way shall be overcome by the usage of high
intermediate precision and recorrelation[5, 3] techniques for interval arithmetic.

Let us still make one observation on the functions ε(x) = p(x)−f(x)
f(x) we are especially

interested in. Suppose that in the given domain I = [a; b] the infinite norm ‖ε(x)‖I
∞ is to

be computed on, f(x) has a zero z, i.e. f(z) = 0. If p(z) = 0 in the same point z and
lim
x→z

p′(x)− f ′(x) = c1 and lim
x→z

f ′(x) = c2 exist, ε(z) = c = c1
c2

∈ R is nevertheless well-defined

in z by continuous extension. In consequence ‖ε(x)‖I
∞ 6= ∞ as the pole in z of ε(z) might

suggest and as might be computed by pure interval arithmetic.
We formulate thus the following additional requirement:

Requirement 4. If the expression tree for ε(x) has some pole in the given input domain that
may be extended by continuity, the algorithm for computing the infinite norm of ε on I shall
return an upper bound different from +∞.

In order to ensure that the algorithm respects its specifications, it should be carefully
proven. However, the implementation could contain bugs. Moreover, some users of the algo-
rithm want to provide proofs for the results of intermediate computations in the development
of an algorithm they had been using an infinite norm algorithm for. This yields to a last
requirement:

Requirement 5. The algorithm shall give, in addition to the result, a formal proof which
can be checked externally and which ensures that the interval result is really bounding the
mathematical infnorm value.

Naturally, we want our algorithm to be as performant as possible using the least memory
possible.

3 The algorithm

We are going to present now our infinite norm algorithm. Let us remember that the algo-
rithm requires the function ε(x), given as an expression tree, to be at least C2 and formally
differentiable.
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In the following, if ε is a function and I an interval, ε[I] will denote the set

ε[I] = {y ∈ R, ∃x ∈ I, y = ε(x)} .

It is well-known that this set is an interval when ε is continuous.

3.1 General scheme of the algorithm

Basically, the algorithm is simple:

infnorm: input a function ε ∈ C2(I) and a compact interval I = [a, b]:

1. formally differentiate the function ε;

2. search a list of intervals I1, · · · , Ip such that every zero of ε′ lies in at least one of the
Ik. Note that some Ik may not contain any zero of ε′ and reciprocally that two zeros
may belong to the same Ik;

3. add I0 = [a, a] and Ip+1 = [b, b] to the list;

4. compute J0, · · · , Jp+1 such that for each k, ε[Ik] ⊆ Jk.

5. compute the inner- and outer- enclosure of g[I] from the intervals J0, · · · , Jp+1. This
means compute intervals IE and OE such that

∀y ∈ IE, ∃x ∈ I, y = ε(x)

and such that
∀k, ∀y ∈ Jk, y ∈ OE

The computation of this enclosures will be explained below.

6. Return
[max{|IEℓ|, |IEr|}, max{|OEℓ|, |OEr|}]

as an interval containing ‖ε‖I
∞

Since the interval I = [a, b] is compact and ε is continuous, we know that ε reaches its
minimum at a point xm and its maximum at a point xM . Since ε is differentiable, xm is either
a bound of the domain (a or b) or ε′(xm) = 0. The same holds for xM . It follows that both
xm and xM are in some interval of the list I0, · · · , Ip+1.

Lemma 3.1. ε(xm) does not belong to the interior of IE. The same thing holds for xM .

Proof. Suppose that ε(xm) belongs to the interior of IE. Thus, there exists some z ∈ IE such
that z < g(xm). By applying the definition of IE, we would have some x such that ε(x) = z
yielding contradiction. Hence, since ε(xm) is minimal and ε(x) = z < ε(xm). The proof is
the same for xM .

Lemma 3.2. ε(xm) ∈ OE. The same holds for xM .

Proof. Since xm belongs to one of the Ik, ε(xm) belongs to ε[Ik] and then ε(xm) ∈ Jk.
Applying the definition of OE, ε(xm) ∈ OE. The proof is the same for xM .
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Figure 1: The outer enclosure of the Jk.

Let us see now how to compute IE and OE. For OE we take the convex enclosure of the
union of the Jk which is defined by OEℓ = min{J0ℓ, · · · , J(p+1)ℓ} and OEr = max{J0r, · · · , J(p+1)r}
where OE = [OEℓ, OEr]. It trivially satisfies the required property for OE.

For IE we take ]IEℓ, IEr[ where IEℓ = min{J0r, · · · , J(p+1)r} and IEr = max{J0ℓ, · · · , J(p+1)ℓ}
where the subscript ℓ denotes the lower bound of an interval and the subscript r denotes the
upper bound.

Lemma 3.3. The previous way of computing IE actually provides an inner enclosure as
defined above.

Proof. Let IEℓ ≤ y ≤ IEr. Then y ≥ min{J0r, · · · , J(p+1)r}. Let k be the index for which
the minimum is reached: y ≥ Jkr. Since f [Ik] ⊆ Jk there exists u such that f(u) ≤ Jkr ≤ y.
With the same argument, there exists v such that y ≤ f(v). Since f [I] is a interval, y ∈ f [I]
and then ∃x ∈ I, y = f(x) which is the required property.

The computation of IE and OE from the Jk can be performed incrementally as the Jk

are calculated.

It is clear that IE ⊆ OE and, hence, OE\IE is made of the union of two intervals:
[OEℓ, IEℓ] and [IEr, OEr]. By the lemmata 3.1 and 3.2 the minimum and maximum of g lie
in these intervals. It follows that

‖ε‖I
∞ ∈ [max{|IEℓ|, |IEr|}, max{|OEℓ|, |OEr|}] .

This is the value returned by the algorithm given above.
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Figure 2: The (right bound of the) inner enclosure of the Jk.

Let us now show how the Ik are found and in which way the Jk are computed out of them.
Clearly if every Jk were exactly equal to ε[Ik], OE would precisely be equal to [ε(xm), ε(xM )].
Let Ik denote the interval containing xM . If Jk is affected by arithmetical errors, we have
ε[Ik] ⊂ Jk and thus OEr is hence greater or equal to Jkr. It follows that the more precise
the Jk are, the more precise OE will be. Here the term precise stands for some measure on
an interval A with regard to another interval A′ ⊇ A it approximates. A measure for this
phenomenon could be the sum of the relative diameters of the union of intervals in A\A′ with
regard to the diameter of A.

Let Ik be an interval such that xM ∈ Ik. If Ik is perfectly precise (that is if Ik = [xM , xM ]),
we have ε[Ik] = [ε(xM ), ε(xM )]. But if Ik is wider, ε[Ik] will be of the form [u, ε(xM )] with
u the smaller as Ik becomes the wider. Thus, the contribution of Jkℓ to IEr will be less or
equal to u. In consequence, the more precise Ik is, the more precise IE will be.

This shows that it is important to take care of the way the Ik and the Jk are computed.
We will focus on this point in the two following paragraphs.

3.2 Interval evaluation of functions - computation of Jk

Our goal is to compute out of Ik an interval Jk as precisely as possible with regard to ε[Ik].
We can suppose that Ik is a small interval, i.e. in practice its diameter is a lot smaller than 1.
We use the library MPFI¶ which implements the interval arithmetic with arbitrary precision.
The precision used in the computations is a parameter of our algorithm. For each function f

¶
distributed under the LGPL at http://gforge.inria.fr/projects/mpfi/

http://gforge.inria.fr/projects/mpfi/
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known by MPFI, and for each interval I, the evaluation of f on I by MPFI produces an interval
J such that f [I] ⊆ J . We will denote by f(I) the interval computed by MPFI.

MPFI implements the standard functions +, −, /, ×,
√·, exp, sin, etc. For more complex

functions such as h(x) = exp(sin(x+ln(x))) we have to decompose the expression and evaluate
each subterms separately. For example, to compute h on I, we will first compute J1 = ln(I),
then J2 = I + J1, then J3 = sin(J2) and finally J4 = exp(J3). For each operation, MPFI is
very precise. In contrast, the interval evaluation of composed functions is subject to error
accumulation and cancellation effects caused by decorrelation. The final result of such an
evaluation may thus be inaccurate. Shortly speaking, diam(J) = O(diam(I)).

We can use the mean value theorem for obtaining an evaluation satisfying diam(J) =
O(diam(I)2), which performs well for the used small Ik. Let z be a point in Ik (we choose
the middle of Ik), for each x ∈ Ik, ∃c ∈ Ik, ε(x) = ε(z) + (x − z)ε′(c). It follows that
ε[Ik] ⊆ ε(z) + (Ik − z)ε′[Ik]. So we can compute ε′(Ik) using MPFI and then take for Jk the
interval ε(z) + (Ik − z)ε′(Ik). The interest of this method comes from the fact that the errors
in the evaluation of ε′(Ik) are multiplied by (Ik − z) which is a very small interval centered
in 0.

Obviously, we can use this technique recursively and compute ε′(Ik) using ε′′(Ik) and so
on. This allows theoretically to obtain diam(J) = O(diam(I)n). A possible problem is that
the successive derivatives of ε are more and more complex expressions and their evaluation
may lead to so unprecise results whilst using great amounts of memory; thus, the technique is
useless. At the moment, the number of step of recursivity is just a parameter of the algorithm
that the user can fix following its intuition about the complexity of the successive derivatives.

In order to limit the explosion of the expression of the successive derivatives of a function,
we implement an additional special optimization for fractions ε(x) = f(x)

g(x) . As long as g(x)

has no zero in the given interval, instead of evaluating f(z)
g(z) + (x − z) · g(x)·f ′(x)−f(x)·g′(x)

g2(x)
,

we evaluate f(z)+(x−z)·f ′(x)
g(z)+(x−z)·g′(x) . This is more performant since the induced expression trees are

smaller than the tree for g(x)·f ′(x)−f(x)·g′(x)
g2(x)

.

Another problem can arise: some functions have a so-called removable singularity: at
some point z, the function ε(x) is of the form f(z)

g(z) with f(z) = g(z) = 0. However, the

function may be prolongated by continuity. It is the case, for instance, for the function sin(x)
x

at 0. Mathematically, the function remains well defined, but numerically, will perform very
badly. The errors of computation become very big; if using interval arithmetic, a division
by an interval containing 0 occurs and produces a NaN or an infinity. In order to solve the
problem, we have to detect this case and find a solution. If we can detect it (that is if we
find a point z and we can prove that f(z) = g(z) = 0), we can use a variant of the so-called
L’Hôpital’s rule:

∀x ∈ I, ∃(c, d) ∈ I2,

f(x)

g(x)
=

f(z) + (x − z)f ′(c)

g(z) + (x − z)g′(d)
=

f ′(c)

g′(d)
.

Thus (f/g)[I] ⊆ (f ′/g′)[I]. Once again, we can use the rule recursively if f ′/g′ has a removable
singularity in the interval.

For detecting a removable singularity, we firstly test if the function to evaluate is a quotient.
If so, we evaluate an interval J containing the denominator g[I] (using Taylor and MPFI). If
J does not contain 0, we are sure that there is no singularity. If it contains 0, there is a
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doubt: we search a floating-point (not interval) zero using the Newton-Raphson method. If
we do not find any, we cannot do anything. But if we find one z, it is a potential removable
singularity. We first use MPFI to evaluate g on the interval [z, z]. If the result is [0, 0] we
know that z is a zero of g (if it is not, we cannot conclude). Since we are now sure that z
is a zero of g, we evaluate f on [z, z] with MPFI and if the result is [0, 0], we know that z is
a removable singularity and L’Hôpital’s rule can be applied. In every other case, we just let
the normal interval evaluation continue, leading to a final result that is NaN or infinity.

It can be argued that this technique is useless because its detection is subject to too much
floating-point noise. If it works, it would just be luck. We must have simultaneously discovered
by a floating-point Newton-Raphson the precise real point z, obtain f([z, z]) = [0, 0] and
g([z, z]) = [0, 0] using MPFI. This is right but it is the only way to be sure that we actually
have a removable singularity. Besides, let us recall that we need to be sure in order to prove
the correctness of our final result. Moreover, it works more often that it seems. Actually, if
the singularity is not at a floating-point number, the only way to show the infinite norm is
finite is to show formally that g(x) = 0. Further, the function would be so ill-conditioned
near the singularity, that it cannot be evaluated in practice. So, Newton-Raphson will almost
surely detect the point for functions that are practically evaluated e.g. in elementary function
libraries. In addition, z will probably be some simple point such as 0 or an integer and if
the functions are not to complicated, it is probable that for this special point, MPFI will be
infinitely precise during all the computation. For example,

exp(arcsin(x)) − 1

arcsin(x)

works well because 0 is detected as a potential singularity, and MPFI knows that arcsin([0, 0]) =
[0, 0], exp([0, 0]) = [1, 1], etc.

The algorithm for evaluating a composed function ε on an interval I for a result J satisfying
diam(J) = O(diam(I)r+1.

evaluate: input an expression representing a function ε, an interval I, and a parameter
rec_level :

1. if rec_level> 0: differentiate ε ; compute the mid-point z of the interval I. Re-
turns evaluate(ε, [z, z], 0) +(I − z)· evaluate(ε′, I,rec_level−1) using MPFI for the
addition and the multiplication.

2. else:

(a) if ε is not a quotient: ε is of the form op(h) (or h1 op h2). Return op(evaluate(h, I, 0))
performing op with MPFI (idem if there is two operands).

(b) else ε = h1/h2. Let J2 = evaluate(h2, I, 0).

i. If J2 does not contain 0, let J1 = evaluate(h2, I, 0) and return J1/J2 per-
formed by MPFI.

ii. else test if L’Hôpital’s rule can be applied as explained above. If the test
succeeds, formally differentiate h1 and h2 and return evaluate(h′

1/h′
2, I, 0).

The actual implementation of this algorithm integrates some additional improvements
with regard to the performance and the accuracy of the produced results:
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• Formally differentiated expressions are simplified exactly as well as possible. The sim-
plification comprises the evaluation of constant sub-expressions as long as no rounding
occurs, conversion of polynomial sub-expressions into Horner’s scheme, elimination of
additions and subtractions with 0, multiplications and divisions with 0 and 1 and some
other simple formal simplifications.

• If their necessity is known in advance, functions are differentiated only once for several
evaluations.

• Cancellation in additions and subtractions during interval evaluation of sub-expressions
are detected if possible by simple tests. Intermediate Taylor evaluations allow here for
improving the accuracy of the result.

3.3 Intervals bounding the zeros of a function - determination of Ik

We have seen that the intervals Ik should be small in order to contribute efficiently to the
inner enclosure. For the economy of useless computations, we should try to select only those
intervals which actually contain some zeros of the derivative. In contrast, for ensuring the
correctness of the algorithm, we have to be sure that every zero lies in a Ik.

In our approach we therfore fix an appropriate diameter δ as a parameter of the algorithm.
We use a dichotomic algorithm. At first, we evaluate ε′ on the whole interval I (using all the
optimisations of the evaluate function). If the returned interval J contains 0, we cut I in
two parts I1 and I2 and we recurse on each sub-interval.

If we find an interval I ′ such that J ′ does not contain 0 at one moment of this procedure,
then we are sure that ε′ has no root in I ′ and we can just eliminate the interval I ′. We stop
branching when we have an interval I ′ which diameter is less than δ.

At the end of the procedure, we get a list I1, · · · , It such that every zero of ε′ lies in one
Ik and which diameters are all less than δ.

Let z be a zero of ε′ and Ik = [a, b] the selected interval in which it lies. In practice, the
algorithm computes very often additional intervals Ik−1 and Ik+1 that actually do not contain
any zero of ε′ and are of the form [a′, a] and [b, b′] because ε[Ik−1] and ε[Ik+1] are too close
to zero to be discarded by interval evaluation. In contrast, if ε has a removable singularity in
z, the evaluation of ε(Ik−1) and ε(Ik+1) will be very unstable since ε is ill-conditioned near
z and may yield to unprecise results. However, if we join the intervals, obtaining one interval
I ′ = Ik−1 ∪ Ik ∪ Ik+1, we can apply L’Hôpital’s rule on the whole interval I ′ which yields to
better results, even if the interval is three times wider than the previous one.

Thus, we replace every series of consecutive intervals in the list I1, · · · , It by their union
unless the union becomes more than 4 times greater in diameter than the parameter δ fixed
previously. This yields to the final list I1, · · · , Ip used in the following of the algorithm.

Remark that instead of using a dichotomy to bracket the zeros of the derivative ε′(x) of
the given function, the interval Newton method as described in [5] could also be used. We
would, nevertheless, have to require the input functions ε to be at least C3 in this case.

4 Generating a proof for infinite norm results

Interval arithmetic, satisfying the so-called inclusion property, has strong links to numerical
proving of mathematical properties. As shown in [3], libraries for certifying interval computa-
tions in proof checkers, such as for example the Prototype Verification System (PVS) [9] exist.
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The general idea consists in retaining the complete computational and decisional tree of an
instance of an interval algorithm, for instance, our infinite norm algorithm, and to generate a
lemma for each invokation of a interval function or logical element such as dichotomy, Taylor
series expansion, L’Hôpital’s rule etc.

Our algorithm is currently not yet capable of producing PVS or COQ [7] readable proofs.
Nevertheless, it is already possible to store the complete computational tree and to generate an
English written proof for an instance of the infinite norm algorithm. The last element that is
still lacking to us to provide this additional safety to the correctness of the results computed
and inherently proven by the interval algorithm is the difficulty to handle transcendental
functions in formal proof checkers. Such a library is partially available for PVS but as shown
in [3], computation times for proof checking are still very high.

Most current proofs are still untracktable in PVS because of the complexity of the implied
numbers. We are working to provide a means of simplifying a proof in terms of the bitlength
of used numbers.

In some examples, the proof generated by our algorithm could already be checked. This
is due to the fact that the derivatives of some transcendental functions such as log(x) are
rational.

5 Examples

Let us give some examples of the behaviour of our algorithm. The examples are mainly taken
out of problems in the development of the crlibm library for correctly rounding elementary
functions[1].

1. The first example is a toy problem: let be ε(x) = log(1+x)
x

. The function ε(x) is defined in

0 only by continuous extension. Our algorithm answers for ‖ε(x)‖[−2−6;2−6]
∞ the following

‖ε(x)‖[−2−6;2−6]
∞ ∈ [541109425 · 2−29; 270554713 · 2−28]

This is equivalent to an accuracy of 29 correct bits; the computing precision has been
30 bits. Computation time is less than 1 second on current desktop machines.

2. The second example is the computation of a bound for the approximation error of the
polynomial p(x) = x− 1

2 ·x2+6004799503160663·2−54 ·x3−9007199254173073·2−55 ·x4+
3602879701310655 · 2−54 · x5 − 6004904200786859 · 2−55 · x6 + 40211673751819 · 2−48 · x7

with respect to the function f(x) = log(1+x) in the domain I = [−129 ·2−15; 129 ·2−15].
Our algorithm returns a lower and upper bound which are close enough that they can
both be considered as a result accurate up to 33 bits. The computing precision has
been 500 bits. Remark here that ε(x) is defined in 0 only by continuous extension and
ill-conditioned around this point. Computational time is around 3 minutes on current
desktop machines.

3. The third and last example shows that results returned by Maple’s infinite norm may
have no correct bit. Let be p(x) = x−9223372036854776725·2−64·x2+6148914691236520117·
2−64·x3−18446744071800930591·2−66·x4+7378697627908458209·2−65·x5−3074519401226530361·
2−64 ·x6+5270640148006219133·2−65 ·x7, f(x) = log(1+x) and ε(x) = p(x)−f(x). Our

algorithm returns for ‖ε(x)‖[−129·2−15;129·2−15]
∞ as an upper bound the value 0.13178021...·
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10−21, which is an approximation up to 99 bits according to the returned lower bound.
Maple 9.5’s infnorm returns a value 4 times higher than our upper bound. Thus, the
exponents are not the same and no bit of Maple’s result is correct. The intermediate
computing precision of Maple and of our algorithm are nevertless adjusted to the same,
i.e. approximately 165 bits.

6 Conclusion

We have given an algorithm for computing a self-validating interval result for the infinite norm
‖ε(x)‖I

∞ of an univariate function ε(x) ∈ C2 on some domain I. The algorithm can handle
ill-conditioned functions by overcoming ill-conditioning and resulting high deconcellation by
the usage of high intermediate (multi-) precision and (recursive) interval Taylor evaluation.
Functions with discontinuities in floating-point values that can be extended by continuity can
be handled by the use of L’Hôpital’s rule, too. The algorithm proves in this case automatically
that the L’Hôpital’s rule can be applied. Such functions are common as approximation errors
in the development of numerical algorithms, in particular, elementary functions.

The implementation of our algorithm is sufficiently performant for common problems on
current machines. Examples taken out of the development of crlibm[1], an implementation of
correct rounding elementary functions in double precision, can all be handled in some minutes
of computation.

The algorithm can retain its computational and decision tree for the generation of an
English written proof of an instance. Such a proof may be used in the certification process
of a numerical algorithm analysed with our infinite norm. Currently, generation of a PVS or
COQ readable proof is impossible because of the difficulty to handle transcendental functions.

We know some examples of functions, as for instance log
√

x√
x

whose derivatives, as they are

provided by our automatic differentiation algorithm, are numerical unstable and cannot be
handled by our algorithm. Nevertheless, these derivatives could be formally simplified and
brought to a evaluable form. In future our work, we will try to integrate a little more formal
simplification into the presented algorithm.

We are currently lacking knowledge of other algorithms and approaches with similar spec-
ifications to compare our algorithm and implementation with. Naturally, this might also be
due to the fact that our infinite norm problems arise only in particular situations and that
no concurrent approaches exist.
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