F. De-dinechin, C. Q. Lauter, and G. Melquiond, Assisted verification of elementary functions, 2005.
URL : https://hal.archives-ouvertes.fr/inria-00070330

F. De-dinechin, C. Q. Lauter, and J. Muller, Fast and correctly rounded logarithms in double-precision, RAIRO - Theoretical Informatics and Applications, vol.41, issue.1, 2005.
DOI : 10.1051/ita:2007003

URL : https://hal.archives-ouvertes.fr/inria-00070331

C. Daramy-loirat, D. Defour, F. De-dinechin, M. Gallet, N. Gast et al., CR-Libm, A library of correctly rounded elementary functions in doubleprecision (documentation) Disponiblè a l'adresse

J. Eve, The evaluation of polynomials, Numerische Mathematik, vol.8, issue.1, pp.17-21, 1964.
DOI : 10.1007/BF01386049

C. T. Fike, Methods of evaluating polynomial approximations in function evaluation routines, Communications of the ACM, vol.10, issue.3, pp.175-178, 1967.
DOI : 10.1145/363162.363200

C. Finot-moreau, Preuves et algorithmes utilisant l'arithmétique flottante normalisée IEEE, 2001.

S. Gal and B. Bachelis, An accurate elementary mathematical library for the IEEE floating point standard, ACM Transactions on Mathematical Software, vol.17, issue.1, pp.26-45, 1991.
DOI : 10.1145/103147.103151

J. Harrison, T. Kubaska, S. Story, and P. T. Tang, The computation of transcendental functions on the IA-64 architecture, Intel Technology Journal, 1999.

N. J. Higham, Accuracy and Stability of Numerical Algorithms, Society for Industrial and Applied Mathematics, 2002.
DOI : 10.1137/1.9780898718027

C. Jeannerod and G. Revy, Stability theorems for some polynomial evaluation schemes, pp.16-2006

D. E. Knuth, Evaluation of polynomials by computer, Communications of the ACM, vol.5, issue.12, pp.595-599, 1962.
DOI : 10.1145/355580.369074

D. E. Knuth, Seminumerical Algorithms, volume 2 of The Art of Computer Programming, 1987.

. Q. Ch and . Lauter, Basic buildings blocks for a triple-double intermediate format Rapport de recherche de l'INRIA-Rhône-Alpes (RR5702), 2005.

G. Melquiond, Gappa -génération automatique de preuves de propriétés arithmétiques

J. Muller, On the definition of ulp(x) Rapport de recherche de l'INRIA-Rhône-Alpes (RR5504), 2005.

J. Muller, Elementary Functions, Algorithms and Implementation, 2005.
URL : https://hal.archives-ouvertes.fr/ensl-00000008

M. L. Overton, Numerical computing with IEEE floating point arithmetic, Society for Industrial and Applied Mathematics (SIAM), 2001.
DOI : 10.1137/1.9780898718072

M. S. Paterson and L. J. Stockmeyer, On the Number of Nonscalar Multiplications Necessary to Evaluate Polynomials, SIAM Journal on Computing, vol.2, issue.1, pp.60-66, 1973.
DOI : 10.1137/0202007

S. Story and P. T. Tang, New algorithms for improved transcendental functions on IA-64, Proceedings 14th IEEE Symposium on Computer Arithmetic (Cat. No.99CB36336), pp.4-11, 1999.
DOI : 10.1109/ARITH.1999.762822

A. Ziv, Fast evaluation of elementary mathematical functions with correctly rounded last bit, ACM Transactions on Mathematical Software, vol.17, issue.3, pp.410-423, 1991.
DOI : 10.1145/114697.116813