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Abstract

Over the last decade, the theory of reproducing kernels has made a major breakthrough in the field of pattern recognition. It has led to

new algorithms, with improved performance and lower computational cost, for non-linear analysis in high dimensional feature spaces. Our

paper is a further contribution which extends the framework of the so-called kernel learning machines to time-frequency analysis, showing

that some specific reproducing kernels allow these algorithms to operate in the time-frequency domain. This link offers new perspectives in

the field of non-stationary signal analysis, which can benefit from the developments of pattern recognition and Statistical Learning Theory.

I. Introduction

Time-frequency and time-scale distributions provide a powerful tool for non-stationary signal analysis. Unlike con-

ventional spectral methods, they reveal the time-varying spectral content of one-dimensional signals by mapping them

into a two-dimensional time-frequency domain. Substantial theoretical work has been carried out in this direction and

has yielded many different classes of time-frequency distributions, parametric or otherwise, in which optimal solutions

for a given signal or task can be selected. As an example, distributions dedicated to signal analysis are studied in [1,2,3]

whereas optimal distributions for signal detection are considered in [4, 5].

Since the pioneering work of Aronszajin [6], pattern recognition based on reproducing kernel Hilbert spaces (RKHS)

has gained wide popularity. The most prominent recent developments include support vector machines (SVM) [7],

kernel principal component analysis (KPCA) [8], kernel Fisher discriminant analysis (KFDA) [9], and its generalization

to multiclass problems, kernel generalized discriminant analysis (KGDA) [10]. A key property behind such algorithms is

that they can be expressed in terms of inner products only, involving pairs of input data. Replacing these inner products

with a reproducing kernel provides an efficient way to implicitly map the data into a high, even infinite, dimensional

RKHS and apply the original algorithm in this space. Because calculations are then carried out without making

direct reference to the non-linear mapping of input vectors, this principle is commonly called the kernel trick. Kernel-

based algorithms are computationally very efficient, and generally have their generalization performance guaranteed by

Statistical Learning Theory [11,12].

With the exception of [13, 14], there are very few works combining kernel learning machines and time-frequency

analysis, although the interest in pattern recognition based on time-frequency representations remains strong. In [13],

the authors solve a signal classification problem using a SVM and a reproducing kernel expressed in the time-frequency

domain. Reproducing wavelet kernels are considered in [14] for non-parametric regression. Clearly, time-frequency



2

analysis still has not fully benefited from the rapid development of kernel learning machines. In this paper, we show

that some specific reproducing kernels allow any kernel learning machine to operate in the time-frequency domain. For

the sake of simplicity, we begin by describing our approach applied to the Wigner distribution. Next we apply it to

other time-frequency distributions. But before, let us briefly review the basics concepts of kernel learning machines.

II. Kernel learning machines: a brief review of basic concepts

Most kernel learning machines are statistical learning algorithms that take advantage of the geometric and regularizing

properties of RKHS, which are established by the kernel trick and the representer theorem [15, 16]. In this section, we

briefly introduce these concepts through an example.

A. Example of kernel-based method: the KPCA algorithm

Problems commonly encountered in machine learning start with a training set An containing n instances xi ∈ X

and, in a supervised context, their labels or desired outputs yi ∈ Y. The objective of the exercise is usually related to

feature extraction, density estimation or classification. Linear methods have played a crucial role in the development of

machine learning because of their inherent simplicity from conceptual and implementational points of view. However, in

many fields of current interest such as biological engineering and communications, it is necessary to deal with non-linear

complex phenomena. A possible way to extend the scope of linear learning machines is to map the input data from X

into a feature space F via a non-linear mapping φ(·). The n instances φ(xi) are then used as training samples. Clearly,

this basic strategy may fail when F is a very high, or even infinite, dimensional space. As shown below with the KPCA

algorithm, kernel learning machines overcome this limitation by using a powerful computational shortcut.

KPCA is a non-linear form of principal component analysis (PCA) which allows to extract features that are non-

linearly related to the input variables. Consider a set of n data points φ(xi) mapped into a feature space F and centered

at the origin, that is,
∑n

i=1 φ(xi) = 0. PCA is performed in F by solving the eigenvalue problem ΣΦ = µΦ with Φ 6= 0,

where Σ = 1
n

∑n

j=1 φ(xj)φ(xj)
⊤ is the covariance matrix. If F is infinite-dimensional, note that φ(xj)φ(xj)

⊤ may be

seen as the projection operator onto direction φ(xj). The problem becomes
∑n

j=1〈φ(xj),Φ〉φ(xj) = nµΦ, where 〈· , ·〉

is the inner product in F . Observe that any solution Φk with µk 6= 0 must lie in the span of φ(x1) . . . , φ(xn), and can

then be expanded as follows

Φk =
n∑

i=1

ai,k φ(xi). (1)

As detailed in [8], substituting this expression into the eigenvalue equation and multiplying it from the right by φ(xj),

we obtain the following eigenvalue problem:1 Kak = λk ak, where K is the n-by-n Gram matrix whose (i, j)-th entry

is 〈φ(xi), φ(xj)〉, and λk = nµk. The components of the k-th eigenvector ak of K are the ai,k’s defined in equation (1).

Finally, the k-th principal component can be extracted from any φ(x) by projecting it onto Φk, namely,

〈φ(x),Φk〉 =

n∑
i=1

ai,k 〈φ(x), φ(xi)〉. (2)

1The eigenvalue problem for non-centered data points φ(xi) in feature space F is given by: (K − 1nK − K1n + 1nK1n)ak = λk ak, with

K(i, j) = 〈φ(xi), φ(xj)〉 and 1n(i, j) = 1
n

[9].
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The most interesting characteristic of this algorithm is that the non-linear mapping φ(·) only appears in the form of

inner products 〈φ(xi), φ(xj)〉. Suppose we are given a kernel function κ : X × X → C with the property that there

exists a map φ : X → F such that for all xi, xj ∈ X , we have κ(xi, xj) = 〈φ(xi), φ(xj)〉. For a survey, see e.g. [6]. The

so-called kernel trick consists of substituting each inner product 〈φ(xi), φ(xj)〉 by κ(xi, xj). The power of this principle

lies in that the inner products in the feature space F are computed without explicitly carrying out or even knowing

the mapping φ(·), which results in computationally efficient algorithms. Classic examples of valid kernels are the q-th

degree polynomial kernel κ(xi, xj) = (1 + 〈xi, xj〉)
q and the Gaussian kernel κ(xi, xj) = exp(−‖xi − xj‖

2/2σ2), where σ

is the kernel bandwidth. Note that the feature space corresponding to the latter is infinite dimensional.

B. The kernel trick, the representer theorem

The kernel trick can be used to transform any linear data processing technique into a non-linear one, on the condition

that the algorithm can be expressed in terms of inner products only, involving pairs of the input data. This is achieved by

substituting each inner product 〈xi, xj〉 by a kernel κ(xi, xj), leaving the algorithm unchanged and incurring essentially

the same computational cost. In conjunction with the kernel trick, the representer theorem [15,16] is a solid foundation

of kernel-based methods such as SVM, KFDA, KGDA and KPCA. Consider the learning machine L(x) = 〈φ(x),Φ〉 and

the regularized risk functional
n∑

i=1

V (L(xi), yi) + λ‖L‖2, (3)

with V (L(x), y) the cost of predicting L(x) when the desired output is y, and λ a positive parameter. The representer

theorem states that, under very general conditions on the loss function V , any Φ ∈ F minimizing the criterion (3) admits

a representation of the form

Φ =

n∑
i=1

ai φ(xi). (4)

This leads to the well-known kernel expansion L(x) =
∑n

i=1 ai κ(x, xi). As an example, note that expressions (1) and (2)

arise as a direct consequence of this theorem when it is applied to the problem of PCA in feature space.

III. Time-frequency learning machines: general principles

The reason for time-frequency analysis is to give a mathematical core to the intuitive concept of time-varying Fourier

spectrum for non-stationary signals. For a survey, see [17,18] and references therein. Most of the parametric distributions

of current interest belong to the Cohen class, which has proven useful in identifying non-stationarities in signals produced

by a host of real-world applications. In this section, we investigate the use of kernel learning machines for pattern

recognition in the time-frequency domain. To clarify the discussion, we will first focus on the Wigner distribution, which

plays a central role in the Cohen class. This will be followed by an extension to other time-frequency distributions.

A. The Wigner distribution

Among the myriad of time-frequency representations that have been proposed, the Wigner distribution is considered

fundamental in a number of ways. Its usefulness derives from the fact that it satisfies many desired mathematical

properties such as the correct marginal conditions and the weak correct-support conditions [17, 18]. This distribution

is also a suitable candidate for time-frequency-based detection since it is covariant to time shifts and frequency shifts
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and it satisfies the unitarity condition [4]. Let X be a subspace of L2(C), the space of finite-energy complex signals,

equipped with the usual inner product 〈xi, xj〉 =
∫

t
xi(t)x∗

j (t) dt and its corresponding norm. The Wigner distribution

of any signal x ∈ X is defined as

Wx(t, f) =

∫
x(t + τ/2)x∗(t − τ/2) e−2jπfτ dτ. (5)

By applying conventional linear pattern recognition algorithms directly to time-frequency representations, we seek to

determine a time-frequency pattern Φ(t, f) so that

〈Wx,Φ〉 =

∫∫
Wx(t, f)Φ(t, f) dt df (6)

optimizes a given criterion of the general form (3). The principal difficulty encountered in solving such problems is that

they are typically very high dimensional, the size of Wigner distributions calculated from the training set being quadratic

in the length of signals. This makes pattern recognition based on time-frequency representations time-consuming, if

not impossible, even for reasonably-sized signals. With the kernel trick and the representer theorem, kernel learning

machines eliminate this computational burden. It suffices to consider the following kernel

κW (xi, xj) = 〈Wxi
,Wxj

〉, (7)

and note that Wxi
and Wxj

do not need to be computed since, by the unitarity of the Wigner distribution, we have

κW (xi, xj) = |〈xi, xj〉|
2. (8)

Any kernel learning machine proposed in the literature can then be used with the kernel (8) to perform pattern recognition

tasks in the time-frequency domain. The solution L(x) =
∑n

i=1 ai |〈x, xi〉|
2 guaranteed by the representer theorem allows

for a time-frequency distribution interpretation, L(x) = 〈Wx,ΦW 〉, with

ΦW =

n∑
i=1

ai Wxi
. (9)

We should again emphasize that the coefficients ai are estimated without calculating any Wigner distribution. The

time-frequency features are obtained from a decomposition into time-domain ones, which is an interesting consequence

of the kernel trick and the representer theorem that is worth mentioning. The time-frequency pattern ΦW can be

subsequently evaluated with (9), in an iterative manner, without suffering the drawback of storing and manipulating

a large collection of Wigner distributions. The inherent sparsity of the coefficients ai produced by most of the kernel

learning machines, a typical example of which is SVM, may speed-up the calculation of ΦW .

B. Example of time-frequency learning machine: the Wigner-based KPCA

We proceed now to illustrate the concept of time-frequency learning machines outlined above through an example

involving KPCA, described in Section II-A, and the Wigner distribution. There have been so many contributions related

to eigenvalue and singular value decompositions of time-frequency distributions that we can only mention one of the first

papers [19] and recent applications [20,21]. Consider a collection of n signals x1, . . . , xn, each of length d, and properly

aligned. KPCA can be adapted to operate directly on their Wigner distributions by using the kernel κW (xi, xj). The
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Fig. 1. First eigendistribution Φ1 obtained using (a) Wigner-based KPCA, (b) Chöı-Williams-based KPCA and (c) AOK algorithm applied

to the Wigner-based KPCA result. The experiments were carried out using a collection of 1000 signals, each of length 64, consisting of

a linear chirp and a Gaussian pulse in an additive white Gaussian noise with a standard deviation of 1.

central step of the algorithm is to perform eigendecomposition of the Gram matrix KW −1nKW −KW 1n+1nKW 1n, with

KW (i, j) = κW (xi, xj) and 1n(i, j) = 1
n
. Let the eigenvectors and eigenvalues be denoted by ak and λk, respectively,

with λ1 ≥ λ2 ≥ . . . The k-th principal component can be extracted from any signal x as follows

Lk(x) = 〈Wx,Φk〉 =
n∑

i=1

ai,k κW (x, xi), (10)

with Φk =
∑n

i=1 ai,k Wxi
, and ai,k the i-th component of ak. As shown in [9], the normalization requirement ‖Φk‖ = 1

leads to the condition λk‖ak‖
2 = 1. We call Φk the k-th eigendistribution. Note, however, that it is not a valid

time-frequency distribution in that no signal with time-frequency transform Φk necessarily exists. This approach is

summarized in Table I.

To show that KPCA is a potentially useful tool in time-frequency signal processing, a set of 1000 noisy signals of

length 64 was generated. Each signal was made up of a linear chirp with normalized frequency increasing from 0.2 Hz

to 0.45 Hz, a Gaussian pulse centered at time index 32 and normalized frequency 0.1 Hz, and an additive zero-mean

white Gaussian noise with a standard deviation of 1. This resulted in a signal-to-noise ratio of −5.1 dB in the time-

frequency domain. Wigner-based KPCA was performed to determine the eigendistributions Φk. Their calculation was

based on the discrete-time discrete-frequency Wigner distribution introduced in [23] since it satisfies most of properties

of its continuous counterpart (5), in particular unitarity. The first eigendistribution Φ1 represented in Figure 1(a) shows

that significant information has been successfully extracted from noisy data. The two signal components can be clearly

TABLE I

The Wigner-based KPCA algorithm

Instructions Complexity

1. Compute the Wigner distribution of each one of the n signals O(d2 log d) per signal [22]

2. Compute the Gram matrix KW (i, j) = κW (xi, xj) O(dn2)

3. Perform eigendecomposition of KW − 1nKW − KW 1n + 1nKW 1n O(n3)

4. Compute and normalize the eigendistributions Φk O(d2n) per eigendistribution
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Fig. 2. Computation times of KPCA and PCA applied to time-frequency distributions, as a function of the number n of 64-sample signals.

The Wigner distribution and the Chöı-Williams distribution are considered. The former is a unitary distribution whereas the latter is

not. All the codes were implemented in Matlab and run on a laptop PC with 1 GB RAM and Pentium M 1.60 GHz processor.

distinguished in it, as well as oscillating interferences that are characteristic of the Wigner distribution and often limit

its expertise. This observation is corroborated by an increase in signal-to-noise ratio of 8.5 dB for Wigner distributions

projected into the space spanned by the eigendistributions Φ1 and Φ2.

Applying standard PCA directly to the set of Wigner distributions would lead to the same result. However, this ap-

proach usually suffers from the high computational cost of calculating the d2-by-d2 covariance matrix of n time-frequency

distributions, each of size d-by-d, and performing its eigendecomposition. The complexities of these computationally

intensive steps are O(d4n) and O(d6), respectively. They replace instructions 2. and 3. of the Wigner-based KPCA

algorithm depicted in Table I, whose computational complexities are O(dn2) and O(n3), respectively. Figure 2 shows

the computation time of both methods plotted as a function of n, with d fixed to 64. As expected, it is almost linear

in n for PCA applied directly to Wigner distributions, and polynomial for Wigner-based KPCA. It can also be verified

that the latter is computationally more efficient than PCA as long as n is less than d2, a condition often satisfied

in practice. These conclusions remain valid for standard pattern recognition methods that require either inversion or

eigendecomposition of covariance matrices, such as FDA and GDA.

C. Application to other time-frequency distributions

Obviously, the concept of time-frequency learning machine is not limited only to the Wigner distribution. In this

subsection, we illustrate it with other popular time-frequency distributions, linear and quadratic.

The short-time Fourier transform is probably the most common example of linear time-frequency distribution. De-

noting by w(t) an analysis window localized around the origin of the time-frequency domain, it is defined by

Fx(t, f) =

∫
x(τ)w∗(τ − t) e−2jπfτ dτ, (11)

or, in an equivalent way, Fx(t, f) = 〈x,wt,f 〉 with wt,f (τ) = w(τ − t) e2jπfτ . The kernel function κF (xi, xj) = 〈Fxi
, Fxj

〉,
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namely,

κF (xi, xj) = ‖w‖2〈xi, xj〉. (12)

can be used with any kernel learning machine proposed in the literature. The solution guaranteed by the representer

theorem offers a time-frequency distribution interpretation: L(x) = 〈Fx,ΦF 〉 with ΦF =
∑n

i=1 ai Fxi
.

The use of quadratic forms in non-stationary signal analysis is motivated by the need to collect information on the

distribution of signal energy over time and frequency. Over the years, the Cohen class has received considerable attention

because it contains all the distributions Cx that are covariant with respect to time-frequency shifts applied to the signal.

These are taking the form

Cx(t, f) =

∫∫
Π(t′ − t, f ′ − f)Wx(t′, f ′) dt′ df ′ (13)

where Π is a weighting function. We can easily check that κC(xi, xj) = 〈Cxi
, Cxj

〉 is a valid kernel that can be used by

any kernel learning machine. The solution can further be rewritten as L(x) = 〈ΦC , Cx〉 with ΦC =
∑n

i=1 ai Cxi
. The

advantage of κC over κW is that the correlative form (13) can be exploited to improve the readability of ΦC , that may

be affected by the presence of troublesome oscillating interferences. Nevertheless, as can be seen on Figure 1(b) with

an example of Chöı-Williams-based KPCA, the same processing is simultaneously applied to interference terms and

signal components, removing the former ones and spreading out the latter. The most popular quasi-interference-free

distribution of the Cohen class is certainly the spectrogram. Formally defined as the squared magnitude of the short-time

Fourier transform, the spectrogram is related to the kernel κS(xi, xj) =
∫∫

|〈xi, wt,f 〉〈xj , wt,f 〉|
2 dt df . Other examples

of distributions include those that satisfy the unitary condition 〈Cxi
, Cxj

〉 = |〈xi, xj〉|
2, e.g., the Wigner distribution,

the Page distribution and the Rihaczek distribution. Kernel learning machines L(x) = 〈ΦC , Cx〉 based on unitary

distributions share the same kernel (8), and then have the same performance. They differ by their time-frequency

pattern ΦC , which can be computed directly or using ΦW as follows:

ΦC(t, f) =

∫∫
Π(t′ − t, f ′ − f)ΦW (t′, f ′) dt′ df ′. (14)

In the general case of non-unitary distributions, the calculation of κC(xi, xj) can be a time consuming part of training

processes since it explicitly involves pairs of d-by-d time-frequency distributions. Computing the Gram matrix KC thus

costs O(n2d2). Definition (13) shows that extra computation cost of O(d2) is also required to calculate time-frequency

distributions other than the Wigner distribution, but the whole computation also takes time of order O(d2 log d) per

distribution [22]. Computation times of Wigner-based and Chöı-Williams-based KPCA plotted in Figure 2 corroborate

this analysis. It can also be observed that Chöı-Williams-based KPCA is computationally more efficient than PCA as

long as n is strictly less than d2, that is, as long as the size of Gram matrix is less than the size of covariance matrix.

In applications where computation time is a crucial factor, we suggest a simple heuristic procedure to derive rules

of the form L(x) = 〈Cx,ΦC〉. It consists of training the kernel learning machine with κW (xi, xj) = |〈xi, xj〉|
2. The

time-frequency feature ΦC is then obtained from ΦW and equation (14). This strategy is clearly non-optimal when Cx

does not satisfy the unitarity condition. However, it greatly improves computational efficiency and also simplifies the

use of signal-dependent methods of designing Π. Figure 1(c) provides an example of time-frequency-based PCA followed



8

(a) (b)

tim
e

frequency

0 0

63

0.5

tim
e

frequency

0 0

63

0.5

Fig. 3. Discriminant information extracted by (a) Wigner-based KFDA and (b) Wigner-based SVM. The experiments were carried out using

two classes of 1000 signals, each of length 64, consisting of a frequency-modulated waves with a parabolic modulation and a Gaussian

pulse, respectively, in an additive white Gaussian noise with a standard deviation of 2.2.

by the AOK algorithm [2]. This result demonstrates a significant visual improvement over those given in Figures 1(a)

and 1(b). A complete analysis of this heuristic falls beyond the scope of this paper and will be addressed in the future.

D. Signal classification with time-frequency learning machines

The last ten years have seen an explosion of research in supervised [9, 10, 24] and unsupervised [25] classification

techniques based on kernels; see [26] for a recent survey. These include SVM, which map data into a high dimensional

space where the classes of data are more readily separable, and maximize the distance – or margin – between the sepa-

rating hyperplane and the closest points of each class [11]. SVM basically involve formulating the margin maximization

problem into dot product form in order to use kernels, and solving a quadratic programming problem to estimate the

parameters ai of the test statistic

L(x) =

n∑
i=1

ai κ(x, xi). (15)

The excellent performance of SVM has inspired countless works in discriminant analysis. In particular, KFDA is a

powerful method of obtaining non-linear Fisher discriminants. It also uses the kernel trick and the representer theorem

to design, via an eigenvalue problem, kernel-based classifiers of the form (15) that maximize the Rayleigh coefficient of

the between and the within class scatter matrices [9,24]. KGDA is an extension to this approach for handling multiclass

problems [10]. We are now going to illustrate the concept of time-frequency learning machines through supervised

classification problems involving SVM, KFDA and KGDA.

The first example deals with a binary classification task involving two classes of 1000 signals of length 64. Each

signal was consisting either of a Gaussian pulse centered at time index 32 and normalized frequency 0.1 Hz, or of a

frequency-modulated wave with a parabolic modulation between 0.1 Hz and 0.4 Hz, corrupted by an additive zero-mean

white Gaussian noise with a standard deviation of 2.2. Two time-frequency learning machines were evaluated, Wigner-

based SVM and Wigner-based KFDA, obtained from SVM and KFDA with κW (xi, xj). Preliminary experiments were

conducted on a cross-validation set of 1000 signals to select the best settings for each algorithm. The regularization
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Fig. 4. Error rates of time-frequency-based SVM and KFDA using various distributions of the Cohen class: Wigner (W), smoothed pseudo-

Wigner (SPW), Margenau-Hill (MH), Chöı-Williams (CW), Born-Jordan (BJ), reduced-interference with Hanning window (RIDH) and

spectrogram (SP). Same data as in Fig. 3.

parameter c of SVM was set to 1, and KFDA was regularized by adding 10−3 to the diagonal elements of within class

scatter matrix. Figure 3 provides, in both cases, the time-frequency pattern Φ that follows from the reformulation

of (15) in terms of Wigner distributions. The signal components can be clearly distinguished, showing that discriminant

information has been successfully extracted from training data. The positive orientation of the Gaussian pulse, and

the negative orientation of the frequency-modulated wave and its interference terms, allow the test statistic (15) to

increase the separability of the two competing classes of signals. Note that Figure 3(b) is more visually meaningful

than Figure 3(a), which is corroborated by the error rate of the Wigner-based SVM and the Wigner-based KFDA

estimated over a 10000-sample test set: 12.5% for the former and 13.9% for the latter. This illustrates the good

generalization ability of SVM that makes them so popular. Our approach enables this technique to be adapted for use

with time-frequency distributions. This experiment was extended to a wide variety of distributions of the Cohen class:

smoothed pseudo-Wigner, Margenau-Hill, Chöı-Williams, Born-Jordan, reduced-interference with Hanning window and

spectrogram. Parameters of these distributions were set to the default values proposed by the Matlab toolbox TFTB2.

Figure 4 shows that the best performance was obtained with the Wigner distribution, which means that the filtering

process (13) caused some loss of relevant information in the other distributions. Wigner-based learning machines were

also computationally the most efficient.

Given a m-class classification problem, KGDA provides (m − 1) test statistics of the form (15) that maximize the

Rayleigh ratio of between and within class scatter matrices. The classification of new data is then achieved by comparing

these test statistics to predetermined thresholds. As another application of time-frequency learning machines, we propose

here to perform KGDA with kernel κW (xi, xj). This example deals with a classification problem involving three classes

of 300 signals, each of length 64. Each signal was consisting either of a Gaussian pulse centered at time index 32 and

normalized frequency 0.25 Hz, of a 0.1 Hz sine wave, or of a frequency-modulated wave with a parabolic modulation

2The Time-Frequency Toolbox (TFTB) is downloadable from http://tftb.nongnu.org/.
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Fig. 5. The time-frequency patterns Φa and Φb, in (a) and (b) respectively, were extracted by Wigner-based GDA in a three-class classification

problem involving sine waves, frequency-modulated waves with a parabolic modulation and Gaussian pulses embedded in noise. In (c),

the training data are represented in the ΦaΦb plane.

between 0.15 Hz and 0.45 Hz. These signals were corrupted by an additive zero-mean white Gaussian noise with a

standard deviation of 0.45. Figures 5(a) and 5(b) represent the time-frequency patterns extracted by the Wigner-based

KGDA algorithm, denoted by Φa and Φb, respectively. Each signal can be easily distinguished in these distributions,

meaning that all the discriminant information has been successfully collected. In particular, note that the task of Φa is to

discriminate the parabolic modulation from the sine wave and the Gaussian pulse since the former is negatively oriented

while the latter are positively oriented. The time-frequency pattern Φb makes it possible to discriminate between the

parabolic modulation, which is almost absent, the sine wave and the Gaussian pulse, which are respectively negatively

and positively oriented. This analysis is confirmed in Figure 5(c), where each training data xi is represented in the ΦaΦb

plane by a point whose coordinates are 〈Wxi
,Φa〉 and 〈Wxi

,Φb〉. The class of parabolic modulations is characterized by

negative Φa-coordinates whereas the classes of sine waves and Gaussian pulses correspond to positive Φa-coordinates.

Along the Φb-axis, the coordinates of the sine waves, parabolic chirps and gaussian pulses are negative, close to zero

and positive, respectively.

IV. Conclusion

The theory of reproducing kernels enabled the development of new learning algorithms for pattern recognition, whose

formulation is independent of the representation space of data. Their success was largely influenced by the emerging

field of Statistical Learning Theory, which simultaneously provided fundamental bounds on achievable performance. In

this paper, we have focused our attention on the new concept of time-frequency learning machines. It takes advantage

of this progress for implementing universal learning machines that extract time-frequency information from signals. We

have illustrated the efficiency of these novel techniques for non-stationary signal analysis through unsupervised and

supervised learning problems. Time-frequency learning machines can be used in many other applications, such as blind

source separation [27] and filtering [28], where kernel-based methods have proved their efficiency. Their extension to

higher order distributions also seems feasible.

In ongoing studies, we are investigating kernel-based methodologies that could be advantageously used to solve re-

current problems in the field of non-stationary signal analysis. For instance, we have recently proposed a method for

selecting time-frequency distributions appropriate for given learning tasks [29]. It is based on a criterion that has
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recently emerged from the machine learning literature: the kernel-target alignment. Further work may contribute to

strengthen these connections with the most recent methodological and theoretical developments of pattern recognition

and Statistical Learning Theory, in order to offer new perspectives in the field of non-stationary signal analysis.
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