Time-frequency learning machines

Abstract : Over the last decade, the theory of reproducing kernels has made a major breakthrough in the field of pattern recognition. It has led to new algorithms, with improved performance and lower computational cost, for non-linear analysis in high dimensional feature spaces. Our paper is a further contribution which extends the framework of the so-called kernel learning machines to time-frequency analysis, showing that some specific reproducing kernels allow these algorithms to operate in the time-frequency domain. This link offers new perspectives in the field of non-stationary signal analysis, which can benefit from the developments of pattern recognition and Statistical Learning Theory.
Type de document :
Pré-publication, Document de travail
12 pages, 5 figures. To appear in IEEE Transactions on Signal Processing. 2006
Liste complète des métadonnées

Littérature citée [29 références]  Voir  Masquer  Télécharger

https://hal-ens-lyon.archives-ouvertes.fr/ensl-00118896
Contributeur : Patrick Flandrin <>
Soumis le : jeudi 7 décembre 2006 - 09:34:22
Dernière modification le : mardi 16 janvier 2018 - 14:43:08
Document(s) archivé(s) le : mardi 6 avril 2010 - 23:59:21

Fichier

TFlearningmachines.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : ensl-00118896, version 1

Collections

Citation

Paul Honeiné, Cédric Richard, Patrick Flandrin. Time-frequency learning machines. 12 pages, 5 figures. To appear in IEEE Transactions on Signal Processing. 2006. 〈ensl-00118896〉

Partager

Métriques

Consultations de la notice

153

Téléchargements de fichiers

125