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Multitaper Time-Frequency Reassignment for

Nonstationary Spectrum Estimation

and Chirp Enhancement
Jun Xiao and Patrick Flandrin,Fellow, IEEE

Abstract

A method is proposed for obtaining time-frequency distributions of chirp signals embedded in nonstationary

noise, with the twofold objective of a sharp localization for the chirp components and a reduced level of statistical

fluctuations for the noise. The technique consists in combining time-frequency reassignment with multitapering, and

two variations are proposed. The first one, primarily aimed at nonstationary spectrum estimation, is based on sums

of estimates with different tapers, whereas the second one makes use of differences between the same estimates

for a sake of chirp enhancement. The principle of the technique is outlined, its implementation based on Hermite

functions is justified and discussed, and some examples are provided for supporting the efficiency of the approach,

both qualitatively and quantitatively.

Index Terms

Multitapers, time-frequency, reassignment, chirps.

I. I NTRODUCTION

In nonstationary contexts, it is well-known [9] that Fourier-based methods of (time-varying) spectrum estimation

are classically faced with intrinsic limitations and different kinds of trade-offs: (i) from a statistical point of view,

the usual bias-variance trade-off inherent to any estimation procedure is amplified when analyzing nonstationary

stochastic processes, since time-averaging—aimed at reducing variance—introduces some bias not only in the

frequency direction but also in time; (ii ) from a geometrical perspective, windowing—aimed at guaranteeing a form

of local stationarity—ends up with a different kind of trade-off related to the time-frequency (TF) localization in

the case of chirp-like signals. Such difficulties have been recognized long ago, and numerous studies have tried to

address the problem. As far as localization is concerned, Wigner-based approaches have been developed and shown

to outperform windowed (Fourier or wavelet-based) methods, at least in the case of noise-free single chirps [9]. In
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more realistic situations of multi-chirps, a dramatic improvement over both Fourier and Wigner-based methods has

come from the use of thereassignmenttechnique [3], with an efficiency that is however limited to the cases where

the signal-to-noise ratio is high enough. Turning to the estimation issue in a statistical sense, different attempts

have been made to take advantage of the idea ofmultitapering, pioneered by D.J. Thomson in a stationary setting

[14], and thanks to which an improved statistical stability can be obtained without a time-averaging step. Numerous

extensions of multitaper techniques to nonstationary situations have been proposed, see, e.g., [6], [11] and, for a

more comprehensive covering of the topics and of the literature, [5], [16] and references therein. When extended

in a direct way, the “classical” method of multitapering suffers however still from the TF localization trade-off

mentioned above. Some attempts have been made to circumvent this limitation, in particular by identifying chirp-

like components and excising them prior applying the multitaper machinery [5]. The purpose of this paper is to

avoid such a complication and to rather combine multitapering (for a sake of variance reduction) with reassignment

(for localization).

More precisely, the paper is organized as follows. In Section II, the issue of nonstationary spectrum estimation is

briefly addressed, and the key concepts of reassignment and multitapering are recalled. A first combination of both

ideas is discussed in Section III-A, whose aim is to improve statistical stability while preserving TF localization.

This is achieved by summing estimates based on different tapers, the rationale being that such estimates tend

to behave as well-localized, weakly correlated, surrogate data whose sum combines coherently chirp components

and incoherently noise contributions. A companion perspective is then envisioned in Section III-B, which exploits

differences between estimates, the idea being in this case to get rid of noise by masking those regions where different

tapers lead to significantly different estimates. Quantitative performance evaluations are provided for supporting the

efficiency of the approach, and possibilities and limitations of both variations are illustrated in Section III-C by a

number of numerical experiments.

The algorithms related to this paper and the specific procedures used for producing most of the figures can be

freely obtained as Matlab routines [1]. These must be explicitly considered as part of the paper, since they not only

allow the readers to reproduce the claimed numerical results in a spirit of “reproducible research” (see, e.g., [2]),

but also to make their own variations on their production.

II. N ONSTATIONARY SPECTRUM ESTIMATION

Defining a time-varying “spectrum” for a nonstationary process{x(t), t ∈ R} is a question that has no unique

answer1. Among the various possibilities stands first theWigner-Ville Spectrum(WVS), whose definition reads:

Wx(t, f) =
∫ +∞

−∞
E
{

x
(
t +

τ

2

)
x∗
(
t− τ

2

)}
e−i2πfτdτ,

wheret andf refer to time and frequency, respectively, andE{.} stands for the expectation operator. This definition,

though not unique, presents the advantage of extending the usual concept ofPower Spectrum Density(PSD) and

1The brief overview in this Section summarizes classical results that are exposed, e.g., in [9], where further references and details can be

found.

October 6, 2006 DRAFT



IEEE TRANS. ON SIGNAL PROCESSING, VOL. XX, NO. XX, XX 200X 3

making it time-dependent in a rather natural way. Without entering into much details, it is worth recalling that the

WVS reduces to the PSD at every instant if the analyzed process happens to be stationary. Moreover, it satisfies

the important property of preserving time and frequency supports, and its marginal distributions are directly related

to meaningful quantities (variance in time, Loève’s distribution function in frequency).

If we now introduce the (non random) quantity

Wx(t, f) =
∫ +∞

−∞
x
(
t +

τ

2

)
x∗
(
t− τ

2

)
e−i2πfτ dτ,

which is referred to as theWigner-Ville Distribution(WVD), it can be shown that, under mild conditions, the WVS

of a process is nothing but the ensemble average of the WVDs of its possible realizations:

Wx(t, f) = E {Wx(t, f)} . (1)

Given one observed realization of a nonstationary process, estimating the WVS amounts to find a substitute

for the unattainable ensemble average entering eq.(1). One standard way is to assume forx(t) a form of local

stationarity in both time and frequency, i.e., some locally slow evolution of the WVS in the two directions. Such an

assumption paves the road for a replacement of the ensemble average at a given TF location by a local smoothing

over a neighbouring domain. This idea can be formalized by introducing a TF smoothing kernelΠ(t, f) and defining

as a WVS estimator the quantity:

Ŵx(t, f) =
∫ ∫ +∞

−∞
Wx(s, ξ)Π(s− t, ξ − f) ds dξ. (2)

This expression, which coincides withCohen’s classCx(t, f ; Π) for the observed realization, offers a unified

setting in which the two trade-offs mentioned previously (regarding fluctuations and localization) appear clearly. If

we consider for instance the toy example of a linear chirp embedded in broadband noise, the fluctuations of the

WVD due to noise will be smoothed out provided thatΠ(t, f) is low-pass. However, the WVD of the linear chirp

(which has the unique property of being perfectly localized along the instantaneous frequency) will be smoothed out

too. A way out is however possible by reconsidering the apparently contradictory issues of fluctuations reduction

and localization at the light of the two refinements offered by reassignment and multitapering.

A. Reassignment

The smoothing kernel in (2) isa priori arbitrary, and a possibility is to choose asΠ(t, f) the WVD of some

signal h(t) supposed to be well localized in both time and frequency, a property that carries over to its WVD.

Doing so, it is easy to show thatCx(t, f ;Wh) = S
(h)
x (t, f), whereS

(h)
x (t, f) is nothing but thespectrogramof

x(t) with window h(t), a TF distribution that is usually rather expressed as:

S(h)
x (t, f) =

∣∣∣F (h)
x (t, f)

∣∣∣2 , (3)

where

F (h)
x (t, f) =

∫ +∞

−∞
x(s)h(s− t) e−i2πfs ds
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stands for theShort-Time Fourier Transform(STFT).

A spectrogram appears therefore as an estimator for the WVS, with the well-known TF localization trade-off

attached to this type of distribution: the shorter the windowh(t), the better the time localization, but the poorer

the frequency localization, andvice versa. In this respect however, the alternative interpretation of the spectrogram

as a smoothed WVD (according to eq.(2)) rather than as a squared STFT (according to eq.(3)) gives the clue for

improving upon its localization limitations. Indeed, if we recall that the WVD of a linear chirp perfectly localizes

on a TF line, the spreading of any corresponding spectrogram just comes from the fact that, when centering the

analysis window at some TF point that does not belong to this line, a non-zero contribution is nevertheless obtained

as long as the line passes through the local TF window (whose joint support cannot be made arbitrarily small).

Reasoning by a mechanical analogy identifying energy with mass, the situation is as if a whole distribution of mass

within a domain (here, the TF window) would be replaced by one single number (the total mass) assigned to the

geometricalcenter of the domain. Such an assignment is clearly not well adapted to situations where the distribution

is not uniform over the domain, a much more meaningful assignment being thecenter of masswithin the domain.

This is precisely the essence of the “reassignment” technique [3], [10], which consists in (i) evaluating for each TF

location, not only the integrated signal WVD within the TF domain of the window (in other words, the spectrogram

value at this point), but also the center of mass of the signal WVD, and (ii ) reassigning the spectrogram value to

this location. In the idealized case where one single linear chirp intersects the TF window, it is clear that the center

of mass necessarily belongs to the line along which the WVD is localized, thus guaranteeing a perfect localization

of the spectrogram after its reassignment.

Previous studies [3], [10] have shown that an efficient evaluation of the local centers of mass(t̂t,f , f̂t,f ) can be

made implicitly, according to  t̂t,f = t + Re{F (T h)
x (t, f)/F

(h)
x (t, f)}

f̂t,f = f − Im{F (Dh)
x (t, f)/F

(h)
x (t, f)}

where the two additional windows needed in the computation are defined from the mother windowh(t) as(T h)(t) =

t h(t) and (Dh)(t) = (dh/dt)(t). Given the field of all above centroids, the reassigned spectrogramRS
(h)
x (t, f)

attached to the conventional spectrogramS
(h)
x (t, f) follows as:

RS(h)
x (t, f) =

∫ ∫ +∞

−∞
S(h)

x (s, ξ) δ(t− t̂s,ξ)δ(f − f̂s,ξ)dsdξ.

B. Multitapering

In the case of stationary processes, the spectral characterization is fully described by means of the PSDSx(f),

which could be thought of as:

Sx(f) = lim
T→∞

E

 1
T

∣∣∣∣∣
∫ +T/2

−T/2

x(t) e−i2πft dt

∣∣∣∣∣
2
 .

In practice, the above quantity is unattainable when only one realization of finite duration is given. The Squared

Fourier Transform (SFT) of a single observation is a crude, non consistent estimator, whose variance is of the order
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of the squared PSD [13]. Since an improvement can only come from averaging (almost) uncorrelated estimations, an

ergodic argument suggests to chop the observation into (almost) disjoint blocks and average their SFTs (a procedure

sometimes referred to as the Welch method of averaged periodograms). Adopting the notation of spectrograms, it

turns out that the corresponding (Welch) estimator can be written as:

Ŝx,W (f) =
1
K

K∑
k=1

S(h)
x (tk, f),

where the spacing∆ = tk+1 − tk between adjacenttk ’s is of the order of the window length. Assuming that

this spacing ensures an approximate decorrelation between blocks, one can expect that the variance is inversely

proportional to the number of blocksK (i.e., roughlyT/∆ for an observation of durationT ). Although variance

can be decreased this way by increasingK, the finite duration constraint necessarily leads to shorten∆, increasing

in turn the bias in frequency since a window of duration∆ has a frequency resolution of the order of1/∆.

In order to circumvent this trade-off, D.J. Thomson suggested [14] to still average SFTs stemming from (almost)

uncorrelated sequences in order to reduce variance, but to construct such sequences by using for each of them the

whole data set so as to not sacrifice bias. The way to achieve this program consists in projecting the observation

on a family of basis functions{hk(t), k ∈ N} that are orthonormal over the observation interval(−T/2,+T/2).

This results in a (Thomson) estimator that can be written as:

Ŝx,T (f) =
1
K

K∑
k=1

S(hk)
x (0, f), (4)

with all windowshk(t) extending over(−T/2,+T/2).

Assuming that the spectrum is flat over a given bandwidthB associated with the expected frequency resolution,

the basis can be obtained as the family of orthonormal functions (on the given time interval) that maximize their

energy in the given frequency band. The solution to this problem is given by the family of functions known as

the Prolate Spheroidal Wave Functionsor, in a discrete-time setting, as theDiscrete Prolate Spheroidal Sequences

(DPSS) [13].

Extending the approach to nonstationary situations is appealing [11], [16]. The main reason is that the inconsis-

tency (and large variance) of a PSD estimator based on a crude SFT directly carries over to spectrograms considered

as WVS estimators. The traditional way out would be to smooth over time and frequency, but at the expense of

further increasing bias. In this respect, resorting to multitapers allows for a variance reduction with a bias that only

sticks to the common length of the different windows. This is certainly an improvement as compared to (smoothed)

spectrograms with respect to statistical efficiency, but the question of TF resolution still remains not improved.

Wedding multitapering with reassignment is therefore proposed as the key for such an improvement.
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III. M ULTITAPER TIME-FREQUENCYREASSIGNMENT

A. Nonstationary Spectrum Estimation

1) Principle and implementation:The direct application of multitapering to nonstationary processes consists in

making the estimator (4) time-dependent according to [11], [16]:

Ŝx,T (f) → Sx,K(t, f) =
1
K

K∑
k=1

S(hk)
x (t, f),

with the functions{hk(t), k ∈ N} given again as a family of short-time windows. What we propose here is to

adopt the same strategy, but applied to reassigned spectrograms, i.e., to consider as a WVS estimator the quantity:

RSx,K(t, f) =
1
K

K∑
k=1

RS(hk)
x (t, f). (5)

The rationale for this approach can be justified in a twofold way: (i) as far as chirp components are concerned,

reassignment increases localization in a way that can be made independent of the window, thus permitting (5) to act

as acoherentaveraging; (ii ) in noise regions on the contrary, the same windows lead to uncorrelated surrogate data

whose TF distributions are different, (5) acting in this case as a form ofincoherentaveraging tending to smooth

the estimate.

In stationary spectrum estimation, multitapers are chosen as DPSSs because the data is of finite duration and

estimation concerns frequency only. In the nonstationary case, there is noa priori reason to dissymmetrize time and

frequency by choosing tapers that would be perfectly localized in the time domain rather than in frequency. Indeed,

it makes much more sense to fully exploit the two degrees of freedom offered by the TF plane and, as suggested in

[5], to rather pick up those functions that maximally concentrate in TF domains with elliptic symmetry. As shown

in [7] in the context of coherent states and in [8] within a Wigner framework, those functions are theHermite

functions (HF), whose definition is given by

hk(t) =
(
(t−D)kg

)
(t)/

√
π1/22kk!,

with g(t) = exp{−t2/2}. In practice, HFs can be computed recursively, according to

hk(t) = g(t) Hk(t)/
√

π1/22kk!,

where the{Hk(t), k ∈ N} stand for the Hermite polynomials that obey the recursion:

Hk(t) = 2 t Hk−1(t)− 2 (k − 2) Hk−2(t), k ≥ 2

with the initializationH0(t) = 1 andH1(t) = 2 t.

Not only the HFs are orthonormal, but they also guarantee a perfect localization of the corresponding reassigned

spectrograms in the case of a linear chirp, whateverk. This can be easily understood by noting that the WVD of a

HF (which is basically a 2D Laguerre function) has elliptic symmetry [5], [8]. Recalling that the WVD is covariant

with respect to dilations and rotations, it is enough to check that reassignment ends up with a perfect localization

in the case of a pure tone, which can be done by an elementary calculation.
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In the context of reassignment, HFs offer one further advantage, as compared to DPSSs. In the standard

implementation of spectrogram reassignment, only the mother windowh(t) has to be given and the two additional

windows (T h)(t) and (Dh)(t) that are needed are evaluated numerically [10]. This may cause difficulties when

differentiating tapers whose orderk is large, since they are highly oscillating. This problem can be circumvented

when using HFs since their successive derivatives also obey a recursion that can be explicitly plugged in the

algorithm, namely

(Dhk)(t) = (T hk)(t)−
√

2(k + 1) hk+1(t).

The effectiveness of this implementation of multitaper reassignment is illustrated in Fig. 1 which evaluates the

spreading of cumulative Hermite estimates in the case of a linear chirp and of a white Gaussian noise (wGn). The

measure used for this evaluation is a Rényi entropy of orderp, defined as [4]

Rp(P ) =
1

1− p
log2

N∑
n=1

N∑
m=1

(P [n, m])p ; p > 0,

for any normalized discrete TF distributionP [n, m] with N points in time andN frequency bins.

In the case where the distribution is perfectly localized on, say, the diagonal of the plane (the situation expected

to happen when reassigning the spectrogram of a linear chirp), we have ideallyPchirp[n, m] = δn,m/N and

Rp(Pchirp) = log2 N . This situation contrasts with that of a wGn whose distribution is expected to spread uniformly

all over the plane asPnoise[n, m] = 1/N2, thus leading toRp(Pnoise) = 2 log2 N . In the multitaper spectrogram

case (without reassignment), Fig. 1 evidences that the spreading can approach the theoretical prediction in the noise

case by increasing the maximum taper orderK, but at the expense of increasing at the same time the spreading in

the chirp case, with a minimum value (for a taper length matched to the chirp rate) that remains significantly large.

This contrasts with multitaper reassigned spectrograms which compare favourably with the theoretical prediction

for chirps for all Hermite tapers over a wide range of orders and lengths. Comparison is less favourable in the

noise case, but it is continuously improved when increasingK, without degrading the corresponding localization

for chirps.

2) Performance evaluation:In order to go beyond the numerical check described above, a first example is

concerned with the idealized situation of a bandpass filtered wGn within a time-limited support. Although not

strictly attainable (because of the uncertainty relation), the modelMD(t, f) for the WVS of such an observation is

the indicator function of a rectangle of areaD within the TF plane2. Fig. 2 illustrates what happens in such a case

by comparing the WVD and a sample (reassigned) spectrogram with the corresponding multitaper estimates based

on K = 10 Hermite functions. The two effects of reduced fluctuations and support preservation are clearly visible,

and ensemble averages (based on10 independent estimates) are also provided for supporting the effectiveness of

the approach and its improved convergence rate as compared to an empirical estimate of the WVS.

2As suggested by one of the reviewers, the evaluation could be carried out with the admissible model of a Gaussian modulated Gaussian

bandpass filtered white Gaussian noise. This model is detailed in [1], together with the associated Matlab codes, leading to results which proved

to be similar to those reported here.
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Fig. 1. Spreading of Hermite multitaper estimates. Both diagrams (left: spectrogram; right: reassigned spectrogram) display the

Rényi entropiesR5 of Hermite multitaper TF estimates, as a function of the taper length, and parameterized by the maximum

Hermite orderK, from K = 1 (dashed dotted line) toK = 10 (full line). A linear chirp signal and a sample of wGn (512 points

each) are considered, and the theoretical predictions corresponding to a perfect localization and a uniform spreading (R5 = 9

and18, respectively, see text) are superimposed as dotted lines.

Fig. 2 gives a qualitative account of the behaviour of the method, that can be supplemented by the quantitative

measure

E(K) =
1

‖MD‖1

∫ ∫ +∞

−∞

∣∣∣Ŵx,K(t, f)−MD(t, f)
∣∣∣ dt df, (6)

whereŴx,K(t, f) stands for the WVS estimate (Sx,K(t, f) or RSx,K(t, f)), the L1-norm being here chosen so

as to put emphasis on localization in the estimates.

Fig. 3 presents results with different domains, all rectangular and centered in the analyzed TF region, but with

different areasD. In the pure wGn case where the model support extends over the whole plane (in this case,D =

256), we observe for both spectrograms and reassigned spectrograms that the error measure behaves asymptotically

as E(K) ∝ K−1/2 when usingK tapers. In the spectrogram case, this can be justified since, for each taper, the
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Fig. 2. Comparison of noise WVS estimates. Each diagram represents a WVS estimate in the case of a wGn limited in time

and frequency within the superimposed rectangular domain. The first row consists of a spectrogram, its reassigned version and

the WVD, based on one realization. The corresponding multitaper estimates (10 Hermite functions) are given in the middle

row, whereas the bottom row displays ensemble averages of such estimates (10 independent realizations), together with the

empirical WVS estimate on the same data set. In each diagram, time is horizontal, frequency vertical and the energy is coded

logarithmically with a dynamic range of30 dB.

values are known to beχ2 distributed with2 degrees of freedom [13]. It follows from the orthogonality of the

tapers that the sum of theK first Hermite spectrograms is alsoχ2 distributed, but with2K degrees of freedom.

Given aχ2 distribution withν degrees of freedom:

pν(y) = yν/2−1 e−y/22−ν/2/Γ(ν/2); y ≥ 0,

its absolute mean deviation (the quantity on which the performance measure (6) is based) can be evaluated by using

October 6, 2006 DRAFT
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Fig. 3. Error measures in WVS multitaper estimates. The figure plots, as a function of the number of tapersK, the error

measure (6) attached to multitaper (reassigned) spectrograms when the model is a wGn limited in time and frequency over a

rectangular domain of areaD. The simulations have been conducted (with up toK = 15 Hermite tapers, each of length127)

on the basis of10 independent realizations of512 data points each, with256 frequency bins over the whole frequency range

[0, 1/2). In the pure wGn situation (D = 256), asymptotic decays inK−1/2 (see text) have been superimposed as dotted lines.

properties of the incomplete Gamma function. A simple calculation ends up with the result:∫ ∞

0

|y − ν| pν(y) dy = 4 (ν/2)ν/2 e−ν/2/Γ(ν/2).

and, for largeν’s, we can apply Stirling’s formula from which we get the asymptotic behavior:

lim
ν→∞

1
2

√
π

ν

∫ ∞

0

|y − ν| pν(y) dy = 1.

Specifying this result to the case whereν = 2K, we therefore justify that the sum ofK spectrograms based on

orthogonal tapers has an absolute mean deviation which varies asK1/2 for largeK ’s, leading to theK−1/2 behavior

for the meanSx,K(t, f). Although no proof is available yet, the experiments reported in Fig. 3 evidence a similar

behaviour for multitaper reassigned spectrogramsRSx,K(t, f), but with a higher level of fluctuations. However,

when the area of the domainD is reduced, the situation evolves quite differently for the two estimates: on the
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one hand,Sx,K is smoother thatRSx,K ; on the other hand,RSx,K is essentially confined to the non-zero support

of the model, whereasSx,K spreads outside this domain. The criterion (6) can therefore be viewed as a measure

of a trade-off between a “bias” term (due mostly to the existence of non-zero values outside the model domain)

and a “variance” term (related to non-constant values within the domain). In the case of pure wGn, no bias in the

aforementioned sense enters the measure andE(K) decreases whenK is increased. WhenD becomes smaller,

the variance reduction is balanced by a bias term increasing withK, since the higher the order of an Hermite

taper, the larger its TF support. This analysis applies to the spectrogram but not to the reassigned spectrogram,

since squeezing smeared spectra concentrates the error on the fluctuations term which globally decreases always

the same way. This is illustrated in Fig. 3, evidencing eventually crossings indicating that multitaper spectrograms

may be outperformed by their reassigned counterparts when localized components are to be analyzed.

3) Variations: While preserving the basic idea, different variations upon the method proposed above can be

considered. Indeed, the key point in the method is to combine different estimates, and the arithmetic means

used in the “classical” multitaper approach as well as in eq.(5) appears as one possibility only amongst others.

Comprehensive approaches have been reported [12] on such generalizations in the general context of optimally

combining different TF distributions, given some criterion to minimize. What has been shown is that arithmetic

averaging naturally results from the requirement that the combined distribution be at a minimumL2-distance of

all distributions to be combined. Changing the chosen distance ends up with different ways of averaging and, e.g.,

replacing theL2-distance by a Kullback-Leibler divergence leads to a geometrical mean instead of the arithmetic

one.

Given N positive numbers{Xn, n = 1, . . . N}, their arithmetic and geometric means, defined respectively as

A(X1, . . . XN ) =
1
N

N∑
n=1

Xn;G(X1, . . . XN ) =

(
N∏

n=1

Xn

)1/N

are clearly such that

log G(X1, . . . XN ) = A(log X1, . . . log XN ),

evidencing that geometrically averaging quantities essentially amounts to arithmetically averaging their logarithms.

In the context of multitaper spectrum estimation, this corresponds to applying the machinery to log-spectra, a

possibility that has been explored in [15] in a stationary context, and that can be adapted to nonstationary situations.

Given the fact that reassigned spectrograms have a high variability, crude geometric means could tend to favor the

small (or even zero) values that might appear in one individual estimate only. A possible improvement is to first

jacknifing estimates based on arithmetic means prior their geometric averaging. In other words, an alternative to

the procedure previously described is

R̃Sx,K(t, f) = exp

{
1
K

K∑
k=1

log R̃S
(hk)

x (t, f)

}
,

with

R̃S
(hk)

x (t, f) =
1

K − 1

K∑
m=1,m 6=k

RS(hm)
x (t, f).
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This variation is proposed as an option in the Matlab routines available at [1], but it has been observed to lead to

results (not reported here) that were similar, or only incrementally improved. It was however worth mentioning it

since the use of log-distributions that underlies the idea of geometrical averaging proved useful in the companion

approach described in the following Section.

B. Chirp Enhancement

1) Principle and implementation:The previous Section, aimed at reducing variability in nonstationary spectrum

estimation while preserving localization of chirp components, was based on an idea of averaging, i.e., of anadditive

combination of estimates obtained from different tapers. Making use of similar arguments now based ondifferences,

a companion perspective can be envisioned for a sake of chirp enhancement, i.e., of displaying at best localized chirp

components in the TF plane while getting rid of noise. The rationale for this new approach can be justified by the

following twofold argument: (i) as far as signal components are concerned and as mentioned above, reassignment

increases localization whatever the window: reassigned spectrograms obtained from different tapers are thus expected

to be similar, so that their differences take on small values; (ii ) in noise regions on the contrary, the same set of

windows lead to weakly correlated surrogate data whose TF distributions are significantly different, leading in this

case to large values for their differences.

What we propose therefore is to consider such differences between the estimates based on the different tapers.

As for “sums”, “differences” can be considered in a generalized sense and, in accordance with the usual way of

displaying spectra in dB units (see figures),logarithmsof TF estimates will be used. In fact, evaluating differences

between log-distributions just amounts to evaluating ratios between the distributions themselves, leading to define

as a measure of average difference between estimates based on successive tapers the quantity:

RSDx,K(t, f) =
1

K − 1

K−1∑
k=1

RS(hk+1)
x (t, f)

RS(hk)
x (t, f)

. (7)

It is this quantity that is proposed to be thresholded in order to distinguish between the (“coherent”) signal

components and the (“incoherent”) noise regions. More precisely, the idea is (i) to define a binary mask function

taking on zero values for those TF points where the criterion (7) differs significantly from unity, and (ii ) to

multiply this mask with the average reassigned spectrogramRSx,K(t, f), so as to end up with a masked distribution

RSMx,K(t, f) expected to preserve the chirp components while erasing most of the noise. In practice however, we

cannot expect to completely get rid of noise by averaging a limited number of difference distributions. Therefore,

a threshold is proposed to be first applied to the average reassigned spectrogramRSx,K(t, f) so as to get a pre-

denoised versionRSPx,K(t, f). Proceeding from this point as above, this pre-processing leads, after masking, to

a final, combined estimateRSFx,K(t, f). Interestingly, the binary nature of the two masking functions involved in

the two thresholding operations detailed above allows to write

RSFx,K(t, f) =
√

RSP x,K(t, f).RSMx,K(t, f),

thus making of the combined estimateRSFx,K(t, f) the geometric meanof the two distributions based on the

(thresholded)sumsanddifferencesof the individual taper estimates.
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A key question in the approach is of course the choice of the thresholds. Since no theory is available yet for the

probability distribution function of reassigned spectrograms (and,a fortiori, of their ratios), a pragmatic approach

is to set the threshold values on the basis of numerical experiments. The nominal values given in [1] and used in

the examples reported here have been determined this way (for details about this determination, see [1]), and they

proved to guarantee fairly robust estimations in a large variety of experimental setups. The pre-denoising threshold

Tp—applied toRSx,K(t, f)—was chosen according to a given (“detection”) probabilityPp for rejecting the null

hypothesis of wGn. Similarly, the masking thresholdTd—applied toRSDx,K(t, f)—was chosen so as to guarantee

some prescribed (“false alarm”) probabilityPd for the rectified quantity|RSDx,K(t, f)− 1|+ 1 in the wGn case.

In practice,Tp (resp.,Td) turned out to essentially depend on(1−Pp)K (resp.,PdK), with typical valuesTp ≈ 7

times the empirical mean ofRSx,K(t, f) for Pp ≈ 0.95 andTd ≈ 1.5 for Pd ≈ 0.05 whenK ranges in between4

and8.

2) Performance evaluation:In order to test the relevance of the proposed methodology, one of the simplest

cases to consider is concerned with a pure tone (signal with constant frequency and amplitude) embedded in a

background of zero-mean wGn. Fig. 4 illustrates what happens in such a case with SNR= 10 dB. The two effects

of reduced noise and support preservation of the localized signal component thanks to using differences are clearly

visible, as well as the impact of pre-denoising for a sake of a further noise reduction.

Fig. 4 gives a qualitative account of the behaviour of the method, which can be supplemented by the quantitative

measure

C(SNR) =
1

‖Ŵx,K‖1

∫ +∞

−∞
Ŵx,K(t, f0) dt, (8)

whereŴx,K(t, f) stands for the WVS estimate (RSx,K(t, f), RSP x,K(t, f), RSMx,K(t, f) or RSF x,K(t, f)),

and f0 is the actual frequency of the tone. The criterion (8), which can be interpreted as a contrast measure, is

illustrated in Fig. 5 for different SNRs ranging from−40 to +40 dB. Comparing the criterion for the4 different

estimates, two regimes are observed: for SNR< 0 dB, the method of pre-denoising (Ŵx,K(t, f) = RSP x,K(t, f)) is

more efficient than the one based on differences only (Ŵx,K(t, f) = RSMx,K(t, f)), whereas the latter outperforms

the former when SNR> 0 dB. This situation is uniformly improved when combining the two estimates according

to Ŵx,K(t, f) = RSF x,K(t, f).

C. Examples

Only schematic examples have been considered so far, and this Section is devoted to slightly more elaborated

ones. In this respect and for a sake of comparison, we first consider in Fig. 6 the case already discussed in [5] and

[6], with both a (nonlinear) chirp component and a (bandpass) time-varying noise. Concerning spectrum estimation,

the effectiveness of the approach is clearly supported by this example which evidences the good trade-off achieved

between TF localization along the chirp and smoothness within the (time-varying) frequency band of the noise. As

far as chirp enhancement is concerned, the final combined estimate identifies in a very localized way the frequency

trajectory while erasing most of the noise.
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S1 RS1 RS

RSP RSM RSF

Fig. 4. Comparison of WVS estimates: pure tone in stationary noise. Each diagram represents a WVS estimate in the case of

one realization of a pure tone embedded in wGn with SNR =10 dB. The first row consists of a spectrogram (left), its reassigned

version (middle) and the corresponding multitaper reassigned estimate (based on4 Hermite functions), whereas the bottom row

displays the pre-denoised reassigned spectrogram (left), the masked reassigned spectrogram (middle) and the final combined

estimate (right). In each diagram, time is horizontal, frequency vertical and the energy is coded logarithmically with a dynamic

range of30 dB.

As a second example, we consider the case where two chirps (a linear one added to the nonlinear one of the

previous example) are closely superimposed, with crossings of their instantaneous frequencies in the TF plane,

some transient noise being added in a disjoint domain. The overall behaviour of the different estimates is similar

to what has been observed in Fig. 6, with the noticeable additional benefit for the combined estimate of improving

upon the suppression of the interference terms existing between the two closely spaced chirps.
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Fig. 5. Contrast in the case of a pure tone embedded in wGn. The figure plots, as a function of SNR, the measure (8) for each

WVS estimate (see text). The simulations have been conducted (with4 Hermite tapers, each of length155), on the basis of10

independent realizations of512 data points each, with256 frequency bins over the whole frequency range[0, 1/2). The dotted

vertical line corresponds to the SNR used in Fig. 4.

IV. CONCLUSION AND PERSPECTIVES

A novel approach, combining reassignment and multitapering, has been proposed for better estimating time-

varying spectra with possibly localized components. The general principles of the approach have been outlined

and illustrated, leaving room for many possible extensions. Some possible variations (related to the choice of the

averaging type) have been mentioned but, in the specific context of reassignment, other possibilities are offered

which are worth to be explored further such as, e.g., combining reassignment vector fields and not only reassigned

distributions. More fundamentally, both the performance evaluation in the spectrum estimation context and the

tuning of parameters (such as thresholds) for chirp enhancement call for a theoretical analysis of the statistics of

reassigned spectrograms.
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S1 RS1 RS

RSP RSM RSF

Fig. 6. Comparison of WVS estimates: one chirp in time-varying noise. Each diagram represents a WVS estimate in the case

of one realization of a nonlinear chirp signal embedded in time-varying Gaussian noise with SNR =5 dB. Same display as in

Fig. 4, the limits of the noise TF domain being superimposed as dot-dash lines.

REFERENCES

[1] http://perso.ens-lyon.fr/patrick.flandrin/multitfr.html

[2] http://www-stat.stanford.edu/ donoho/Reports/1995/wavelab.pdf

[3] F. Auger and P. Flandrin, “Improving the readability of time-frequency and time-scale representations by the reassignment method,”IEEE

Trans. Signal Proc., vol. SP-43(5), pp. 1068–1089, 1995.

[4] R.G. Baraniuk, P. Flandrin, A.J.E.M. Janssen, O. Michel, “Measuring time-frequency information content using the Rnyi entropies,”IEEE

Trans. on Info. Th., Vol. 47(4), pp. 1391–1409, 2001.

[5] M. Bayram and R.G. Baraniuk, “Multiple window time-varying spectrum estimation,” inNonlinear and Nonstationary Signal Processing

(W.J. Fitzgerald et al., eds.), pp. 292–316, Cambridge Univ. Press, 2000.
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[7] I. Ḑaubechies, “Time-frequency localization operators: A geometric phase space approach,”IEEE Trans. Info. Th., vol. 34(4), pp. 605-612,

1988.

[8] P. Flandrin, “Maximum signal energy concentration in a time-frequency domain,” inProc. IEEE Int. Conf. Acoust., Speech and Signal

Proc. — ICASSP’88, (New York, NY), pp. 2176–2179, 1988.

[9] P. Flandrin,Time-Frequency/Time-Scale Analysis, Academic Press, 1999.

[10] P. Flandrin, F. Auger and E. Chassande-Mottin, ”Time-Frequency Reassignment — From Principles to Algorithms,” inApplications in

Time-Frequency Signal Processing(A. Papandreou-Suppappola, ed.), Chap. 5, pp. 179-203, CRC Press, 2003.

[11] G. Frazer and B. Boashash, “Multiple window spectrogram and time-frequency distributions,” inProc. IEEE Int. Conf. Acoust., Speech

and Signal Proc. — ICASSP’94, (Adelaide, AU), Vol. IV, pp. 293–296, 1994.

[12] P.J. Loughlin, J. Pitton and B. Hannaford “Approximating time-frequency density functions via optimal combinations of spectrograms,”

IEEE Signal Proc. Lett., vol. 1(12), pp. 199–202, 1994.

[13] D.B. Percival and A.T. Walden,Spectral Analysis for the Physical Sciences, Cambridge Univ. Press, 1993.

[14] D.J. Thomson, “Spectrum estimation and harmonic analysis,”Proc. IEEE, vol. 70, pp. 1055–1096, 1982.

[15] D.J. Thomson, “Jacknifing multiple-window spectra,” inProc. IEEE Int. Conf. Acoust., Speech and Signal Proc. — ICASSP’94, (Adelaide,

AU), Vol. 6, pp. VI.73–VI.76, 1994.

October 6, 2006 DRAFT



IEEE TRANS. ON SIGNAL PROCESSING, VOL. XX, NO. XX, XX 200X 18

[16] D.J. Thomson, “Multitaper analysis of nonstationary and nonlinear time series data,” inNonlinear and Nonstationary Signal Processing

(W.J. Fitzgerald et al., eds.), pp. 317–394, Cambridge Univ. Press, 2000.

[17] J. Xiao and P. Flandrin, “Multitaper time-frequency reassignment,” inProc. 14th European Signal Proc. Conf. — EUSIPCO-06, (Florence,

I), 2006.

October 6, 2006 DRAFT


