Analysis of path integrals at low temperature : Box formula, occupation time and ergodic approximation

Abstract : We study the low temperature behaviour of path integrals for a simple one-dimensional model. Starting from the Feynman-Kac formula, we derive a new functional representation of the density matrix at finite temperature, in terms of the occupation times of Brownian motions constrained to stay within boxes with finite sizes. From that representation, we infer a kind of ergodic approximation, which only involves double ordinary integrals. As shown by its applications to different confining potentials, the ergodic approximation turns out to be quite efficient, especially in the low-temperature regime where other usual approximations fail.
Type de document :
Article dans une revue
Journal of Statistical Physics, Springer Verlag, 2007, 128 (6), pp.1391-1414. 〈10.1007/s10955-007-9346-5〉
Liste complète des métadonnées

https://hal-ens-lyon.archives-ouvertes.fr/ensl-00102965
Contributeur : Thierry Dauxois <>
Soumis le : mardi 3 octobre 2006 - 09:12:49
Dernière modification le : mardi 16 janvier 2018 - 14:44:52
Document(s) archivé(s) le : mardi 6 avril 2010 - 17:22:27

Fichiers

Identifiants

Collections

Citation

Sébastien Paulin, Angel Alastuey, Thierry Dauxois. Analysis of path integrals at low temperature : Box formula, occupation time and ergodic approximation. Journal of Statistical Physics, Springer Verlag, 2007, 128 (6), pp.1391-1414. 〈10.1007/s10955-007-9346-5〉. 〈ensl-00102965〉

Partager

Métriques

Consultations de la notice

99

Téléchargements de fichiers

76