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Abstract—We present techniques for accelerating the floating-point computation

of x=y when y is known before x. The proposed algorithms are oriented toward

architectures with available fused-mac operations. The goal is to get exactly the

same result as with usual division with rounding to nearest. It is known that the

advanced computation of 1=y allows performing correctly rounded division in one

multiplication plus two fused-macs. We show algorithms that reduce this latency to

one multiplication and one fused-mac. This is achieved if a precision of at least

nþ 1 bits is available, where n is the number of mantissa bits in the target format,

or if y satisfies some properties that can be easily checked at compile-time. This

requires a double-word approximation of 1=y (we also show how to get it). These

techniques can be used by compilers to accelerate some numerical programs

without loss of accuracy.

Index Terms—Computer arithmetic, floating-point arithmetic, division by software,

division with fused-mac, compilation optimization.

�

1 MOTIVATION OF THIS RESEARCH

WEwish to provide methods for accelerating floating-point (FP for
short) divisions of the form x=y, when y is known before x, either at
compile-time (i.e., y is a constant; in such a case, much
precomputation can be performed) or at runtime. We want to get
the result more quickly than by just performing a division, yet with
the same accuracy: We need a correctly rounded value, as required
by the IEEE 754 Standard for FP arithmetic [1], [6].

Divisions by constants are a clear application of our work.

There are other applications, for instance, when many divisions by

the same y are performed (an example is Gaussian elimination).
We assume that a fused multiply-accumulator is available and

that division is done in software (this happens, for instance, on

RS6000, PowerPC, or Itanium architectures). In this paper, we

focus on rounding to nearest only. Presentation of conventional

division methods can be found in [4], [9], [12].

2 INTRODUCTION

For computing x=y when y is known in advance, a naive approach

consists of computing the reciprocal of y (with rounding to nearest)

and then, once x is available, multiplying the obtained result by x.

It is well-known that such a “naive method” does not always

produce a correctly rounded result. And yet, if the probability of

getting an incorrect rounding was small enough, one could choose

to use that method anyway, to check if the result is correctly

rounded and to perform some correction step when this is not the

case. Also, one could imagine that there might exist some values of

y for which the naive method always work (for any x). For these

reasons, we have decided to dedicate a short section to the analysis
of the naive method.

Our main approach starts as previously: Once x is known, it is
multiplied by the precomputed reciprocal of y. Then, a “remain-
der” is computed and used to correct the final result. This does not
require testing. That approach looks like the final steps of a
Newton-Raphson division. It is clear from the literature that the
iterative algorithms for division require an initial approximation of
the reciprocal of the divisor and that the number of iterations is
reduced by having a more accurate initial approximation. Of
course, this initial approximation can be computed in advance if
the divisor is known, but some care is needed to get correctly
rounded results at low cost.

In Section 5.1, we show that, under some conditions on y, that
could be checked at compile-time, we can return a correctly
rounded quotient using one multiplication and one fused-mac. In
Section 5.2, we show that, if a larger internal precision than the
target precision is available (one more bit suffices), then we can
always return a correctly rounded quotient using one multi-
plication and one fused-mac.

To make this paper easier to read and to save space, we have
put all proofs, tables, intermediate lemmas, and supplementary
material in an appendix which can be found on the Computer
Society Digital Library at http://computer.org/tc/archives.htm or
on our own web site [2].

3 DEFINITIONS AND NOTATIONS

Define IMn as the set of exponent-unbounded, n-bit mantissa,
binary FP numbers (with n � 1), that is:

IMn ¼ M � 2E; 2n�1 � M � 2n � 1;M;E 2 ZZ
� �

[ f0g:

It is an “ideal” system, with no overflows or underflows. We will
show results in IMn. These results will remain true in actual
systems that implement the IEEE-754 standard, provided that no
overflows or underflows do occur. The mantissa of a nonzero
element M � 2E of IMn is the number mðxÞ ¼ M=2n�1.

We assume that the reader is familiar with the notions of
rounding modes, ulps, floating-point successor, and predecessor.
See [6] for definitions. In the following, ��ðtÞ means t rounded to
the nearest even, �dðtÞ means t rounded to �1, and �uðtÞ means t
rounded to þ1.

4 PRELIMINARY RESULTS

4.1 The Naive Method

As said in the introduction, we have to evaluate x=y and y is
known before x, where x and y belong to IMn. An obvious solution
consists of precomputing z ¼ 1=y (or, more precisely, z rounded-
to-nearest, that is, zh ¼ ��ð1=yÞ) and then multiplying x by zh. We
will refer to this as “the naive method.” We assume round-to-
nearest mode.

4.1.1 Maximum Error of the Naive Solution

Property 1. The naive solution returns a result that is at most at distance

1:5 ulps from the exact result if mðxÞ < mðyÞ (reminder: mðuÞ is the
mantissa of u) and 1 ulp from the exact result if mðxÞ � mðyÞ.

Property 1 gives tight bounds: There are values x and y for
which the naive solution leads to an error very close to 1:5 ulps.
More precisely,

Property 2. We have shown [2] that the maximum error of the naive

algorithm can be obtained through a reasonably fast algorithm. This

maximum error converges to 1:5 ulps as n ! 1.
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For instance, in the IEEE-754 double precision format (n ¼ 53),

the division of x ¼ 268;435;449
134;217;728 by y ¼ 9;007;199;120;523;265

4;503;599;627;370;496 by the naive

algorithm leads to an error equal to 1:4999999739 � � � ulps.

4.1.2 Probability of Getting a Correctly Rounded Result Using

the Naive Solution

For the first few values of n, we have computed, through

exhaustive testing, the proportion of couples ðx; yÞ for which the

naive method gives an incorrectly rounded result. The proportion

seems to converge, as n grows, to a constant value that is around

27 percent. More precisely,

Conjecture 1. Assuming a uniform distribution of the mantissas of

FP numbers, rounding to nearest, and n bits of mantissa, the

probability that the naive method returns a result different from

��ðx=yÞ goes to 13=48 ¼ 0:2708 � � � as n goes to þ1.

This conjecture is a “half-conjecture” only since we have a rough

sketch of a proof [2]. This tends to show that, for any n, the naive

method gives a proportion of incorrectly rounded results that is far

too large to be neglected.

4.1.3 Values of y for which the Naive Method Always Works

Depending on n, there are a very few values of y for which the

naive method always works (i.e., for all values of x). For instance,

for n ¼ 13, the four values of y between 1 and 2 for which the naive

method always works are 1, 4; 411=4; 096, 4; 551=4; 096, and

4; 915=4; 096. We are not able to compute them much faster than

by exhaustive testing, which does not allow us to tackle the most

interesting values of n, namely, 24, 53, and 113.

4.2 Division with One Multiplication and Two Fused-Macs

On some modern processors (such as the PowerPC, the IBM

RISCSystem/6000 [11], and IA64-based architectures [3], [10]), a

fused-multiply accumulate instruction (fused-mac) is available.

This makes it possible to evaluate an expression axþ b with one

final rounding only, which facilitates software implementation of

division and elementary functions. Let us now investigate how

such an instruction can be used to solve our problem. The

following result (see the work of Markstein [3], [10], [11] for this

kind of algorithm) shows that one multiplication and two fused-

macs allow us to get correctly rounded results.

Theorem 1 (Division with one multiplication and two fused-

macs [10], [11]). Algorithm 1, given below, always returns the

correctly rounded (to nearest) quotient ��ðx=yÞ.

Algorithm1(Divisionwithonemultiplicationandtwofused-macs.

. In advance, evaluate zh ¼ ��ð1=yÞ;

. As soon as x is known, compute q ¼ ��ðxzhÞ, r ¼ ��ðx� qyÞ,
and q0 ¼ ��ðq þ rzhÞ;

This method requires one division before x is known, one

multiplication and two fused-macs once x is known. In the

following section, we try to design a faster algorithm. Unfortu-

nately, either there are a few (predictable) values of y for which it

does not work or it requires the availability of an internal precision

slightly larger than the target precision.

5 PROPOSED TECHNIQUES

5.1 Division with One Multiplication and One Fused-Mac

Using the method presented in Section 3.2, we could compute x=y

using one multiplication and two fused-macs, once x is known. Let

us show that, in many cases, one multiplication and one fused-mac

(once x is known) do suffice. To do this, we need a double-word

approximation to 1=y. Let us first see how can such an
approximation be computed.

5.1.1 Preliminary Result: Getting a Double-Word

Approximation to 1=y

Kahan [7] explains that the fused-mac allows us to compute
remainders exactly. This is done as follows.

Property 3. Let x; y; q 2 IMn such that q 2 �dðx=yÞ; �uðx=yÞf g. The
remainder r ¼ x� qy is computed exactly with a fused-mac. That is,
��ðx� qyÞ ¼ x� qy.

The algorithms we are going to examine require a double-word
approximation to 1=y, that is, two FP values zh and z‘ such that
zh ¼ ��ð1=yÞ and z‘ ¼ ��ð1=y� zhÞ. The only reasonably fast
algorithm we know for getting these values requires a fused-
mac. Using Property 3, zh and z‘ can be computed as follows.

Property 4. Assume y 2 IMn, y 6¼ 0. The following sequence of three
operations computes zh and z‘ such that zh ¼ ��ð1=yÞ and
z‘ ¼ ��ð1=y� zhÞ:

zh ¼ ��ð1=yÞ; � ¼ ��ð1� yzhÞ; z‘ ¼ ��ð�=yÞ:

5.1.2 The Algorithm

We assume that, from y, we have computed zh ¼ ��ðzÞ, and
z‘ ¼ ��ðz� zhÞ, where z ¼ 1=y (for instance, using Property 4). We
suggest the following 2-step method:

Algorithm2 (Divisionwithonemultiplication andone fused-mac)

Compute: q1 ¼ ��ðxz‘Þ and q2 ¼ ��ðxzh þ q1Þ.
This algorithm almost always works and, for n � 7, it always

works. Exhaustive searching [2] shows that, for n � 29, there are
more than 98.7 percent of values of y for which the algorithm
returns a correctly rounded quotient for all values of x (these
figures have been obtained through exhaustive checking). More-
over, in the other cases (see the proof of Theorem 2 in [2]), for a
given y, there is at most one value of the mantissa of x (that can be
computed in advance) for which the algorithm may return an
incorrectly rounded quotient.

Theorem 2. Algorithm 2 gives a correct result (that is, q2 ¼ ��ðx=yÞ) as
soon as at least one of the following conditions is satisfied:

1. The last mantissa bit of y is a zero;
2. jz‘j < 2�n�2�e, where e is the exponent of y (i.e.,

2e � jyj < 2eþ1);
3. Algorithm 3, given below, returns true when the input value

is the integer Y ¼ y� 2n�1�ey , where ey is the exponent of y
(Y is the mantissa of y, interpreted as an integer).

Algorithm 3. We give the algorithm as a Maple program (to make it
more didactic). If it returns “true,” then Algorithm 2 always returns a
correctly rounded result when dividing by y. It requires the availability of
2nþ 1-bit integer arithmetic.

TestY := proc(Y,n)

local Pminus, Qminus, Xminus, OK, Pplus, Qplus,

Xplus;

Pminus := (1/Y) mod 2^(n+1);

# requires computation of a modular inverse

Qminus := (Pminus-1) / 2; Xminus := (Pminus * Y - 1) /

2^(n+1);

if (Qminus >= 2^(n-1)) and (Xminus >= 2^(n-1))

then OK := false

else

OK := true;
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Pplus := 2^(n+1)-Pminus; Qplus := (Pplus-1) / 2;

Xplus := (Pplus * Y + 1) / 2^(n+1);

if (Qplus >= 2^(n-1)) and (Xplus >= 2^(n-1))

then OK := false end if; end if;

print(OK)

end proc;

Translation of Algorithm 3 into a C or Fortran program is easily

done since computing a modular reciprocal modulo a power of

two requires a few operations only, using the extended Euclidean

GCD algorithm [8]. Algorithm 3 also computes the only possible

mantissa X for which, for the considered value of Y , Algorithm 2

might not work. Hence, if the algorithm returns false, it suffices to

check this very value of X to know if the algorithm will always work

or if it will work for all Xs but this one.
Let us discuss the consequences of Theorem 2.

. Condition “the last mantissa bit of y is a zero” is easily
checked on most systems. Hence, that condition can be
used for accelerating divisions when y is known at
runtime, soon enough1 before x. That condition allows us
to accelerate half divisions;

. Assuming a uniform distribution of z‘ in
ð�2�n�1�e;þ2�n�1�eÞ, which is reasonable (see [5]), Condi-
tion “jz‘j < 2�n�2�e” allows us to accelerate half of the
remaining cases;

. Our experimental testings up to n ¼ 24 show that Condi-
tion “Algorithm 3 returns true” allows us to accelerate
around 39 percent of the remaining cases (i.e., the cases for
which the last bit of y is a 1 and jz‘j � 2�n�2�e). If
Algorithm 3 returns false, then checking the only value of
x for which the division algorithm might not work suffices
to deal with all remaining cases. This requires much more
computation: It is probably not interesting if y is not
known at compile-time.

5.2 If a Larger Precision than Target Precision Is
Available

A larger precision than the target precision is frequently available.

A typical example is the double extended precision that is

available on Intel microprocessors. We now show that, if an

internal format is available, with at least nþ 1-bitmantissas (which

is only one bit more than the target format), then an algorithm very

similar to Algorithm 2 always works. In the following, �t:þpðxÞ
means x rounded to nþ p bits, with rounding mode t. Define

z ¼ 1=y. We assume that, from y, we have computed zh ¼ ��ðzÞ and
z‘ ¼ ��:þ1ðz� zhÞ. They can be computed through:

zh ¼ ��ð1=yÞ; � ¼ ��ð1� yzhÞ; z‘ ¼ ��:þ1ð�=yÞ:

We suggest the following 2-step method:

Algorithm 4 (Division with one multiplication and one fused-

mac). Compute:

q1 ¼ ��:þ1ðxz‘Þ; q2 ¼ ��ðxzh þ q1Þ:

Theorem 3. Algorithm 4 always returns a correctly rounded quotient.

If the first operation returns a result with more than nþ 1 bits,

the algorithm still works. We can, for instance, perform the first

operation in double extended precision if the target precision is

double precision.

6 COMPARISONS

Let us give an example of a division algorithm used on an

architecture with an available fused-mac. In [10], Markstein

suggests the following sequence of instructions for double-

precision division on IA-64. The intermediate calculations are

performed using the internal double-extended format. The first

instruction, frcpa, returns a tabulated approximation to the

reciprocal of the operand, with at least 8:886 valid bits. When two

instructions are put on the same line, they can be performed “in

parallel.” The returned result is the correctly rounded quotient

with rounding mode �t.
Algorithm 5 (Double precision division. This is Algorithm 8.10

of [10])

1. z1 ¼ frcpaðyÞ;
2. e ¼ ��ð1� yz1Þ;
3. z2 ¼ ��ðz1 þ z1eÞ; e1 ¼ ��ðe� eÞ;
4. z3 ¼ ��ðz2 þ z2e1Þ; e2 ¼ ��ðe1 � e1Þ;
5. z4 ¼ ��ðz3 þ z3e2Þ;
6. q1 ¼ ��ðxz4Þ;
7. r ¼ ��ðx� yq1Þ;
8. q ¼ �tðq1 þ rz4Þ.

This algorithm requires eight FP latencies, and uses 10 instruc-

tions. The last three lines of this algorithm are Algorithm 1 of this

paper (with a slightly different context since Algorithm 5 uses

extended precision). Another algorithm also given by Markstein

(Algorithm 8.11 of [10]) requires seven FP latencies only, but uses

11 instructions. The algorithm suggested by Markstein for

extended precision is Algorithm 8.18 of [10]. It requires eight FP

latencies and uses 14 FP instructions.
These figures show that replacing conventional division x=y by

specific algorithms whenever y is a constant or division by the

same y is performed many times in a loop is worth being done. For

double-precision calculations, this replaces seven FP latencies by

three (using Algorithm 1) or two (using Algorithm 2 if y satisfies

the conditions of Theorem 2 or Algorithm 4 if a larger internal

precision—e.g., double-extended precision—is available). There-

fore, whenever an even slightly larger precision is available (one

more bit suffices), Algorithm 4 is of interest. Algorithm 2 is

certainly interesting when the last bit of y is a zero and, possibly,

when jz‘j < 2�n�2�e. In the other cases, the rather large amount of

computation required by checking whether that algorithm can be

used (we must run Algorithm 3 at compile-time) limits its use to

divisions by constants in applications for which compile time can

be large and running time must be as small as possible.

7 CONCLUSION

We have presented several ways of accelerating a division x=y,

where y is known before x. Our methods could be used in

optimizing compilers, to make some numerical programs run

faster, without any loss of accuracy. Algorithm 1 always works and

does not require much precomputation (so it can be used even if y

is known a few tens of cycles only before x). Algorithm 2 is faster

and yet it requires much precomputation (for computing zh and z‘
and making sure that the algorithm works), so it is more suited for

division by a constant. Algorithm 4 always works and requires two

operations only once x is known, but it requires the availability of a

slightly larger precision.

REFERENCES

[1] ANSI and IEEE, “IEEE Standard for Binary Floating-Point Arithmetic,”
ANSI/IEEE Standard, Std 754-1985, 1985.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 8, AUGUST 2004 1071

1. The order of magnitude behind this “soon enough” highly depends on
the architecture and operating system.



[2] N. Brisebarre, J.-M. Muller, and S.K. Raina, “Supplementary Material to
’Accelerating Correctly Rounded Floating-Point Division when the Divisor
Is Known in Advance’,” http://computer.org/tc/archives.htm or http://
perso.ens-lyon.fr/jean-michel.muller/fpdiv.html, 2004.

[3] M. Cornea-Hasegan and B. Norin, “IA-64 Floating-Point Operations and
the IEEE Standard for Binary Floating-Point Arithmetic,” Intel Technology J.,
Q4, 1999.

[4] M.D. Ercegovac and T. Lang, Division and Square Root: Digit-Recurrence
Algorithms and Implementations. Boston: Kluwer Academic, 1994.

[5] A. Feldstein and R. Goodman, “Convergence Estimates for the Distribution
of Trailing Digits,” J. ACM, vol. 23, pp. 287-297, 1976.

[6] D. Goldberg, “What Every Computer Scientist Should Know about
Floating-Point Arithmetic,” ACM Computing Surveys. vol. 23, no. 1, pp. 5-
47, Mar. 1991.

[7] W. Kahan, “Lecture Notes on the Status of IEEE-754,” http://http.cs.
berkeley.edu/~wkahan/ieee754status/ieee754.ps, 1996.

[8] D. Knuth, The Art of Computer Programming, vol. 2. Reading, Mass.: Addison
Wesley, 1973.

[9] I. Koren, Computer Arithmetic Algorithms, Englewood Cliffs, N.J.: Prentice
Hall, 1993.

[10] P.W. Markstein, IA-64 and Elementary Functions: Speed and Precision.
Hewlett-Packard Professional Books, Prentice Hall, 2000.

[11] P.W. Markstein, “Computation of Elementary Functions on the IBM Risc
System/6000 Processor,” IBM J. Research and Development, vol. 34, no. 1,
pp. 111-119, Jan. 1990.

[12] S.F. Oberman and M.J. Flynn, “Division Algorithms and Implementations,”
IEEE Trans. Computers, vol. 46, no. 8, pp. 833-854, Aug. 1997.

1072 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 8, AUGUST 2004


