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A New Range-Reduction Algorithm
Nicolas Brisebarre, David Defour, Peter Kornerup, Member, IEEE,

Jean-Michel Muller, Senior Member, IEEE, and Nathalie Revol

Abstract—Range-reduction is a key point for getting accurate elementary function routines. We introduce a new algorithm that is fast

for input arguments belonging to the most common domains, yet accurate over the full double-precision range.

Index Terms—Range-reduction, elementary function evaluation, floating-point arithmetic.

�

1 INTRODUCTION

ALGORITHMS for the evaluation of elementary functions
give correct results only if the argument is within a

given small interval, usually centered at zero. To evaluate
an elementary function fðxÞ for any x, it is necessary to find
some “transformation” that makes it possible to deduce
fðxÞ from some value gðx�Þ, where

. x�, called the reduced argument, is deduced from x;

. x� belongs to the convergence domain of the
algorithm implemented for the evaluation of g.

In practice, range-reduction needs care for the trigonometric
functions. With these functions, x� is equal to x� kC, where
k is an integer and C an integer multiple of �=4. Also of
potential interest is the case C ¼ lnð2Þ for the implementa-
tion of the exponential function.

A poor range-reduction method may lead to catastrophic
accuracy problems when the input argument is large or
close to an integer multiple of C. It is easy to understand
why a poor range-reduction algorithm gives inaccurate
results. The naive method consists of performing the
computations

k ¼ x

C

j k
x� ¼ x� kC;

usingmachine precision.When kC is close to x, almost all the
accuracy, if not all, is lost when performing the subtraction
x� kC. For instance, if C ¼ �=2 and x ¼ 8248:251512, the
correct value of x� is �2:14758367 � � � � 10�12, and the
corresponding value of k is 5; 251. Directly computing

x� k�=2 on a calculator with 10-digit decimal arithmetic
(assuming rounding to the nearest and replacing �=2 by the
nearest exactly representable number), then one gets
�1:0� 10�6. Hence, such a poor range-reduction would
lead to a computed value of cosðxÞ equal to �1:0� 10�6,
whereas the correct value is �2:14758367 � � � � 10�12.

A first solution to overcome the problem consists of

using arbitrary-precision arithmetic, but this may make the

computation much slower. Moreover, it is not that easy to

predict on the fly the precision with which the computation

should be performed.
Most common input arguments to the trigonometric

functions are small (say, less than 8) or sometimes medium
(say, between 8 and approximately 260). They are rarely
huge (say, greater than 260). We want to design methods
that are fast for the frequent cases, and accurate for all cases.
A rough estimate, based on SUN fdlibm library, is that the
cost of trigonometric range-reduction—when reduction is
necessary—is approximately one third of the total function
evaluation cost.

First, we describe Payne and Hanek’s method [11], which

provides an accurate range-reduction, but has the drawback

of being fairly expensive in term of operations; this method

is very commonly implemented; it is used in the SUN

fdlibm library in particular.

To know with which precision the intermediate calcula-

tions must be carried on to get an accurate result, one must

know the worst cases, that is, the input arguments that are

hardest to reduce. Also, to estimate the average perfor-

mance of the algorithms (and to tune them so that these

performances are good), one must have at least a rough

estimate of the statistical distribution of the reduced

arguments. These two problems are dealt with at the end

of this section.

In the second section, we present our algorithm

dedicated to the reduction of small and medium size

arguments. In the third section, we compare our method

with some other available methods, which justifies the use

of our algorithm for small and medium size arguments.

1.1 The Payne and Hanek Reduction Algorithm

We assume in this section that we want to perform range-
reduction for the trigonometric functions, with C ¼ �=4,
and that the convergence domain of the algorithm used for
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evaluating the functions contains1 I ¼ ½0; �=4�. An adapta-
tion to other cases is straightforward.

From an input argument x, we want to find the reduced
argument x� and an integer k that satisfy:

k ¼ 4

�
x

� �
x� ¼ �

4

4

�
x� k

� �
: ð1Þ

Once x� is known, it suffices to know k mod 8 to calculate
sinðxÞ or cosðxÞ from x�. If x is large or if x is very close to a
multiple of �=4, the direct use of (1) to determine x� may
require the knowledge of 4=� with very large precision and
a cost-expensive multiple-precision computation if we wish
the range-reduction to be accurate.

Now, let us present Payne and Hanek’s reduction
method [11], [12]. Assume an n-bit mantissa, radix 2
floating-point format (the number of bits n includes the
possible hidden bit; for instance, with an IEEE double-
precision format, n ¼ 53). Let x be the positive floating-
point argument to be reduced and let e be its unbiased
exponent, so

x ¼ X � 2e�nþ1;

where X is an n-bit integer satisfying 2n�1 � X < 2n.
We can assume e � �1 (since, if e < �1, no reduction is

necessary). Let

�0:��1��2��3��4��5 . . .

be the infinite binary expansion of � ¼ 4=� and define an
integer parameter p used to specify the required accuracy of
the range-reduction. Then, rewrite � ¼ 4=� as

Leftðe; pÞ � 2n�eþ2

þ Middleðe; pÞ þRightðe; pÞð Þ � 2�n�e�1�p;

where

Leftðe; pÞ ¼ 0 if e < nþ 2
�0��1 � � ��n�eþ2 otherwise;

Middleðe; pÞ ¼ �n�eþ1�n�e � � ���n�e�1�p;
Rightðe; pÞ ¼ 0:��n�e�2�p��n�e�3�p � � � :

8>><
>>:

Fig. 1 shows the splitting of the binary expansion of �.
The basic idea of the Payne-Hanek reduction method is

to notice that, if p is large enough, Middleðe; pÞ contains the
only bits of � ¼ 4=� that matter for the range-reduction.

Since

4

�
x ¼ Leftðe; pÞ �X � 8

þMiddleðe; pÞ �X � 2�2n�p

þRightðe; pÞ �X � 2�2n�p;

the number Leftðe; pÞ �X � 8 is a multiple of 8 so that, once
multiplied by �=4 (see (1)), it will have no influence on the
trigonometric functions. Rightðe; pÞ �X � 2�2n�p is less
than 2�n�p; therefore, it can be made as small as desired
by adequately choosing p.

How p is chosen will be explained in Section 2.3.

1.2 Worst Cases

Assume we want the reduced argument to belong to
½�C=2; C=2Þ. Define xmod� C as the number y 2
½�C=2; C=2Þ such that y ¼ x� kC, where k is an integer.

There are two important points that must be considered
when trying to design accurate yet fast range-reduction
algorithms.

. First, what is the “worst case”? That is, what will be
the smallest possible absolute value of the reduced
argument for all possible inputs in a given format.
That value will allow us to immediately deduce the
precision with which the reduction must be carried
on to make sure that, even for the most difficult
cases, the returned result will be accurate enough.

. What is the statistical distribution of the smallest
absolute values of the reduced arguments? That is,
given a small value �, what is the probability that the
reduced argument will have an absolute value less
than �? This point is important if we want to design
algorithms that are fast for the most frequent cases
and remain accurate on all cases.

Computing the worst case is rather easy, using an
algorithm due to Kahan [4] (a C program that implements
the method can be found at http://http.cs.berkeley.edu/
~wkahan/. A Maple program is given in [9]). The algorithm
uses the continued-fraction theory. For instance, a few
minutes of calculation suffice to find the double-precision
number between 8 and 263 � 1 that is closest to a multiple of
�=4. This number is:

��=4 ¼ 6411027962775774� 2�48

� 22:776546738526000979:

The distance between ��=4 and the closest multiple of �=4 is

��=4 � 3:094903� 10�19 � 0:71� 2�61:

So, if we apply a range-reduction from a double-precision
argument in ½8; 263 � 1� to ½��=4; �=4Þ and if we wish to get
a reduced argument with relative accuracy better than 2��,
we must perform the range reduction with absolute error
better than 2���61.

Also, the double-precision number greater than 8 and
less than 710 which is closest to a multiple of lnð2Þ is:

�lnð2Þ ¼ 7804143460206699� 2�49

� 13:8629436111989061:

The distance between�lnð2Þ and the closestmultiple of lnð2Þ is

�lnð2Þ � 1:972015� 10�17 > 2�56:

In that case, we considered only numbers less than 710 since
exponentials of numbers larger than that are mere over-
flows in double-precision arithmetic.
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1. In practice, we can reduce to an interval of size slightly larger than C
to facilitate the reduction.

Fig. 1. The splitting of digits of 4=� in Payne and Hanek’s reduction

method.



1.3 Statistical Distribution of the Reduced
Arguments

Now, let us turn to the statistical distribution of reduced

arguments.

We assume that C is a positive fractional multiple of � or

lnð2Þ. Let emin and emax be two rational integers such that

2emin � C=2 < 2eminþ1 and emin � emax.

Let p 2 IN such that 2�pþ1 � C, our aim is to estimate the

number of floating-point numbers x with n-bit mantissas

and exponents between emin and emax such that

jxmod� Cj < 2�p; ð2Þ

where xmod� C is defined as the unique number y 2
½�C=2;þC=2Þ such that y ¼ x� kC, where k is an integer.

Let E be a rational integer such that emin � E � emax. As

2�pþ1 � C,wehave2�p < 2eminþ1 � 2Eþ1. Therefore,2�p � 2E ,

i.e., pþE � 0.

We start by estimating the number of floating-point

numbers x with n-bit mantissas and exponent E that satisfy

(2). Hence, we search for the j 2 IN, 2n�1 � j � 2n � 1, such

that the inequality

kC � j

2n�1
2E

����
���� < 2�p ð3Þ

has solutions in k 2 ZZ. Such k necessarily satisfy

1

C
� 1

2p
þ j

2n�1
2E

� �
< k <

1

C

1

2p
þ j

2n�1
2E

� �
: ð4Þ

We note that, as pþ E � 0 and j � 2n�1, the left-hand side

of (4) is positive. Hence,

max 1;
1

C
� 1

2p
þ 2E

� �� �� 	
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

mE

� k � 1

C

1

2p
þ 2Eþ1 � 2E

2n�1

� �� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ME

ð5Þ

since 2n�1 � j � 2n � 1 and these inequalities are sharp

since the upper bound in (4) is irrational and the lower

bound is either zero or an irrational number. The number of

possible k is exactly

NE ¼ME �mE þ 1: ð6Þ

Inequality (3) is equivalent to

kC2n�1�E � j
�� �� < 2n�1�p�E: ð7Þ

Hence, for every k satisfying (5), there are exactly

min 2n � 1; bkC2n�1�E þ 2n�1�p�Ec
� �

�
max 2n�1; dkC2n�1�E � 2n�1�p�Ee

� �
þ 1

ð8Þ

integers j solutions since the numbers kC2n�1�E � 2n�1�p�E

and kC2n�1�E þ 2n�1�p�E are irrational (we saw before that

k 6¼ 0).
As 2�pþ1 � C, if k � mE þ 1, we have

2n�1 � dkC2n�1�E � 2n�1�p�Ee

and, if k �ME � 1, we have

2n � 1 � bkC2n�1�E þ 2n�1�p�Ec:

Now, to analyze (8), we have to distinguish two cases.
First case: 2n�1�p�E � 1=2, i.e., n� E � p.
This case is the easy one and (7) yields the conclusion. For

every k, mE þ 1 � k �ME � 1, there are exactly 2n�p�E

integer solutions j since the numbers kC2n�1�E � 2n�1�p�E

and kC2n�1�E þ 2n�1�p�E are irrational.Whenk 2 fmE;MEg,
we can only say that there are at least 1 and at most 2n�p�E

integer solutions j. Notice that these solutions can easily be

enumerated by a program. Therefore, the number of

floating-point numbers x with n-bit mantissas and expo-

nent E that satisfy (2) is upper bounded by NE2
n�p�E , and

lower bounded by ðNE � 2Þ2n�p�E þ 2.
Second case: 2n�1�p�E < 1=2, i.e., n�E < p.
We need results about uniform distribution of sequences

[8] that we briefly recall now.
For a real number x, fxg denotes the fractional part of x,

i.e., fxg ¼ x� bxc and jjxjj denotes the distance from x to

the nearest integer, namely,

jjxjj ¼ min
n2ZZ
jx� nj ¼ minðfxg; 1� fxgÞ:

Let us recall the following definitions from [8].

Definition 1. Let ðxnÞn�1 be a given sequence of real numbers.

Let N be a positive integer.
For a subset E of ½0; 1Þ, the counting function AðE;N; ðxnÞÞ

is the number of terms xn, 1 � n � N , for which fxng 2 E.
Let y1; . . . ; yN be a finite sequence of real numbers. The

number

DNððynÞÞ ¼ sup
0�a<b�1

Að½a; bÞ;N ; ðynÞÞ
N

� ðb� aÞ
����

����
is called the discrepancy of the sequence y1; . . . ; yN . For an

infinite sequence ðxnÞ of real numbers (or for a finite sequence

containing at least N terms), DNððxnÞÞ is meant to be the

discrepancy of the initial segment formed by the first N terms

of ðxnÞ.

Thus, in particular, the number of values xn with 1 �
n � N satisfying fxng 2 ½a; bÞ, for any 0 � a < b � 1, is

bounded from above by N


ðb� aÞ þDNððxnÞÞ

�
. Hence, the

number of values kC2n�1�E , with mE � k �ME , that satisfy

(7), i.e., that satisfy 0 � fkC2n�1�Eg < 2n�1�p�E or 1�
2n�1�p�E < fkC2n�1�Eg < 1 is bounded from above by

NE

�
2n�p�E þ 2DNE

ððkC2n�1�EÞÞÞ.
Definition 2. Let � be a positive real number or infinity. The

irrational number � is said to be of type � if � is the supremum

of all � for which lim inf q!1;

q2IN
q�jjq�jj ¼ 0.

Theorem 3.2 from [8, chapter 2] states the following

result:

Theorem 1. Let � be of finite type �. Then, for every " > 0, the

discrepancy DNðuÞ of u ¼ ðn�Þ satisfies

DNðuÞ ¼ OðN ð�1=�Þþ"Þ:
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Let us apply this theorem to values of interest for this

paper, namely, C ¼ q lnð2Þ and C ¼ q� with q 2 QQ�.

. If C is a nonzero fractional multiple of lnð2Þ.
We know from [2] that any nonzero fractional

multiple of lnð2Þ has a type � 2:9. Thus, the number

of floating-point numbers xwith n-bitmantissas and

exponent E that satisfy (2) is upper bounded by

2n�p�EðNE þOðNE
ð19=29Þþ"ÞÞ for every " > 0.

. If C is a nonzero fractional multiple of �.
We know from [3] that any nonzero fractional

multiple of � has a type � 7:02. Hence, the number

of floating-point numbers xwith n-bitmantissas and

exponent E that satisfy (2) is upper bounded by

2n�p�EðNE þOðNE
ð301=351Þþ"ÞÞ for every " > 0.

From this theorem, we can deduce the following result.

Proposition 1. Let C be a positive fractional multiple of � or

lnð2Þ. Let emin and emax be two rational integers such that

2emin � C=2 < 2eminþ1 and emin � emax. Let p 2 IN such that

2�p � C=2. The number �E of floating-point numbers x with

n-bit mantissas and exponent E between emin and emax such

that

jxmod� Cj < 2�p ð9Þ

satisfies

. 2n�p�EðNE � 2Þ þ 2 � �E � 2n�p�ENE i f
n�E � p. In that case, �E is easily computable by a
program;

. �E ¼ 2n�p�EðNE þOðNE
�þ"ÞÞ i f n�E < p, f or

every " > 0, with � � 19=29 for C nonzero fractional
multiple of lnð2Þ and � � 301=351 for C nonzero
fractional multiple of �;

where

NE ¼
1

C

1

2p
þ 2Eþ1 � 2E

2n�1

� �� �

� 1

C
� 1

2p
þ 2E

� �� �
þ 1:

From this proposition, numerous experiments, and a

well-known result by Khintchine [5], [6] that states that

almost all real numbers are of type 1, we can assume that,

for any E, we have

�E � 2n�p�ENE

� �
: ð10Þ

We have checked this result by computing all reduced

arguments for some values of n, emin, and emax such that

this exhaustive computation remains possible in a reason-

able delay. Some obtained results are given in Figs. 2, 3,

and 4. These results show that the estimate provided by

(10) is a good one. These estimates will be used at the

end of Section 2.3.
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Fig. 2. Actual number of reduced arguments of absolute value less than

� and expected number using (10), for various values of �, in the case

C ¼ lnð2Þ, n ¼ 14, emin ¼ 2, and emax ¼ 6. Notice that the estimation

obtained from (10) is adequate.

Fig. 3. Actual number of reduced arguments of absolute value less than

� and expected number using (10), for various values of �, in the case

C ¼ �=4, n ¼ 18, with emin ¼ emax ¼ 5. The estimation given by (10) is

adequate.

Fig. 4. Actual number of reduced arguments of absolute value less than

� and expected number using (10), for various values of �, in the case

C ¼ �=4, n ¼ 18, with emin ¼ emax ¼ 7. Again, the estimation given by

(10) is adequate.



2 A NEW HIGH-RADIX REDUCTION METHOD

In this section, we assume that we perform range-reduction

for the trigonometric functions, with C ¼ �=2. Extension to

other values of C (such as a fractional multiple of �—still for

the trigonometric functions—or a fractional multiple of

lnð2Þ—for the exponential function) is straightforward.
As stated before, our general philosophy is that we must

give results that are:

1. always correct, even for rare cases;
2. computed as quickly as possible for frequent cases.

A way to deal with these requirements is to build a fast

algorithm for input arguments with a small exponent and to

use a slower yet still accurate algorithm for input argument

with a large exponent.

2.1 Medium-Size Arguments (in ½8; 263 � 1�)
To do so, in the following, we focus on input arguments

with a “reasonably small” exponent. More precisely, we

assume that the double-precision input argument x has

absolute value less than 263 � 1. For larger arguments, we

assume that Payne and Hanek’s method will be used or that

xmod� C will be computed using multiple-precision arith-

metic. For straightforward symmetry reasons, we can

assume that x is positive. We also assume that x is greater

than or equal to 8. We then proceed as follows:

1. We define IðxÞ as x rounded to the nearest integer.
Then, x is split into its residual part �ðxÞ ¼ x� IðxÞ
and IðxÞ, which is split into eight 7-bit parts IiðxÞ for
0 � i � 7 as follows:

I7ðxÞ ¼ Ið2�56xÞ;
I6ðxÞ ¼ I 2�48 x� 256I7ðxÞð Þð Þ

� �
;

I5ðxÞ ¼ I 2�40 x� 256I7ðxÞ þ 248I6ðxÞ
� �� �� �

;

I4ðxÞ ¼ I 2�32 x�
P7

i¼5 2
8iIiðxÞ

� �� �
;

I3ðxÞ ¼ I 2�24 x�
P7

i¼4 2
8iIiðxÞ

� �� �
;

I2ðxÞ ¼ I 2�16 x�
P7

i¼3 2
8iIiðxÞ

� �� �
;

I1ðxÞ ¼ I 2�8 x�
P7

i¼2 2
8iIiðxÞ

� �� �
;

I0ðxÞ ¼ I x�
P7

i¼1 2
8iIiðxÞ

� �
;

�ðxÞ ¼ x�
P7

i¼0 2
8iIiðxÞ;

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

so that

x ¼ 256I7ðxÞ þ 248I6ðxÞ þ . . .þ 28I1ðxÞ þ I0ðxÞ þ �ðxÞ:

Note that �ðxÞ is exactly representable in double-

precision and that, for x � 252, we have �ðxÞ ¼ 0 and

IðxÞ ¼ x. Also, since x � 8, the last mantissa bit of

�ðxÞ has a weight greater than or equal to 2�49.
Important remark. One could get a very similar

algorithm, certainly easier to understand, by repla-

cing the values IkðxÞ by the values JkðxÞ defined as

J0ðxÞ contains bits 0 to 7 of IðxÞ;
J1ðxÞ contains bits 8 to 15 of IðxÞ;
J2ðxÞ contains bits 16 to 23 of IðxÞ;
J3ðxÞ contains bits 24 to 31 of IðxÞ;
J4ðxÞ contains bits 32 to 39 of IðxÞ;
J5ðxÞ contains bits 40 to 47 of IðxÞ;
J6ðxÞ contains bits 48 to 55 of IðxÞ;
J7ðxÞ contains bits 56 to 63 of IðxÞ;

8>>>>>>>>>><
>>>>>>>>>>:

but that would lead to tables twice as large as the
ones required by our algorithm. Indeed, the values
I0 up to I7 are stored on 8 bits each, but the sign bit
will not be used and, thus, only 7 bits are necessary
to index the tables.

The general idea behind our algorithm is to
compute first

SðxÞ ¼
ðI0ðxÞÞmod� �=2þ ð28I1ðxÞÞmod� �=2

þ ð216I2ðxÞÞmod� �=2

..

.

þ ð256I7ðxÞÞmod� �=2

þ �ðxÞ:

It holds that x� SðxÞ is a multiple of �=2 and SðxÞ
will be smaller than x, but, in general, SðxÞ will not
be the desired reduced argument: A second, simpler
reduction step will be necessary. In practice, the
various possible values of jð28iIiðxÞÞjmod� �=2 are
stored in tables as a sum of two or three floating-
point numbers.

As mentioned above, our goal is to always
provide correct results even for the worst case for
which we lose 61 bits of accuracy. Then, we need to
store ðIiðxÞmod� �=2Þ with at least

61 ðleading zerosÞ
þ 53 ðnonzero significant bitsÞ
þ g ðextra guard bitsÞ
¼ 114þ g bits:

To reach that precision (with a value of g equal to 39,
which will be deduced in the following), all the
numbers ðj28iIiðxÞjmod� �=2Þ, which belong to
½�1; 1�, are stored in tables as the sum of three
double-precision numbers:

PThiði; wÞ is the multiple of 2�49 that is
closest to ðð28iwÞmod� �=2Þ

Tmedði; wÞ is the multiple of 2�99 that is
closest to ðð28iwÞmod� �=2Þ

�Thiði; wÞ
Tloði; wÞ is the double-precision number

that is closest to
ðð28iwÞmod� �=2Þ � Thiði; wÞ

�Tmedði; wÞ;

8>>>>>>>>>>>><
>>>>>>>>>>>>:

where w is a 7-bit nonnegative integer.
Note that Thiði; wÞ ¼ Tmedði; wÞ ¼ Tloði; wÞ ¼ 0 for

w ¼ 0. The three tables Thi, Tmed, and Tlo need 10
address bits. The total amount ofmemory required by

BRISEBARRE ET AL.: A NEW RANGE-REDUCTION ALGORITHM 335



these tables is 3 � 210 � 8 ¼ 24 Kbytes. From the defini-

tions, one can easily deduce jTmedði; wÞj � 2�50 and

jTloði; wÞj � 2�100. The sum Thiði; wÞ þ Tmedði; wÞ þ
Tloði; wÞ approximates ð28iwÞmod� �=2 with 153 bits

of precision, which corresponds to g ¼ 39. Comput-

ing Thi, Tmed, and Tlo for the 1,024 different possible

values of ði; wÞ allows us to get slightly sharper

bounds, given in Table 1.
2. Define

ShiðxÞ ¼
X7
i¼0

signðIiðxÞÞThiði; jIiðxÞjÞ
 !

þ �ðxÞ:

Its absolute value is bounded by 2�þ 1
2 , which is less

than 8. Since ShiðxÞ is a multiple of 2�49 and has

absolute value less than 8, it is exactly representable

in double-precision floating-point arithmetic (it is

even representable with 52 bits only). Therefore,

with a correctly rounded arithmetic (such as the one

provided on any system that complies with the

IEEE-754 standard for floating-point arithmetic), it

will be exactly computed, without any rounding error.

Also, consider

SmedðxÞ ¼
P7

i¼0 signðIiðxÞÞTmedði; jIiðxÞjÞ;
SloðxÞ ¼

P7
i¼0 signðIiðxÞÞTloði; jIiðxÞjÞ:

�
The number SmedðxÞ is a multiple of 2�99 and its

absolute value is less than 2�47. Hence, it is exactly

representable, and exactly computed, in double-

precision floating-point arithmetic. jSloj is less than

2�97 and, if Slo is computed with round-to-nearest

arithmetic as a balanced binary tree of additions:
�
signðI0ðxÞÞTloð0; jI0ðxÞjÞ
þ signðI1ðxÞÞTloð1; jI1ðxÞjÞ

�
þ
�
signðI2ðxÞÞTloð2; jI2ðxÞjÞ
þ signðI3ðxÞÞTloð3; jI3ðxÞjÞ

��
þ

�
signðI4ðxÞÞTloð4; jI4ðxÞjÞ
þ signðI5ðxÞÞTloð5; jI5ðxÞjÞ

�
þ signðI6ðxÞÞTloð6; jI6ðxÞjÞ
þ signðI7ðxÞÞTloð7; jI7ðxÞjÞ

��
;

ð11Þ

then the rounding error is less than 3� 2�151. For

each of the values Tloði; IiðxÞÞ, the fact that is it

rounded to the nearest yields an accumulated error

(for these eight values) less than 8� 2�154. Thus, the

absolute error on SloðxÞ is less than or equal to

8� 2�154 þ 3� 2�151 ¼ 2�149.
Since ShiðxÞ þ SmedðxÞ is exactly computed, the

number SðxÞ ¼ ShiðxÞ þ SmedðxÞ þ SloðxÞ is equal to

x minus an integer multiple of �=2 plus an error
bounded by 2�149.

And yet, SðxÞ may not be the final reduced argument
since its absolute value may be significantly larger than �=4.
We therefore may have to add or subtract a multiple of �=2
from SðxÞ to get the final result and straightforward
calculations show that this multiple can only be k�=2 with
k ¼ 1, 2, 3, or 4.

2.2 Small Arguments (Smaller than 8)

Define ChiðkÞ, for k ¼ 1; 2; 3; 4, as the multiple of 2�49 that is
closest to k�=2. ChiðkÞ is exactly representable as a double-
precision number. Define CmedðkÞ as the multiple of 2�99

that is closest to k�=2� ChiðkÞ and CloðkÞ as the double-
precision number that is closest to k�=2� ChiðkÞ � CmedðkÞ.

We now proceed as follows:

. If jShiðxÞj � �=4, then we define

RhiðxÞ ¼ ShiðxÞ;
RmedðxÞ ¼ SmedðxÞ;
RloðxÞ ¼ SloðxÞ:

. Else, let kx be such that ChiðkxÞ is closest to jShiðxÞj.
We successively compute:

- If ShiðxÞ > 0,

RhiðxÞ ¼ ShiðxÞ � ChiðkxÞ;
RmedðxÞ ¼ SmedðxÞ � CmedðkxÞ;
RloðxÞ ¼ SloðxÞ � CloðkxÞ:

- Else,

RhiðxÞ ¼ ShiðxÞ þ ChiðkxÞ;
RmedðxÞ ¼ SmedðxÞ þ CmedðkxÞ;
RloðxÞ ¼ SloðxÞ þ CloðkxÞ:

Again, RhiðxÞ and RmedðxÞ are exactly representable
(hence, they are exactly computed) in double-
precision arithmetic:

- RhiðxÞ has an absolute value less than �=4 and is
a multiple of 2�49;

- RmedðxÞ has an absolute value less than 2�47 þ
2�50 and is a multiple of 2�99.

jRloðxÞj is less than 2�97 þ 2�100 and it is
computed with error less than or equal to
2�149 þ 2�150 þ 2�154 ¼ 49� 2�154:

- 2�149 is the error bound on Slo;
- 2�154 bounds the error due to the floating-point

representation of CloðkxÞ;
- 2�150 bounds the rounding error that occurs

when computing SloðxÞ 	 CloðkxÞ in round-to-
nearest mode.

Therefore, the number RðxÞ ¼ RhiðxÞ þRmedðxÞ þRloðxÞ
is equal to x minus an integer multiple of �=2 plus an error
bounded by 49� 2�154 < 2�148.

This step is also used (alone, without the previous steps)
to reduce small input arguments, less than 8. This allows
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our algorithm to perform range-reduction for both kind of

arguments, small and medium size. The reduced argument
is now stored as the sum of three double-precision

numbers, RhiðxÞ, RmedðxÞ, and RloðxÞ. We want to return

the reduced argument as the sum of two double-precision

numbers (one double-precision number may not suffice if

we wish to compute trigonometric functions with very good
accuracy). To do that, we will use the Fast2sum algorithm

presented hereafter.

2.3 Final Step

We will get the final result of the range-reduction as

follows: Let p be an integer parameter, 1 � p � 44, used to

specify the required accuracy. This choice comes from the

fact that we work in double precision arithmetic and that, in
the most frequent cases, the final relative error will be

bounded by 2�100þp: To allow an accurate double precision

function result even in the very worst case, we must have a

relative error significantly less than 2�53. The problem here

is only to propagate the possible carry when summing the
three components RhiðxÞ, RmedðxÞ, and RloðxÞ. This is

performed using floating-point addition and the following

result.

Theorem 2 (Fast2sum algorithm) [7, p. 221, Theorem C]. Let

a and b be floating-point numbers, with jaj � jbj. Assume the

used floating-point arithmetic provides correctly rounded

results with rounding to the nearest. The following algorithm:

fast2sum(a,b):

s := a + b

z := s - a

r := b - z

computes two floating-point numbers s and r that satisfy:

. rþ s ¼ aþ b exactly;

. s is the floating-point number which is closest to aþ b.

We now consider the different possible cases:

. If jRhiðxÞj > 1=2p, then, since jRmedðxÞj < 2�47 þ 2�50,
the reduced argument will be close to RhiðxÞ. In that
case, we first compute

tmedðxÞ ¼ RmedðxÞ þRloðxÞ:

The error on tmedðxÞ is bounded by the former error

on RloðxÞ plus the rounding error due to the addition.

Assuming rounding to nearest, this last error is less

than or equal to 2�100. Hence, the error on tmedðxÞ is
less than or equal to 2�100 þ 2�148. Then, we perform
(without rounding error)

ðyhi; yloÞ ¼ fast2sumðRhiðxÞ; tmedðxÞÞ:

After that, the two floating-point numbers ðyhi; yloÞ
represent the reduced argument with an absolute

error bounded by 2�100 þ 2�148 � 2�100. Hence, the

relative error on the reduced argument will be

bounded by a value very close to 2�100þp.
. If RhiðxÞ ¼ 0, then we perform

ðyhi; yloÞ ¼ fast2sumðRmedðxÞ; RloðxÞÞ:

After that, since the absolute value of the reduced

argument is always larger than 0:71� 2�61, the two

floating-point numbers ðyhi; yloÞ represent the re-

duced argument with a relative error smaller than

49� 2�154

0:71� 2�61
< 2�86:

. If 0 < jRhiðxÞj � 2�p, then, since the absolute value of
the reduced argument is always larger than 0:71�
2�61 and since jRloðxÞj < 2�97 þ 2�100, most of the
information on the reduced argument is in RhiðxÞ
and RmedðxÞ. We first perform

ðyhi; tmedÞ ¼ fast2sumðRhiðxÞ; RmedðxÞÞ:

Let k be the integer satisfying

2�k � jyhij < 2�kþ1:

We easily find

jtmedj � 2�k�53:

After that, we compute

ylo ¼ tmed þRloðxÞ:

The rounding error due to this addition is bounded

by 2�k�107. Hence, the two floating-point numbers

ðyhi; yloÞ represent the reduced argument with an

absolute error smaller than

49� 2�154 þmaxf2�k�107; 2�150g:

Therefore, ðyhi; yloÞ represent the reduced argument

with a relative error better than

49� 2�154þk þmaxf2�107; 2�150þkg;

which is less than � 2�87 since the absolute value of

the reduced argument is less than 0:71� 2�61, which

implies 2�k � 2�61.

A first solution is to try to make the various error bounds

equal. This is done by choosing p ¼ 14. By doing that, in the

worst case, the bound on the relative error will be 2�86,

which is quite good. We should notice that, in this case,

assuming (10) with C ¼ �=2, the probability that jRhiðxÞj
will be less than 2�p is around 7:8� 10�5.

Apossiblybetter solution is tomake themost frequent case

(i.e., jRhiðxÞj > 2�p) more accurate and to assume that a more

accurate yet slower algorithm is used in the other cases (an

easy solution is to split the variables into four floating-point

values instead of three aswedidhere). This is done byusing a

somewhat smaller value of p. For instance, with p ¼ 10 and

C ¼ �=2, still assuming (10), the probability that jRhiðxÞj <
2�p is around 1:25� 10�3. In the most frequent case

(jRhiðxÞj � 2�p), the error bound on the computed reduced

argument will be 2�90. Due to its low probability, the other

case can be processed with an algorithm a hundred times

slower without significantly changing the average time of

computation, cf. Amdahl’s law.
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2.4 The Algorithm

We can now sketch the complete algorithm:

Algorithm Range-Reduction:

Input: A double-precision floating-point number x > 0 and

an integer p > 0 specifying the required precision in bits.

Output: The reduced argument y given as the sum of two

double-precision floating-point numbers yhi and ylo, such

that2 ��=4 � y < �=4 and y ¼ x� k �
2 within an error given

in the analysis of Section 2.3, for some integer k.

Method:

if x � 263 � 1 then

{Apply the method of Payne and Hanek.}

else if x � 8 then

Shi  x; Smed  0; Slo  0;

else

I  roundðxÞ; � x� I;

Shi  �; Smed  0; Slo  0;

i 7;
j 56;

while i � 0 do

w roundðI >> jÞ;
Shi  Shi þ signðwÞThiði; jwjÞ;
Smed  Smed þ signðwÞTmedði; jwjÞ;
I  I � ðw << jÞ; i i� 1; j j� 8

Slo  
P7

i¼0 signðwÞTloði; jwjÞ (cf. 11);
if jShij � �=4 then

k ReduceðjShijÞ
Shi  Shi þ signðShiÞChiðkÞ;
Smed  Smed þ signðShiÞCmedðkÞ;
Slo  Slo þ signðShiÞCloðkÞ;

if jShij > 2�p then

temp Smed þ Slo;

ðyhi; yloÞ  fast2sumðShi; tempÞ;
else if Shi ¼ 0 then

ðyhi; yloÞ  fast2sumðSmed; SloÞ;
else

ðyhi; tempÞ  fast2sumðShi; SmedÞ;
ylo  tempþ Slo.

Where: The function ReduceðjShijÞ chooses the appropriate

multiple k of �=2, represented as the triple

ðChiðkÞ; CmedðkÞ; CloðkÞÞ.

3 COST OF THE ALGORITHM

In this section, we compare our method to other algorithms

on the same input range ½8; 263 � 1�: Payne and Hanek’s

methods (see Section 1.1) and the Modular range-reduction

method described in [1]. Concerning Payne and Hanek’s

method, we used the version of the algorithm used by Sun

Microsystems [10]. We chose as criteria for the evaluation of

the algorithms the table size, the number of table accesses,

and the number of floating-point multiplications, divisions,

and additions.

Table 2 shows the potential advantages of our algorithm
for small and medium-sized input argument. Payne and
Hanek’s method over that range doesn’t need much
memory, but roughly requires three times as many
operations. The Modular range-reduction has the same
characteristics as Payne and Hanek’s method concerning
the table size needed and the number of elementary
operations involved, but requires more table accesses. Our
algorithm is then a good compromise between table size
and number of operations for range-reduction of medium-
sized argument.

To get more accurate figures than by just counting the
operations, we have implemented this algorithm in ANSI-C.
The program can be downloaded from http://gala.univ-
perp.fr/~ddefour/high_radix.tgz. This implementation
shows that our algorithm is 4 to 5 times faster, depending
on the required final precision, than the Sun implementa-
tion of Payne and Hanek’s algorithm, provided that the
tables are in main memory (which will be true when the
trigonometric functions are frequently called in a numerical
program; and, when they are not frequently called, the
speed of range-reduction is no longer an issue). Our
algorithm is then a good compromise between table size
and delay for range-reduction of small and medium-sized
arguments.

A variant of our algorithm would consist of first
computing Shi, Smed and Rhi, Rmed only. Then, during the
fourth step of the algorithm, if the accuracy does not suffice,
compute Tlo and Rlo. This slight modification can reduce the
number of elementary operations in the (most frequent)
cases where no extra accuracy is needed. We can also
reduce the table size by 4 Kbytes by storing the Tlo values in
single-precision only, instead of using double-precision.

Another variant (that can be useful depending on the
processor and compiler) would be to replace the loop
“while i � 0” with “while I <> 0 and i � 0.” In that case
(for a medium-sized argument x), the number N of double-
precision floating-point operations becomes at most
N ¼ 17þ 2dlog256 xe, i.e., 19 � N � 33. Also, the number of
table accesses becomes at most 11þ 2dlog256 xe.

4 CONCLUSIONS

We have presented an algorithm for accurate range-
reduction of input arguments with absolute value less than
263 � 1. This table-based algorithm gives accurate results for
the most frequent cases. In order to cover the whole double-
precision domain for input arguments, we suggest using
Payne and Hanek’s algorithm for huge arguments. A major
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TABLE 2
Comparison of Our Algorithm with Payne and Hanek’s Algorithm

and the Modular Range-Reduction Algorithm

2. In fact, the absolute value of the reduced argument is less than �=4
plus the largest possible value of jSmed þ Sloj, hence, less than
�=4þ 2�47 þ 2�97. In practice, this has no influence on the elementary
function algorithms.



drawback of our method lies in the table size needed, thus a
future effort will be to reduce the table size, while keeping a
good trade off between speed and accuracy.
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Conférences (associate professor) in pure
mathematics at LArAl, Université de Saint-
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