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BKM: A New Hardware Algorithm 
for Complex Elementary Functions 
Jean-Claude Bajard, Sylvanus Kla, and Jean-Michel Muller, Member, ZEEE 

Abstruct-A new algorithm for computing the complex log- 
arithm and exponential functions is proposed. This algorithm 
is based on shift-and-add elementary steps, and it generalizes 
some algorithms by Briggs and De Lugish, as well as the Cordic 
algorithm. It can easily be used to compute the classical real 
elementary functions (sin, cos, arctan, In, exp). This algorithm is 
more suitable for computations in a redundant number system 
than the Cordic algorithm, since there is no scaling factor when 
computing trigonometric functions. 

Index Terms- Computer arithmetic, elementary functions, 
cordic, redundant number systems. 

I. INTRODUCTION 

HE point at stake in this paper is the search for algo- T rithms that rapidly compute elementary functions. Many 
methods have been proposed in the literature: approximation 
by polynomials or rational functions [3], [51, 161, [lo], use of 
Newton's method, approximation by continued products, con- 
tinued fractions, E-Method [8], [9] and shift-and-add methods. 
The algorithms presented in this paper belong to the class of 
shift-and-add methods. These methods are based on simple 
elementary steps: additions, and shifts (i.e., multiplications 
by a power of the radix of the number system used), and 
they go back to the 17th century: Briggs, a contemporary 
of Neper, invented an algorithm that made it possible to 
build the first tables of logarithms. For instance, to compute 
the logarithm of z in radix-2 arithmetic, numerous methods 
(including that of Briggs, adapted to this radix) [4], [12], [13], 
[15] broadly consist of finding a sequence dk = -1 ,O ,  1, such 
that z n;=,(l+ dk2-k) M 1. Then ln(z) x - Et=, ln(1 + 
&2-')>. Another method belonging to the shift-and-add class 
is the CORDIC algorithm, introduced in 1959 by J. Volder [17] 
and then generalized by J. Walther [ 181. CORDIC consists of 
the following iteration: 

z,+1 = z, - md,y,2-'(") 
yn+i = 9, + d,zc,2-u(") (1) { zn+l = 2, - &e+), 

m equals 0, 1 or - 1, and d,  is equal to 1 or - 1. The results 
and the values of d,, m and ~ ( n )  are presented in Tables I 
and 11. 
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CORDIC allows computation of many functions [18]. For 
instance, e" is obtained as coshz + sinhz, while lnz is 
obtained as 2tanh-' . CORDIC has been implemented 

Its major drawback arises when performing the iterations 
using a redundant (e.g., carry save or signed-digit) number 
system. Such systems are advantageous for quickly-performed 
arithmetic, since they make it possible to perform carry-free 
additions [2]. In these systems, d, is difficult to evaluate. For 
instance, assume that we are in the rotation mode of CORDIC 
(see Table I ), and that numbers are represented by p digits, in 
radix 2 with digits -1, 0 or 1. d, is equal to the sign of the 
most significant nonzero digit of z,: to find its value, we must 
examine some number of digits which may be close to p. Thus, 
the advantage of the redundant representation (a constant time 
elementary step) would be lost. An alternative is to accept 
d,  = 0: this makes it possible to examine a few digits of z, 
only. Unfortunately, with such a method the scale factors K 
and K' are not constants. K is equal to n,"==, ,/-, it 
is a constant if the di's are all equal to f l ,  but it is no longer a 
constant if the di's are allowed to be zero. Many solutions have 
been suggested to overcome this problem. Broadly speaking, 
they lead to a repetition of iterations in time [16], [l], or in 
space [7]. In order to avoid this wasteful repetition, we need 
to work out a new algorithm. 

In the following, assume that we are using a radix-2 classical 
or signed-digit number system. Extension to binary carry-save 
representation is straightforward. Let us consider the basic step 
of CORDIC in trigonometric mode (i.e., iteration (1) with m = 
1). If we define the complex number L, as L, = 5, + iy,, 
we obtain L,+1 = L,(1+ id,2-,), this relation is close 
to the basic step of Briggs' algorithm. This remark brings 
us to a generalization of that algorithm: we could perform 
multiplications by terms of the form (1 + d,2-"), where the 
d,'s are complex numbers, chosen such that a multiplication 
by d,  can be reduced to a few additions. In this paper, we 
study the following iteration, called BKM: 

in many pocket calcu I '  ators and floating-point coprocessors. 

(2) L,+1 = L,(1+ d,2-,) 
E,+1 = E, - ln(1 + d,2-,) 

with d,  E { - l , O ,  l,-Z,i, 1-i,l+i, -1-2, -l+i}. We define 
lnz as the number t such that et = z, and whose imaginary 
part is between -7r and T. 

If we are able to find a sequence d,  such that L, goes to 
1, then we will obtain E, + El + ln(L1). We call this 
iteration mode the L-mode of the BKM algorithm. 
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m = 1 

m = 0 

m = -1 

d ,  = sign(z,) dn = -.sign(Y*) scale factor 
(rotation mode) (vectoring mode) 

y, + K(yocoszo+ zosinzo) y, + 0 2: 1.646760 
z, + 0 

2, -+ ~ ( z o  cos zo - yo sin zo) z, + ~<,/zi  t y i  Ii = ng0 Jim== 
z, + zo - arctan(yo/zo) 

2, -+ 20 

yn + yo + zozo 
2, + 0 

yn 4 K'(y1 cosh 21 + z1 sinh 21) y, + 0 
2, + 0 z,  + z1 - t anh- ' (y l /z l )  

5, + 20 

Yn + 0 
zn + zo - YOO/ZO 

- 

2, -+ K'(z1 cosh zl + y1 sinh z l )  5, + I P d z :  - y: Ir" = nr=l di-zi=m 
= 0.828159 

TABLE II 
VALUES OF a(n) AND e,  

m = 1 (circular mode) 

m = -1 (hyperbolic mode) 

u(n) = n 
u(n) = n - k 

inteeer such that 

e, = arctan 2-" 

where is the largest 
en = tanh-' 2-" 

I 3 k + ' ; 2 k - 1 < 2 n  I 
m = 0 (linear inode) 1 u(n) = n I e, = 2-n 

If we are able to find a sequence d, such that E, goes 
to 0, then we will obtain L, + LleE1. We call this 
iteration the E-mode of BKM. 

So, in the next sections, we will focus on the problem of 
finding sequences d, such that L, goes to 1 or such that E, 
goes to 0. From this study, we will deduce cbnvenient algo- 
rithms for computing the complex logarithm and exponential 
functions. 

n. COMPUTATION OF THE EXPONENTIAL FUNCTION (E-MODE) 
As pointed out at the end of the previous section, for 

computing eE1 using BKM, one needs to find a sequence 
d,, d, = -1,O, 1, -2, i, i - 1, i + 1, -i - 1, -i + 1, such that 
limn+- E, = 0. Let us define d: and d i  as the real and 
imaginary parts of d ,  (they belong to { - l , O ,  1)) and E; and 
E: as the real and imaginary parts of E,. We easily find: 

E,",, = E," - i l n [ l +  d:2-"+l+ (dE2 + 4 2 ) 2 - 2 n ]  
E:+, = E: - &arctan(-) 

(3) 
In this section, we give an algorithm which computes the 

sequence d ,  for any E1 belonging to a rectangular set R1 = 
[-si, TI ]  + i[-ry, r:]. The proof of our algorithm is based on 
the construction of a sequence R, = [-SE, r;] + i[-rx, r:] 
of rectangular sets, whose length goes to zero as n goes to 
infinity, and such that for any E, E &, d, is such that 
E,+, E & + I .  d: is chosen by examining a few digits of 
E: and is chosen by examining a few digits of E:. These 
properties allow a simple and fast implementation of the choice 
of d,. 

{ 

A. Choice of d: 
The diagram presented in Fig. 1 shows the different param- 

eters involved in determining d:. This figure is close to the 

-$+I 

Fig. 1 .  The Robertson Diagram for E,". 

Robertson Diagrams that appear in many division algorithms 
[14]. In the following, we call such a diagram a Robertson 
diagram. The diagram is constructed as follows. 

1) we assume that E; belongs to the interval [ -s; ,T;] ,  
which is the real part of R,. 

2) E,"+l is equal to E," - ;ln[l + d;2-,+' + ( d z 2  + 
4 2 ) 2 - 2 n ] ,  so the value of E;+l vs. E," is given by 
various straight lines parameterized by d; and d i .  

3) d; must be such that for any possible value of dg, 

T ; + ~  must be the largest value of E,",, corresponding to the 
straight line d, = 1 (see Fig 1). That is to say, T: must satisfy: 
r;+l = r; -In( 1 + Tn).  Since the length of & goes to zero 
as n goes to infinity, we deduce: r; = Cr=, ln(1 + 2-'). 
Similarly, the lowest possible value for E; must correspond 
to the value obtained with d, = -1 f i. This gives: s; = 

The terms A,, A,, B, and B, appearing in the diagram 

%+l E [ - s ;+u  r;+11* 

-1 E" ln(1 - 2-k++1 + 2-2k+l . 
2 k=n 1 

shown in Fig. 1 are equal to: 

A, = r:+, + In(1- 2-,) 
1 B, = -s:+, + - In( l+ 2-',) 

1 A, = -SE+, + - ln( l+  2-,+' + 2-',+l 

2 
1 
2 

B, = r:+,. 
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&+I 
A "  

Y -r n+ I 

Fig. 2. The Robertson Diagram for E:. 

One can prove that B, < A,, and that A ,  < B,. From this, 
for any E," E [-SE, rz], the following choices will give a 
value of E,"+l between -s:+, and rz+l: 

if E; < -B, then d: = -1 
if -& 5 E; < A ,  then d:=-lorO 

if A, 5 E; 5 B, then d: =Oor  1 
if A, 5 E ; < A ,  then d: = O  (4) 1 if B, < E ;  then d: = 1. 

B. Choice of d: 

We use the relation E:+, = E: - d: arctan( -) . 
Fig. 2 shows the Robertson diagram associated to the choice 
of d:. We want our choice to be independent of the choice 
of d:. From this, we deduce: r: = E:"=, arctan( l'$!k). 

The terms C n  and Dn appearing in the diagram are: C, = 

that C, < D,. Thus, for any E: E [-rg,rg], the following 
choices will give a value of between and +rE+l: 

if E: < -D, then d: = - 1  
if - D ,  5 E: < -C, then d: = -1 or 0 

if C, 5 E: 5 D,  then dg = 0 or 1 

-rn+l ar + arctan(&&) and D, = One can prove 

if -C, 5 E$ < C, then d: = O  (5 )  i if D, < E: then dY, = 1. 
The convergence domain R1 of the algorithm is: 

-0.8298023738.. . = -sy 5 E," 5 r: = 0.8688766517.. . 
-0.749780302. . . = -ry 5 E: 5 ry = 0.749780302. . . 

C. 7%e Algorithm 
Relations (4) and (5 )  make it possible to find a sequence d,  

such that, for El E R1, limn-,m E ,  = 0. Now, let us try to 
simplify the choice of d,: (4) and (5 )  involve comparisons that 
may require the examination of all the digits of the variables, 
we want to replace these comparisons by the examination of a 
small number of digits. The parameters A = -1 /2 ,  A = 1/4 ,  
C = 314, p l  = 3 and p2 = 4 satisfy, for every n: 

2nB, 5 A - 2 - 1  < A 5 2nA, 
2,A, 5 A < A + 2 - p 1  5 2"B, (6)  { 2"C, 5 C < C + 2 - p 2  5 2,D,. 

Therefore, if we denote I?; the number obtained by trun- 
cating 2,E; after its plth fractional digit, and I?: the number 

obtained by truncating 2"E: after its pih fractional digit, we 
obtain, from (4), ( 5 )  and (6): 

if E; 5 A - 2-Pl then E; 5 A, therefore d: = -1 is 

if A 5 &; 5 A then B, 5 E; 5 B, therefore dz = 0 

if A + 2-Pl 5 E; then A ,  5 E," therefore d: = 1 is 

if E: 5 -C - 2-P2 then E: 4 -C, therefore d: = -1 

if -C 5 E: 5 C then -D, 5 E: 5 D ,  therefore 

if C + 2-92 5 E: then C, 5 E: therefore d: = 1 is 

From this, we deduce the E-mode of the BKM algorithm. 
BKM Algorithm-E-mode 

Start with El E R1 = [-0.82980...,+0.86887..-] + 
Iterate: 

a valid choice 

is a valid choice' 

a valid choice 

is a valid choice 

d", = 0 is a vali! choice 

a valid choice 

i .[-0.74978. * . , +0.74978. . .] 

Ln+1 = Ln(1+  dn2-,) 
E,+l = E, - ln(1 + d,2-,) 

with d, = d: + id:, chosen as follows: 

- define & as the number obtained by truncating 
the real part of 2,E, after its 3rd fractional digit, 
and .@; as the number obtained by truncating the 
imaginary part of 2,E, after its 4th fracti6nal 
digit. 

if E:<-! then d",-l 
if - ; S E , " <  a then d ; = O  
if <E," then d: = 1 
'if 3h$---g then d: = -1 
if then d g = O  
if 5 E: then dg = 1. 

Result: limn+oo L, = LleE1 
In practice, instead of computing En+l=En - 

ln(1 + dn2-,) and examining the first digits of 
an = 2,E,, one would directly compute the sequence 
a,+l = 2a, - 2,+'ln(l + dn2-,). 

D. Number of Iterations 
Now, let us roughly estimate the number of iterations 

required to obtain a given accuracy. We want to compute 
LleE1. The sequence di defined by the algorithm satisfies 
LleE1 = L1 nzl (1 + di2-"). After n iterations of the E -  
mode, we have computed L1 n:=, ( 1  + di2- i ) .  The relative 
error made by approximating LleE1 by this value is 11 - 

1, which is bounded by a term equivalent to 

2-". Therefore, after n iterations of the E-mode, we obtain a 
relative error approximately equal to 2-,. 

1 n:n+l ( l + d , 2 - * )  

' Sir_lce A, A, and E: have at most p l  fractional digits, if E; > A - 2-p l ,  
then 2 A. 
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E. Number of Constants Stored 

This igoih requires the storage of the constants 
ln(1 + d3?-i+1 + (dr2 + 42)2-2i), d:, d; = -1, o, and 
ar~tan ( d: = - 1 , O ,  1. So, we need to store 9 terms 

accuracy binary digits, we need to store 9n constants. This 

11~411 5 3/2, then the strategy presented above will give a 
sequence d, which fulfills L, = 1. This strategy 
allows computation of the logarithm in a very tiny domain: 
we can use it to compute the logarithm of L4 such that 
11~411 = 1116(L4 - 1)11 5 3/2. So the convergence domain 

for each value Of to Obtain of this algorithm is L4 E [1 - &, 1 + &] + i. [- &, +$I. 
result can be improved by observing that if i > n/2, then B. Computation of *he Logarithm in a Larger Domain 
ln(1 + d?2-i+1 + (d:2 +e2)2-2 i )  and arctan (*) can 
be replaced by d:2-i+1 and 2-i with accuracy 2-". Thus, 
we only need to store 9 constants. 

As in Section 111-A, we study the sequence ek+l = 2 ( c k  + 
dk) + dkek2-"+l, where ~k is defined as 2'(Lk - 1). Our 
purpose is to start the evaluation at step k = 1, with € 1  

HI. COMPUTATION OF THE LOGARITHM FUNCTION (L-MODE) 
As shown in the introduction, computing the logarithm of a 

complex number ~1 using BKM requires the calculation of a 
sequence d,, d ,  = - 1 , O ,  1, -2, i, i - 1, i + 1, -i - 1, -i + 1, 
such that limn+oo L, = 1, with L,+1 = L,(1+ d,2-,). 

A. A Straightforward Strategy 
In the following, we use the norm (1.11 defined as Ila+ibll = 

max(la1, lbl}. Let us define a sequence E ,  as E ,  = 2,(L, - 1). 
We deduce: 

(7) 

If we find a sequence d,  such that the sequence E ,  is 
bounded, then L, will go to 1. An intuitive solution is to 
choose d, N -e,. So, in this section, we consider the 
following straightforward strategy which consists of building 
a sequence Ilenll 5 3 / 2  as follows: 

at step i, we examine the value Zi obtained by truncating 
the real and imaginary parts of ti after their pth fractional 
digits, where p is a very small integer. 
d; is obtained by rounding the real and imaginary parts of 
-Zi to the nearest integer. Since p is small, this operation 
is easily performed. If lleill 5 312, this choice will give 

If this algorithm actually gives I l ~ , l l  5 3/2 for any n, then 
L, will go to 1. From [ICi - till 5 2-P and IJdi + Z;II 5 112, 
using (7), we deduce: 

(8) 

€,+I = 2 ( ~ ,  + d,) + d , ~ , 2 - ~ + ' .  

di E D .  

Il€,+lJ( 5 1 + 2 l - p  + 2-,+l IldnEnll. 

1J€,+lll 5 1 + 2l-p + 2-n+2 IlGlIl. 
The norm I( . I( satisfies llzz'll 5 211~11.112'11, therefore: 

(9) 

If n 2 4, p 2 4, and if Ilt,II 5 312, then, using (9), 
one can prove that for any IC 2 n, l l ~ k l l  5 312. Therefore, 
if we start the iteration (7) at step 4, from €4 satisfying 

- *  

belonging to a domain T that will be given later, and to 
obtain, after a few steps, say n steps (n 2 3), a value t,+l 

satisfying 5 3 / 2 .  After this, the strategy presented in 
the previous section can be used. Our goal is to obtain a 
convergence domain L1 E frT + 1 larger than the previous 
one. The following algorithm was found through simulations, 
before being proved. 

BKM Algorithm-L-Mode: 
Start with L1 belonging to the trapezoid T delimited 
by the straight lines z = 1/2, z = 1.3, y = z/2, 
y = -212. T is the domain where the convergence 
is proven, but experimental tests show that the actual 
convergence domain of the algorithm is larger. 

= L,(1+ d,2-,) 
= E, - In(1 + dn2-,) Iterate: { Ln+l  

&+1 
with d, = dz + id:, chosen as follows: 
- define tg and .E: as the real and imaginary parts 

of E ,  = 2"(L, - l ) ,  and and E: as the values 
obtained by truncating these numbers after their 
4th fractional digits. 

- At step 1, we have the equation found at the 
bottom of the page. 

- At step n, n 2 2 

if El: 5 -1/2 then d: = 1 
if -112 < E: < 1/2 then d: = O  
if 1 /2  5 then d i  = -1 

if E: 5 -112 then d: = 1 
if -1/2 < E: < 1/2 then d: = 0 
if 112 5 CY, then d: - 1  

{ 
{ 

result: E, = El + In(L1). 
In a practical implementation, instead of computing L, and 

examining the first digits of e, = 2,(L, - l ) ,  one would 
directly compute the sequence t, using (7). 

Proofofthe Algorithm: Our goal is to show that if 
L1 E T, then there exists n 2 4 such that ((t,(l 5 3/2. 
Thus the proof of section 3.1 will hold. In order to prove 

'if Cy 5 -7116 and 6/16 5 q then dl = 1-2 
if Zp 5 -7116 and 5 -6116 then dl = l + i  
if -6116 5 Zy and 8/16 5 E; then dl = - i  
if -6116 5 CT and CY 5 -9/16 then dl = i 
if <? 5 -7/16 and -5116 5 E: 5 5/16 then dl = 1 

.if -6/16 5 CT and - l /2  5 E: 5 1/2 then dl = O  
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Fig. 3. /3k is splitinto convex polygons following the d-areas. 

this, we build a sequence P k  of bounding sets, such that for 
any L1 E T, tk E pk. Our problem is reduced to show 
that there exists n 2 4 such that Pn is included in the 
square ( ( z ( (  <_ 3/2. Let us explain how the sequence P k  is 
computed. 

The first bounding set p1 is equal to 2(T- 1). At step k, P k  is 
an aggregate of convex polygons, represented by their vertices. 
A step of the algorithm can be represented by a splitting of the 
complex plane into 9 convex d-areas. The d-area associated 
with6 E { - l , O , l , - i , i , i - l , i + l , - i - l , - i + l }  is the 
domain D(6)  such that if €k  E D(6) ,  then the algorithm 
gives dk = 6. For instance, if k 2 2, then D(-1 - i) is 
the set of the complex numbers whose real and imaginary 
parts are greater than 1/2. In D(S),  the transformation €k+l = 
a(€, + 6) + S E ~ ~ - ~ + I  is a similarity, i.e., the combination of 
a rotation and the multiplication by a real factor. A similarity 
transforms a convex polygon into another convex polygon. 

Each convex polygon of P k  is split into sub-convex poly- 
gons, obtained by intersecting it with the d-areas. Fig. 3 
presents the bounding step at step IC, the various d-areas (for 
k 2 2), and the splitting of the polygons of p k .  

Broadly speaking, p k + l  is obtained by computing the trans- 
formation of each sub-convex polygon obtained after the 
splitting (the image of a polygon is obtained by computing the 
image of its vertices). However, we have to take into account 
the fact that the choice of dk is based on the examination 
of t$ and <, which are obtained by truncating the real and 
imaginary parts of Ek after their 4th fractional digits. For 
instance, if Ck = C$ + iC1 belongs to D(-l), this does not 
prove that Ek actually belongs to D(-1). Therefore, to each 
sub-convex polygon, a “ribbon” of length T4 is added, so that 
if Ek belongs to the “old” subconvex polygon, then €k belongs 
to the “new” sub-convex polygon. After this, for each “new” 
sub-polygon, we compute its image by the similarity defined 
by the value of dk associated with the polygon (Fig. 4). This 
gives the new bounding set Pk+l. 

Fig. 4. The iteration is applied to each of the vertices of the convex polygons. 

5 - 

Fig. 5. The initial domain /31 and the bounding sets 0.1 a n d h .  

The proof by induction that for any L1 E T ,  Ek E P k  is 
straightforward. If we find n 2 4 such that all the vertices of 
the sub-convex polygons of ,On are in the square llzll 5 3/2, 
then the algorithm is proven. The adequate value of n is 6: 
this leads to a number of vertices which is much too large 
to be examined by a paper-and-pencil method. We have used 
a program for computing all the vertices of P6, this program 
is written in M L ,  and uses exact rational arithmetic. Fig. 5 
shows the bounding sets PI, P4, and P6. Using this program, 
we have verified that all the vertices of P6 are included in the 
square llzll 5 3/2. 

C. Number of Iterations 
Let us estimate the number of iterations required to ob- 

tain a given accuracy. The sequence di satisfies In(&) = 
- h(1 + dk2-’)). After n iterations of the L-mode, 
we have computed El - In(1 + dk2-’)). The absolute 
error made by approximating El + ln(L1) by this value is 
cE”=,+l h(l + dk2-’), which is bounded by a term equiva- 
lent to 2-”&. From this we deduce that, to obtain an absolute 
error equal to 2-”, one needs to perform n + 1 iterations. 

IV. RANGE REDUCTION 

The algorithms for computing elementary functions gener- 
ally converge in some bounded domain. For computing f(z) 
with an arbitrary value 2, one usually needs to find a value 
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x* belonging to the convergence domain of the algorithm that 
compute& f ,  such that f ( x )  can be deduced from f(x*).  This 
operation is called range reduction. 

A. Range Reduction for the Complex Exponential Function 
We assume that, if I is an interval containing zero, 

whose length is greater than p, we can compute, from 
any real x, an integer k such that x - k p  E I. This 
can be done by performing a few steps of a SRT-like 
division algorithm. Assume that we want to compute 
ex+iY . BKM allows the evaluation of the exponential 
function in R1 = [-0.82980237. . . , +0.86887665. . .] + 
i.[-0.749780302.. . , +0.749780302.. .]. The range reduction 
can be performed as follows: 

1) Compute k, such that y - k,.: belongs to [ -T: ,T: ] .  

Define y* as y - k,.:. 

tion by ez.(kgmod8)% looks difficult to reduce to a small 
amount of additions and shifts. Fortunately, this problem 
is easily overcame. As an example, let us consider the 
case k, mod 8 = 1. The term e y  is equal to q(l+i). 
A multiplication by this term is avoided by adding 
-41n(2) = In$ to x, which gives a value x', and then 
obtaining: er+iy = (1 + i ) e z '+ iY* .  A multiplication by 
1 + i is easily reduced to two additions. A similar trick 
can be used for the other possible values of k, mod 8. 
So, if we define Kp and yp as follows: 

2)  We have: = e' ( k ~ m o d 8 ) ?  ez+zY*. The multiplica- 

1 
l + i  

i 
- l + i  

-1 
- 1 - i  

1 - i  
--z 

and 
and 
and 
and 
and 
and 
and 
and 

then, with p = ky mod 8 and x' = x + yp, we get 
ez+iy = K ~ ~ z ' + ~ Y '  

3) Compute k, such that x' - 2kXln(2) belong to [-ST, T?] .  

Then we obtain ex+iY = 22kK P ex*+iY*.  
The exponential of x* + iy* is computed using the 
E-mode of BKM, and the multiplication by 22kKp is 
reduced to two additions and a shift. 

B. Range Reduction for the Complex Logarithm Function 
Let us define the cone Co as the set of the numbers x + i y  

such that )yI 5 x/2 (see Fig. 6), and CI, C2, C3, C4, Cg, c6, 
and c7 as ck = Coe?. For each nonzero element z of 
CO there exists an integer n such that 2"Co belongs to the 
convergence domain T of the L-mode. Since CO = ACO for 
any nonnegative real A, we easily find: 

c1 = (1 + i)Co = 2 
c3 = (-1 + i)Co = 
c, = -co 

c5 = (-1 - i)Co = co -l+i 

c7 = (1 - i)Co = 2. 
c 2  = ico = 2 c6 = -icO = 

Fig. 6.  Second step of the reduction. 

Assume that we want to compute the logarithm of Zinit = 
xinit + iyinit. In order to do this, from z;,it we want to obtain 
ZBkm = 2'(dX + idY)zi,it, with d", dY = -1,o, 1 and d", dY 
not simultaneously equal to zero, such that ZBkm belongs to 
T. After this, ln(zBk,) is computed using the L-mode, then 
kln(2) + ln(d" + idY) is subtracted from the result (we just 
need to store the 8 possible values of ln(d" + id,)). This 
reduction is performed in three steps: 

Prescaling: We find k1 such that z = x + iy = ~ ! ~ 2 ~ ~ z ; , i t  
satisfies f 5 x < 1. 

Search for a Cone Cp Containing z: Now, let us find p 
such that z E C,. Since x > 1/2, the only possible values 
of p are 0, 1, 2, 6, 7. From the definition of the cones C,, 
we easily find (see Fig. 6): 

If IyJ I x/2 then z E CO 
If -3x 5 y 5 -x/3 then z E C7 
If x/3 5 y 5 32 then z E C1 
If y 5 -22 then z E c6 
If y 2 2 2  then z E C2. 

By taking into account the overlapping of the cones C,, we 
can replace these comparisons by comparisons involving only 
a few digits of x and y. If we define 3 and y as the numbers 
obtained by truncating 2 and y after their 5th fractional digits 
(as previously, we assume a binary number system), we easily 
deduce: 1x - 51 5 1/32 and Iy - 51 5 1/32. Therefore we 
have the following. 

1) If 1 $ 1  < $ - then ly[ 5 5 ,  therefore, z E CO. 
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b 4  L'; a s i n X + b c o s x  

Fig. 7. 2-D rotations i d  arctangents. 

2)  If - B 5 j j  5 22 + & then: 

a) y 2 g - L - 1 .  Sincex > I, (E-") = E > I 2 32 64 - 2  2 3 6 - 1 2 '  
Therefore, y 2 :. 

b) y 5 2 x + & + & . S i n c e z L  $ ,3~+(23 : -3x )+  
& + & is less than 32 + & + &, - f therefore, 
y 5 33: - E < 3x. 

therefore z E C1 

fashion, z E C7. 

3) If -22 - & 5 y 5 -$ + &, therefore, in a similar 

4) If 5 > 2% + L- then y 1 22, therefore z E C, 
5 )  
Postscaling: We have found a number z = x + iy, an 

integer kl, a sign s = f l  and a cone Cp,p  = 0 ,1 ,2 ,6 ,7  
satisfying z = ~ . 2 ~ l z ; , i ~ ,  5 x 5 1 and z E C,. Now, define 
Pk and !k as: 

< -2% - i6 then, in a similar fashion, z E c6. 

Po = 1 p 6 = 1 + i  
p 1 = l - i  p 7 = i  
p2 = -2 !k = lnpk, IC = 0, 1,2,6,7.  

The number z' = x' + iy' = ppz belongs to CO. If p # 0, 
z' does not necessarily belong to the convergence domain T 
of the L-mode (which is obtained by intersecting CO with 
the domain 5 z 5 1.3). Define an integer IC2 such that 
$ 5 2k2x' 5 1.3. Then ZBkm = 2 k 2 ~ '  E T. Define ! as 
lp  if s = 1 and l, + ia if s = -1. The logarithm LBkm of 
ZBkm is obtained using the L-mode, then C + ( IC1 + IC2) .In( 2) is 
subtracted to LBkmr in order to obtain the logarithm of zinit. 
The imaginary part of the final result will be between -2a 
and 2 ~ ,  so a "correction step"4onsisting in adding f a  or 
f2r-may be performed if a particular range is required. 

v. COMPUTATION OF ELEMENTARY FUNCTIONS 

As shown in the previous sections, BKM makes it possible 

in E-mode, LleE1,  where El is a complex number 

in L-mode, El + ln(L1), where L1 belongs to the trape- 

to compute the following functions: 

belonging to R1, 

zoid T. 

u + iv = (a + ib)(c + id) 

Change of 
sign 

O-/E; G H E ;  G k O  

96 1 

I 

(c + id) 
(a  + ib) 

u+iv-  

Fig. 8. Complex multiplications and divisions. 

Therefore, using BKM, one can compute the following func- 
tions of real variables. 

A. Functions Computable Using One Mode of BKM 

1) Real sine and cosine Functions: In the E-mode of BKM, 
one can compute the exponential of El = 0 + io, and 
obtain L, = cos 8 + i sin 8 f 2-,. 

2)  Real Exponential Function: If El is a real number 
belonging to [-0.8298023738, +0.8688766517], the E- 
mode will give a value L, equal to &eE1 f 2-". 

3 )  Real Logarithm: If L1 is a real number belonging to 
[ O S ,  1.31, the E-mode will give a value E, equal to 
El+ln(Ll)f2-,.  Furthermore, in this case, the BKM it- 
eration is reduced to Brigg's algorithm, and it is possible 
to show that the algorithm gives a correct result if and 
only if L1 E [ n T = t " ( ~  + 2-n)-1,n,"=2(1 - 2-,)-l] 
21 [0.419422,1.73137]. 

4) 2-0  Rotations: As pointed out in [ 113, performing rota- 
tions is useful for Fast Fourier Transformation, Digital 
Filtering, and Matrix Computations. The 2-D vector 
(c d) t  obtained by rotating (a b)t  of an angle 8 satisfies: 
c + id = (a + ib)eie therefore, (c d)t  is computed using 
the E-mode, with L1 = a + ib and El = it9 (see Fig. 7). 

5) Real arctan Function: From the relation: 

ln(x + iy) = 
l ln (x2  + y2) + i arctan :mod(2ia) if x > O  { i ln (z2  + y2) + i ( ~  + arctan$)mod(Zia) if z < 0 

one can easily deduce that, if x + iy belongs to the 
convergence domain of the L-mode of BKM, then 
arctan y/x is the limit value of the imaginary part 
of E,, assuming that the L-mode is used with El = 0 
and L1 = x + iy (see Fig. 7). 
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1-digit 

a 

Fig. 9. Computation of x& and y f i  in parallel. 

- changeof 
sign 

Fig. 10. Computation of lengths and normalization. 

B. Functions Computable Using Two 
Consecutive Modes of BKM 

tions. Some of these functions are the following. 
Using two BKM operations, one can compute many func- 

1) Complex Multiplication and Division: The product zt is 
evaluated as z.elnt, while z / t  is evaluated as z.e-lnt (see 
Fig. 8). One can compute (ab)e" or ( % ) e Z ,  where a, b 
and z are complex numbers, using the same operator, by 
choosing ET equal to the real part of z, and E: equal 
to the imaginary part of z. 

2)  Computation of xJ;; and y f i  in Parallel (2, y and 
a are  rea^ numbers): we use the relation J;; = e+'n(a), 
see Fig. 9. One can also compute 3 and 3. 

3)  Computation of Lengths and Normalization of 2 - 0  Vec- 
tors: As shown previously, the L-mode allows the 
computation of F = !jln(a2 + 13') = l n d m ,  where 
a and b are real numbers. Using the E-mode, we can 
compute eF or e-F (See Fig. 10). 

VI. COMPARISON WITH CORDIC 

In order to obtain p significant bits, CORDIC and BKM 
roughly need p iterations. BKM requires more hardware than 
CORDIC: BKM needs the storage of 2 constants, while CORDIC 
needs the storage of p constants to compute trigonometric and 
hyperbolic functions. Since these constants are represented by 
p digits, both algorithms need a O(p2)  area for storage of the 
constants. Both algorithms need a shifter able to perform an 
n-position shift at step n. A barrel shifter makes it possible to 
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perform a n-position shift (for any n 5 p) in constant time, 
and lies in an area O(n2).  Since the area complexity of most 
adders is better than O(n2),  the area complexity of CORDIC 
and BKM is 0 ( n 2 ) .  The computations performed during a BKM 
iteration are: 

For the variable: 

a:+' = 2 4  -2"ln [l +d:2-,+' + (dE2 +G2) 2-2n] 
= 2 4  -2"+'d; arc@( -) 

if, instead of computing E, and examining the first digits 
of a, = 2"En, we directly compute a,. 
For the variable: 

e;+' = 2 ( ~ ;  + dg) + (dzc; - d x ~ x ) Z - ~ + '  
L n { ~ t + l  = 2(cx + dx) + (dxe; + d;~:)2-~+l 

if, instead of computing L,  and examining the first digits 
of en = 2,(L, - 1), we directly compute E,. 

So BKM looks more complicated than CORDIC. As a matter 
of fact, in order to compare CORDIC and BKM, we have to 
assume that we use a redundant number system. Using such 
a system, the time complexities of both algorithms are O(p).  
As pointed out in many papers dealing with CORDIC, efficient 
use of CORDIC with such a number system requires a doubling 
of the iterations in space [7] or in time [16], [l]. Doubling the 
CORDIC iterations in time gives: 

X,+I = X, - d , ~ , 2 - ~  - d i ~ : , 2 - ~ ~ - '  
yn+l = yn + d,~,2-" - diy,2-2n-2 (10) 

This iteration is at least as complex as the BKM iteration 
(at step n one needs to perform an n-position shift and 
a 2n - 2-position shift: this requires a larger shifter, or 
several consecutive shifts). Doubling the iterations in space 
requires more control: in the branching CORDIC method [71, 
one needs to compare at each step the values given by 
two CORDIC modules. Furthermore, doubling iterations makes 
it possible to obtain a constant scale factor, but this scale 
factor remains different from 1, therefore, for computing many 
functions, one needs to perform a multiplication after the 
CORDIC iterations. So, although both methods have the same 
time and space complexities, BKM looks more interesting when 
using a redundant number system. 

{ Z,+I = Z, - 2d,ar~t~12-"-'. 

VII. CONCLUSION 

We have proposed a new algorithm for the computation 
of many elementary functions (complex exponential and log- 
arithm functions, complex multiplication, complex functions 
(ab)ex and ( t ) e z ,  real functions sin, cos, arctan:, ln(x2 + 
y2), x&, x d m - , x / d m ,  and 2-D rotations). This 
algorithm matches the CORDIC algorithm, since it allows the 
use of a redundant number system without any scale factor 
problem and allows the computation of more functions. 
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