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1 Introduction

1.1 Restricted Infinitesimal Hilbert 16th Problem

The original Infinitesimal Hilbert 16th Problem is stated as follows. Consider a real poly-
nomial H in two variables of degree n + 1. The space of all such polynomials is denoted by
H,.

Connected components of closed level curves of H are called ovals of H. Ovals form
continuous families, see Fig. 1. Fix one family of ovals, say I', and denote by ¥(¢) an oval of
this family that belongs to the level curve {H = t}.

Consider a polynomial one-form

w = Adx + Bdy

with polynomial coefficients of degree at most n. The set of all such forms is denoted by §2;,
The main object to study below is the integral

I(t) = /(t)w. (1.1)

Infinitesimal Hilbert 16th Problem . Let H and w be as above. Find an upper bound
of the number of isolated real zeros of integral (1.1) for a polynomial H € H,, and any family
I' of real ovals of H. The estimate should be uniform in w and H, thus depending on n only.

This problem stated more than 30 years ago is not yet solved. The existence of such a
bound was proved by A.N.Varchenko [23] and A.G.Khovanskii [12]. A weaker version of the
problem is called restricted. In order to formulate it we need the following
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Figure 1: Families of ovals; an oval around A; that belongs to the level curve H = H(Aj3) is
distinguished.

Definition 1.1 A polynomial H € H,, is ullra-Morse provided that it has n? complex Morse
critical points with pairwise distinct critical values, and the sum h of its higher order terms
has no multiple linear factors.

Denote by U,, the set of all ultra-Morse polynomials in H,,. The complement to this set
is denoted by X,, and called the discriminant set. The integral (1.1) may be identically zero.
The following theorem shows that for ultra-Morse polynomials this may happen by a trivial
reason only.

Theorem 1.2 (Exactness theorem [7, 8, 20]) Let H be a real ultra-Morse polynomial of
degree higher than 2. Let the integral (1.1) be identically zero for some family of real ovals of
the polynomial H. Then the form w is exact: w = df.

Denote by 2 the set of all non-exact polynomial one-forms from €,,.

Restricted version of the Infinitesimal Hilbert 16th Problem (RIHP) . For any
compact subsel K of the sel of ultra-Morse polynomials find an upper bound of the number of
all real zeros of the integral (1.1) over the ovals of a polynomial H € K. The bound should be
uniform with respect to H € K and w € Q. It may depend on n and K only.

This problem is solved in the present paper. The solution is based on the results of [2],
[3] and [10]. All the four papers ([2], [3], [10] and the present one) were written as the parts
of one and the same project. The preliminary draft of the joint text may be found at [4]
(preprint, 2001). After 2001, the results were strongly improved and the text had grown up.
So, we decided to split the large text in a series of four papers. Each one of the papers [2],
[3], [10] is independent on the others. The present paper is the main one in the series. It
contains the survey of results of all the four papers, as well as the solution of the RIHP.



Numerous results obtained during more than 30 years of the study of the infinitesimal
Hilbert problem are presented in section 7 of a survey paper [9]. Partial solution of the RTHP
was claimed in that survey paper. The present paper contains a complete solution to RIHP
(modulo [2], [3], [10]). The results of the paper with a brief proof were announced in [5].

1.2 Main results

To measure a gap between a compact set K C U, and the discriminant set ¥,,, let us first
normalize ultra-Morse polynomials by an affine transformation in the target space. This
transformation does not change the ovals of H, thus the number of zeros of the integral (1.1)
remains unchanged.

Say that two polynomials G' and H are equivalent iff

G=aH+b, a>0,becC.

Definition 1.3 A polynomial is balancedif all its complex critical values belong to the closed
disk of radius 2 centered at zero, and there is no smaller disk that contains all the critical
values.

Remark 1.4 Any polynomial with at least two distinct critical values is equivalent to one
and unique balanced polynomial. If the initial polynomial has real coefficients, then so does
the corresponding balanced polynomial.

Define two positive functions on U, such that at least one of them tends to zero as H
tends to Y,,. For any compact set K C U,, the minimal values of these functions on K form a
vector in RT x R* that is taken as a size of the gap between K and X,,.

Definition 1.5 For any H € U,, let ¢1(H ) be n multiplied by the smallest distance between
two lines in the locus of h, the higher order form of H. The distance between two lines is
taken in sense of Fubini-Study metric on the projective line CP. Let ¢/(H) = min(c1(H ), 1).

Denote by V, the set of all polynomials with more than one critical value and more than one
line in the locus of the higher order homogeneous form. By Definition 1.1, U, C V,.

Definition 1.6 For any H € V,, let G be the balanced polynomial equivalent to H. Let
c2(H) be the minimal distance between two critical values of G multiplied by n?. Let ¢"(H) =
min(eg(H),1).

Note that inequality ¢/(H)c¢”(H) > 0 is equivalent to the statement that H is ultra-Morse.

In what follows, we deal with balanced ultra-Morse polynomials only. This may be done
without loss of generality: any ultra-Morse polynomial is equivalent to a balanced one; equiv-
alent polynomials have the same number of zeros of the integral (1.1) over the corresponding
families of ovals.

Theorem A. Let H be a real ultra-Morse polynomial of degree n + 1. Let T' = {7(t)} be
an arbitrary continuous family of real ovals of H. There exists a universal positive ¢ such that

< n4 .
the integral (1.1) has at most (1 —logc'(H))e<") " isolated zeros.
Appendix. The statement of Theorem A holds with ¢ = 5.000.



An approach to the Infinitesimal Hilbert 16th Problem itself presented below motivates
the following complex counterpart of Theorem A, namely, Theorem B that gives an estimate
of the number of zeros of the integral (1.1) in the complex domain. Consider an ultra-Morse
polynomial H and let

= H) = i 1.2
v=v(H):= U] (12)
Fix any real noncritical value tg of H,
|t0| < 3,

whose distance to the complex critical values of H is no less than v. Consider a real oval
Y0 C {H = to}. We suppose that such an oval exists. Let a = a(ty) < to < b(tg) = b (or
a(H,tg), b(H,tg) for variable H) be the nearest real critical values of H to the left and to
the right from ¢y respectively; or —oo, +oo if there are none. Denote by (%) the interval
(a(to), b(tp)) and let I'(yg) be the continuous family of ovals that contains 7 :

I'(70) = {7(1) [t € o(to), 7(t0) = 70} (1.3)
The following cases for (a,b) = o(1g) are possible:
(a,b), b>a;—00 <a<b< 400, (a,+00); (—00,b).

If a is finite, and lim top ,_,,7(?) contains a saddle critical point of H, then a is a logarithmic
branch point of I. If lim top ,_,7(?) is a singleton, or contains no critical point of H, then
@ is called an apparent singularity. The same for b.

Denote by B = Bp the set of all noncritical values of H :

B=C\{a....,a,}, p=n* a; are the complex critical values.
Let W be the universal cover over B with the base point ¢y and projection

m: W —BcCC.

Definition 1.7 Any point { € W is represented by a class [A] of curves in B starting at #g
and terminating at ¢ = 7f; all the curves of the class are homotopic on B. Any cycle v from
H,(S4,,Z) may be continuously extended over A as an element of the homology groups of level
curves of H; the resulting cycle v({) from H;(Sy,7Z)is called an extension of y corresponding
to t.

This construction allows us to extend the integral (1.1) to W : for any i € W,

I(1) = /(f) w. (1.4)

Let D(t,7) be the disk centered at ¢ of radius 7. Denote by a+re*? € W a point represented
by a curve I'1I'y C B, where I'y is an oriented segment from iy to t; = a4+ 1 € o(ty), 'y =
{a +re? | 8 € [0,¢]}; Ty is oriented from ¢; to ¢. In the same way b — re'® € W is defined.
Let

T(a) = {a + re'® € W [0 < r < ]| <21, for a # —oc (1.5)



Mb)={b—re? e W |0 <1 <wv,|p| <2}, for b# 400

Let ,
D(l,a)={a+re € W |a+reT €1l(a)}

D(1,b) = {b—re’® € W | b—re'T € (b))},
D(l,a)=10, if a = —o0; D(I,b)=0, if b = +oc.

Let DPr = DPr(H,ty) be the disk of radius R in the Poincaré metric of W centered at ¢.
Denote

StI{HIt}C(CQ

For any real polynomial H, the choice of a cycle 7o determines a family of ovals (1.3) over
which the integral (1.1) is taken. When we want to specify this choice we write Iy, or Iy
instead of I. The integral Iy, may be analytically extended not only as a function oft € W,
but also as a function of H.

An analytic extension of the integral I to W is denoted by the same symbol I. For any
positive R and natural [ denote by G = G(I, R, H, 1) the domain

G = DPp(H,to) U D(I,a(H,10)) U D(I,b(H,)).

Theorem B. For any real ullra-Morse polynomial H, any real oval vq of H, any natural
» " . .
[ and any positive R > sz?fl), the number of zeros of the integral I ~, in G = G(I, R, H,1y),
where tg = H | 7o, is estimated as follows:

nt

~ ~ _4811 _n-__
B{i € G, R, H, to)|Trrag (1) = 0} < (1 — log () - (™R 4 ABOTm )| A = T (1.6)

The lower bound on R in the statement of the theorem is motivated by the remark in
Subsection 2.4 below.

1.3 An approach to a solution of the Infinitesimal Hilbert 16th Problem

Conjecture. For any n there exist 6(n),l(n), R(n) with the following property. Let Hy be
an arbitrary real polynomial from H,, lg be its real noncritical value and vg be a real oval of
Hy that belongs to {Hog = to} (we suppose that such an oval exists). Let Iy be the integral
(1.1). The integral Iy depends on H as a parameter. Let t; € o(tp),In,(t1) = 0 and t(H)
be a germ of an analytic function defined by the equation Ig(t(H)) = 0, t(Hg) = t1. The
required property is the following. There exists a path A C 'H,, depending on Hy only starting
at Hy and ending at some Hi € H,, such that:

c’(Hl) > 8(n), c”(Hl) > 8(n);

the analytic extension t(H,y) of the function t(H ) along A starting at the value 11 belongs to
the domain G(l(n), R(n), Hq,1o).

The conjecture above implies the solution of the Infinitesimal 16th Problem. Indeed,
suppose that the conjecture is true. Let N(n) be the right hand side of the inequality (1.6)



with ¢/(H) and ¢’(H) replaced by 6(n); R and [ replaced by R(n) and I(n) respectively.
Then the number of real zeros of integral Iy, can not exceed N(n). If not, any of real
zeros of Iy, would be extended along A up to a zero of a polynomial H; located in G =
G(l(n),R(n), Hy,tp). Thus the number of zeros of the integral Iy, in G will exceed N(n).
But Theorem B implies that the number of zeros of Hy in G is no greater than N(n), a
contradiction.

The paper is structured as follows. In Section 2 we present the main ideas of the proof
of Theorems A and B. Section 2 contains also a survey of the previous investigations and
describes some results of [3]; these results may be called “quantitative algebraic geometry”.
Moreover, we prove in this section a part of Theorem A, namely, Theorem Al, modulo the
Main Lemma. In Section 3 we prove the Main Lemma. The proof relies upon two statements:
formula for the determinant of periods, and upper estimates of Abelian integrals provided by
quantitative algebraic geometry. These two statements are proved in two separate papers,
[2] and [3] respectively. Theorem A is finally proved in Section 5. Theorem B is proved in
Sections 4 and 5. The Main Lemma is an important tool for both sections.

2 Main ideas of the proof and survey of the related results

2.1 Historical remarks

A survey of the history of the Infinitesimal Hilbert 16th Problem may be found in [9], and
we will not repeat it here. In particular, a much weaker version of Theorem A is claimed
there as Theorem 7.7. The first solution to restricted Hilbert problem was suggested in [18].
An explicit upper bound for the same numbers of zeros as in Theorem A was suggested
there as a tower of four exponents with coeflicients “that may be explicitly written following
the proposed constructive solution.” It is unclear how much efforts is needed to write these
constants down. Moreover, exponential of a polynomial presented in Theorem A is much
simpler (though still very excessive) than the tower of four exponentials.

The result of [18] is a crown of a series of papers [15] - [17]. Solution to the restricted
version of the Infinitesimal Hilbert 16th Problem presented there is only one application of
a vast theory. This theory presents an upper bound of the number of zeros of solutions to
linear systems of differential equations. Similar results for components of vector solutions to
linear systems are obtained. Abelian integrals are considered as solutions to Picard-Fuchs
equations.

On the contrary, our presentation is focused on the study of Abelian integrals given by
formula (1.1) “as they are” and not as solutions of differential equations.

2.2 Quantitative algebraic geometry

Our main tool is Growth-and-Zeros theorem for holomorphic functions stated in the next
subsection. It requires, in particular, an upper bound of the integral under consideration.
We fix an integrand, say w = zFy"~*dz. Depending on a scale in C2, a cycle v in the integral
[, w may be located in a small or in a large ball. According to this, the integrand will be
small or large. We want to estimate the integral at a certain point of the universal cover W
represented by an arc that connects a base point ¢y with some point, say ¢, with |{| < 3. To
make this restriction meaningful, the scale in the range of the polynomial should be chosen;



in other words, the polynomial should be balanced. The argument above shows that it should
be also rescaled in sense of the following definitions.

Definition 2.1 The norm of a homogeneous polynomial A is the maximal value of its module
on the unit sphere; this norm is denoted by [|#||max-

Definition 2.2 A balanced polynomial H € Clz,y] is rescaled provided that the norm of its
higher order form h equals one: ||A||max = 1, and the origin is a critical point for H. Briefly,
a balanced rescaled polynomial will be called normalized.

Remark 2.3 Any ultra-Morse polynomial may be transformed to a normalized one by ho-
motheties and shifts in the source and target spaces (not in the unique way). The functions
¢’ and ¢” remain unchanged under such transformations.

Definition 2.4 We say that the topology of a complex level curve S; = H~'(¢) of a polyno-
mial H € ‘H,, is located in a bidisk

Dxy ={(z,y) e C*|lz| < X, |y| <Y}

provided that the difference S; \ Dx y consists of n+ 1 = deg H punctured topological disks,
and the restriction of the projection (z,y) — 2 to any of these disks is a biholomorphic map
onto {z € C|X < |z| < o0}.

Theorem C [3]. For a normalized polynomial, the Hermitian basis in C* may be so
chosen that the topology of all level curves Sy for |t| <5 will be located in a bidisk Dxy with

X <Y < (J(H) MW 05" = Ry,

This theorem is of independent interest, providing one of the first results in quantitative
algebraic geometry. On the other hand, it implies upper estimates of Abelian integrals used
in the proof of Theorem A and required by the Growth-and-Zeros theorem below.

In the rest of this section, we describe the main ideas of the proof of a simplified version
of Theorem A, namely Theorem A1l stated below. It provides an upper bound for the number
of zeros of the integral (1.1) on a real segment that is v-distant from critical values of H and
belongs to the disk Dz = {¢| |[t| < 3}, thus being distant from infinity; recall that v = v(H)
is given by (1.2).

By the use of Theorem Al, we get in Section 5 an estimate of the number of zeros of
the integral Ip ., near the endpoints of o({g), as well as near infinity (Theorem A2 stated
in 2.5). Together with Theorem A1, this completes the proof of Theorem A. Theorem B is
split into two parts. The first one (Theorem Bl stated in 4.1) is proved by extending an
upper bound given with the help of Theorem C from a disk |{| < 5 into a larger domain. The
second one, Theorem B2 stated in 5.6, is proved (in the same place) by the same tools as
Theorem A2. These tools include Petrov method and a so called KRY theorem. The latter
one is a recent result in one-dimensional complex analysis [13, 21]. Its improved version is
proved by the second author in a separate paper [10] and stated in Section 5. In this form it
provides a powerful tool to estimate the number of zeros of analytic functions near logarithmic
singularities.



2.8 Growth-and-Zeros Theorem for Riemann surfaces

The idea of the proof of Theorem Al is to consider an analytic extension of the integral
(1.1) to the complex domain and to make use of the following Growth-and-Zeros theorem.
The symbol diam;,; used in the statement of the theorem denotes the intrinsic diameter, see
Definition 2.6 below. We need a notion of a 7-gap between a set and its subset on a Riemann
surface.

Definition 2.5 Let W be a Riemann surface, 7 : W — C be a holomorphic function (called
projection) with non-zero derivative. Let p be the metric on W lifted from C by projection
w. Let U C W be a connected domain, and K C U be a compact set. For any p € U let
e(p,0U) be the supremum of radii of disks centered at p, located in U and such that 7 is
bijective on these disks. The 7-gap between K and 09U, is defined as

m-gap (K,0U) = ]Eréi}% e(p,0U).

Growth-and-zeros theorem. Let W, ,p be the same as in Definition 2.5. Let U C W
be a domain conformally equivalent to a disk. Let K C U be a path connected compact subsel
of U (different from a single point). Suppose that the following two assumptions hold:

Diameter condition:

diam ;,: K < D;

Gap condition:
T-gap(K,0U) < e.

Let I be a bounded holomorphic function on U. Then

maxg |1

#{z € K|I(z) =0} < e log (2.1)

maxg | 1]

The definition of the intrinsic diameter is well known; yet we recall it for the sake of
completeness.

Definition 2.6 The intrinsic distance between two points of a path connected set in a metric
space is the infinum of the length of paths in K that connect these points (if exists). The
intrinsic diameter of K is the supremum of intrinsic distances between two points taken over
all the pairs of points in K.

Definition 2.7 The second factor in the right hand side of (2.1) is called the Bernstein index
of I with respect to U and K and denoted Bg (1) :
M
B uy(I)=1log—, M =sup|I|, m = max|[|. (2.2)
m U K

Proof of the Growth-and-Zeros theorem. The above theorem is proved in [11] for
the case when W = C, 7 = Id. In fact, in [11] another version of (2.1) is proved with (2.1)
replaced by

#{z € K|I(z) = 0} < Bru(D)e”, (2.3)

where p is the diameter of K in the Poincaré metric of U. In this case it does not matter
whether U belongs to C or to a Riemann surface.
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Proposition 2.8 Let K,U be two sets in the Riemann surface W from Definition 2.5, and
let the Diameter and Gap conditions from the Growth-and-Zeros theorem hold. Then the
diameter of K in the Poincaré melric of U admils the following upper estimate:

p<2D/e. (2.4)

Proof Denote by |v|py the length of a vector v in sense of the Poincaré metric of U. By
the monotonicity property of the Poincaré metric, the length |v|pyy of any vector v attached
at any point p € K is no greater than two times the Fuclidean length of v divided by the
m-gap between K and QU. This implies (2.4) o

Together with (2.3), this proves (2.1). o

2.4 Theorem A1l and Main lemma

In what follows, H will be an ultra-Morse polynomial unless the converse is stated. Consider

a normalized polynomial H. Let a; be its complex critical values, j = 1,...,n% v, to, W

and 7 be the same as in 1.2. Let I be the integral (1.1) as in Theorem A (well defined for

t = 1p). It admits an analytic extension to W, which will be denoted by the same symbol I.
Let a = a(tp),b = b({p) be the same as in 1.2, and v be from (1.2). Let

l(to):{a+z/f0ra7é—oo

-3 fora = —o0,

b—viorb+# 4+
T(to) = #
3 for b = +oc.

Let
o(to,v) = [I(to), r(to)].
We identify o(tg,r) C C with its lift to W that contains .

Theorem A1l. In the assumptions at the beginning of the subsection, for any complex
formw € Q7

'S

n

#{t € o(lo,v) | I(t) = 0} < (1 —log ')A, A = e (H), (2.5)

This theorem is an immediate corollary of the Growth-and-Zeros theorem and the Main
Lemma stated below. Let

1 (1) = {a+ver® € W | ¢ €[0,2r]} for a # —o0 (2.6)
v {-3er% e W | p €[0,2(n+ 1)n]}, for a = —o0, '

R (1) = {b—ve® ¢ W | €[0,2n]} for b # +o0 (2.1)
Y7 {43659 e W | g € [0,2(n + 1)7]}, for b= +oo, '
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Fa = L+(t0) U L_(to), Fb = R+(t0) U R_(to), Y= Fa U Fb U O'(to,l/).

Main Lemma. Let H be a normalized polynomial of degree n+1 > 3 with critical values
aj: j=1,..,n% w be a complex polynomial 1-form of degree no greater than n. Let W,v, ¥
be the same as at the beginning of this subsection. Then there exists a path connected compact
set K C W, K DY, 1K C D3, with the following properties:

diam;, K < 36n%; (2.8)

p(nK,a;) > v forany j = 1,...,n (2.9)

Moreover, let U be the minimal simply connected domain in W that contains the v/2 neigh-
borhood of K. Then the Bernstein index of the integral (1.1) admits the following upper
bound:

Bry(I) < (1 —logc)A% (2.10)

The Main Lemma is proved in Section 3. It is used also in the estimate of the number of
zeros of the integral in the intervals (a,(to)), (r(%0),b). In fact, a much better estimate for
the Bernstein index holds:

270018

B () < 222
IX,L( )< C//(H)

—30n%logc'(H) := B(n,c,c"). (2.11)

Inequality (2.11) is proved in 3.7. Together with the elementary inequality
B(n,c,c") < (1 —logc)A?, (2.12)

it implies (2.10).

Proof of Theorem Al. Let us apply Growth-and-Zeros theorem to the function I in the
domain U in order to estimate the number of zeros of I in K; note that K O o(ty). The
intrinsic diameter of K is estimated from above by (2.8). The gap condition for U and K
has the form

(K, 0U) =2 =
2
by the definition of U. Hence,

2D 72n2 ¢ 2
€ < e o 8n — A576.

The Bernstein index By 7([) is estimated from above in (2.10). By Growth-and-Zeros theo-
rem

#{t € a(ly) | I(t) = 0} < Brp(I)A™ < (1 —logc')AP™.
This proves (2.5). o

The following remark motivates the restriction on R in Theorem B.
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Remark 2.9 Let K be the set from the Main Lemma, pw K be its diameter in the Poincaré
metric of W. Then

pw K < (¢")7'288n". (2.13)

Indeed, pw K is no greater than the ratio of the double intrinsic diameter of K divided by
its minimal distance to the critical values of H. Together with (2.8) and (2.9) this implies
(2.13). On the other hand, in the proof of Theorem B, we apply Growth-and-Zeros theorem
in the case, when the Poincaré disc D Pr(H,1p) is large enough, namely, contains the set K.
Hence, the maximum of |I| over the disk is no less than max |I| over K. The latter maximum
is estimated from below in the proof of the Main Lemma, see inequality (3.17) below.

2.5 Theorem A2 and proof of Theorem A

Theorem A2. Lel H, {g,a = a(ly),b = b(ly) be the same as in the previous Subsection. Let
w be a real 1- form in QF. Then, in assumptions of Theorem Al,

#11 € (a,1(10)) U (r(to), b) | I(1) = 0} < (1 — log ¢') A5 (2.14)

Proof of Theorem A. By Theorems Al and A2

#{t € (a,b), I(t) =0} < (1 —logc)AS™® 4 (1 —log ¢')A*8% < 2(1 —log ) A®P,  (2.15)

This implies the estimate of the number of zeros given by Theorem A on the interval
(a,b).

Let ¢/ C R be the maximal interval of continuity of the family I' of real ovals that contains
70 Then ¢’ is bounded by a pair of critical values, at most one of them may be infinite.
In general, the interval ¢’ may contain critical values (see Fig.1, which presents a possible
arrangement of level curves of H in this case: Ay, Ay, Ag are critical points of H, a; = H(A;),
az € o' = (a1,a3), tog € (a1,az)). In this case 0’ # (a,b) = (a1,az). Let us estimate the
number of zeros on o'. The interval ¢’ is split into at most n? subintervals bounded by
critical values. On each subinterval the number of zeros of I is estimated by (2.15), as before.
Therefore, the number of zeros of I on o’ is less than 2n?(1 —log ¢/) A%8%0 < (1 —log ¢") A4891,
This proves Theorem A. a

3 An upper bound for the number of zeros on a real segment
distant from critical values

In this section we prove the Main Lemma and hence Theorem A1. We also prove the Modified
Main Lemma, see Subsection 3.8 below, and prepare necessary tools for the proof of other
results: Theorems A2, B1 and B2.
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3.1 Sketch of the proof of the Main Lemma

The proof of the Main lemma is based on the following idea. The integral (1.1) is extended
onto the universal cover W of the set of noncritical values of the real ultra-Morse polynomial
H; the base point of this cover belongs to (—3,3). The upper estimate of the Bernstein index
of this integral in the pair of domains U, K requires an upper bound of the maximal module
of the integral in U, and a lower bound in K. When we consider these maximums instead of
their ratio, we have to normalize the form w, multiplying it by a complex factor.

Definition 3.1 A polynomial 1-form is normalized if the maximal magnitude of its coeffi-
cients equals 1, and some coefficients equal 1.

The upper bound of the integral is provided by the quantitative algebraic geometry. The
main difficulty is to obtain the lower bound. For this we consider u? integrals instead of a
single one; recall that g = n?. Namely, we introduce a special set of u forms w;,7 = 1,...,u
and a special set of vanishing cycles on the level curves S; = {H = t}: 61(¢),...,68,(t). The
matrix [(¢) with the entries I;;({) = féj(t) w; is called a matriz of periods. The determinant
A(t) = detI(¢) is univalent. The first step is to evaluate its determinant and to provide a
lower bound for A(?) when ¢ is distant from the critical values of H. This is done in [2] and
[3]. The second step is to give an upper estimate for the entries of I. This estimate based on
the results of [3] is obtained below. The main step is to construct the set K C W. This set

is constructed in such a way that the assumption “m := maxg |I|,I(t) = fw(t)w, is small”

implies that all the integrals fé](to)w’ j = 1,...,p are small. This implication makes use of
the Picard-Lefschets theorem, and the connectedness of the intersection graph of the special
system of vanishing cycles.

The implication above is used in the following way. For a normalized form w, one may
replace some row of the matrix I by the row fél(t) w,.. .,f%(t) w without changing the main
determinant. All the entries of I are estimated from above; the determinant of I is estimated
from below. This implies that none of the rows of I may be too small, and thus provides a
lower bound for m. The domain U is chosen as a slightly modified e-neighborhood of K for
appropriate €. The upper estimate of M = maxy |I] is obtained as explained above. Upper
estimate of M and lower bound for m imply an upper estimate of the Bernstein index By g (1)
and thus prove the Main Lemma.

Let us now pass to the detailed proof.

3.2 Special set of vanishing cycles and modified Main Lemma

All along this section H is a real normalized ultra-Morse polynomial of degree n+1> 3, u =
n*; ay,...,a, are critical values of H, v is the same as in (1.2), ¢ = v/2. For ¢ close to
a;, 6;(1) is a local vanishing cycle corresponding to a; on a level curve

St ={H = t};

Recall the definition of this cycle.

Consider an ultra-Morse polynomial in C? having a (Morse) critical point with a critical
value a. An intersection of a level curve of this function corresponding to a value close to
a with an appropriate neighborhood of the critical point is diffeomorphic to an annulus.
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This follows from the Morse lemma. The annulus above may be called a local level curve
corresponding to the a critical value a.

Definition 3.2 A generator of the first homology group of the local level curve corresponding
to a is called a local vanishing cycle corresponding to a.

A local vanishing cycle is well defined up to change of orientation.
A path a; : [0,1] — C is called regular provided that
Oéj(O) = 1o, Oé]'(l) = aj, Oé]'[O, 1)c B (3.1)

Definition 3.3 Let a; be a regular path, s € [0, 1] be close to 1, §;(¢), t = a;(s), be alocal
vanishing cycle on 5; corresponding to a;. Consider the extension of ¢; along the path a up to
a continuous family depending on s of cycles é;(a;(s)) in complex level curves H = a;(s). The
homology class 6; = 6;(ty) € H1(St,,Z) (corresponding to s = 0) is called a cycle vanishing
along a;.

Definition 3.4 Consider a set of regular paths ay,...,a,, see (3.1). Suppose that these
paths are not pairwise and self intersected. Then the set of cycles 8; € Hy(Sy,,Z) vanishing
along a;, 7 =1....,pu,is called a marked set of vanishing cycles on the level curve H = t,.

Recall that W = W ({o, H) is the universal cover over the set of noncritical values of H
with the base point {y and the projection 7 : W — C.
Let é61,...,6, be a marked set of vanishing cycles. For any cycle é; from this set, consider

an integral
Il(t) :/ w,
bi(t)

over local vanishing cycles, for ¢ close to a;. This integral is holomorphic at a;, and takes
zero value at a;. Denote by W) the Riemann surface of the analytic extension of this integral.
Note that the Riemann surface W; contains the disc D,(a).

Lemma 3.5 (Modified Main Lemma). The Main Lemma from Subsection 2.4 holds true
provided that the real oval ¥(1) of integration (1.1) is replaced by a local vanishing cycle §;(t)

close to the corresponding critical value a;, W is replaced by W and X is replaced by the disk
Ey(al).

This lemma is proved in 3.8.

3.3 Matrix of periods

Consider and fix an arbitrary marked set of vanishing cycles é;, j = 1,..., u. For any tew,
let 6;(1) be the extension of §; corresponding to .

Definition 3.6 Consider a set © of 1 forms w; of the type
w; = yzFylde, k,1>0, k+1<2n—2 (3.2)

(k,1) depends on i, such that all the forms with & +7 < n—1 are included in the set, and the
number of forms with monomials of degree 2n — k equals k for 1 < k& < n. In what follows,
such a set is called standard.



15

A matriz of periods 1 = (1;;), 1 <t <p, 1 <j < p,is the matrix function defined on W
by the formula:

1(0) = /5 0 10 = (D) (3.3)

J

where é;, j =1,...,u, form a marked set of vanishing cycles; {w;|¢ = 1,...,p} is a standard
set of forms (3.2).
When we want to specify dependence on H, we write I(Z, H) instead of I(?).

3.4 Upper estimates of integrals

Denote by |A| the length of a curve A, and by U¢(A) the e-neighborhood of a set A.
The main result of the quantitative algebraic geometry that we need is the following

Theorem 3.7 Let é; be a vanishing cycle from a marked set, see Definition 3.4, correspond-
ing to a curve aj,|oj| <9 (recall that [tg| < 3). Let X C B be a curve starting at o (denote
by t its endpoint) such that

|A| < 36n% +1, |t| < 5. (3.4)

Let the curve a; N U®(a;) be a connected arc of aj, and the curves a; \ U%(a;) and X have an
empty intersection with ¢-neighborhoods of the critical values ay, where ¢ = v/2, v is from
(1.2). Letw be a form (3.2), { € W corresponds to [\], and §;({) be the extension of 6; to {.
Then

2600719 98
|A(QW| < 2 "(H) (C/(H))_ "= Mg (3‘5)
3

This result is based on Theorem C' from 2.2. Both results are proved in the forthcoming
paper [3].

We have to give an upper bound of the integral not over a vanishing cycle, but over a real
oval. The following Lemma shows that the real oval is always a linear combination of some
(at most ) vanishing cycles with coefficients +1.

Lemma 3.8 (Geometric lemma). Let H be a real ultra-Morse polynomial and v be a real
oval of H. Let H|, = lg. Denote by s the number of critical points of H located inside vy in
the real plane. Let ay,...,as be the corresponding critical values. Let aj, j = 1,...,s, be
nonintersecting and nonself-intersecting paths that connect tg with these critical values and
satisfy assumption (3.1). Moreover, suppose that all these paths belong to the upper halfplane
and for any a; (which is real), an open domain bounded by a path o; and a real segment
(connecting the endpoints of a;) contains no critical value of H (see Figures 2 and 3). Let
0; be the vanishing cycles that correspond to the paths a;. Then

[v] = Xie;6;, where e; = £1. (3.6)

The authors believe that Lemma 3.8 is well known to specialists, but they did not find it
in literature. Its proof is given in 3.10.
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Figure 2: The cycle v = 7(%p) and local vanishing cycles §; = §;(¢;); the points ¢; close to a;
are marked at Fig.3.

aqt, Bty aglz

Figure 3: The paths for the extension of the local vanishing cycles 6;(¢).

Upper estimates of the integrals of monomial forms over vanishing cycles are provided by
Theorem 3.7. When we replace a monomial form by a polynomial one, the following changes
are needed. Let w € 2} be the form in the integral I. There exists another form of type

W= E apcty'ttde, (3.7)
k+i<n-—-1

such that the difference w — w' is exact. We may replace the form w by &’ in (1.1); the
integral I will be preserved. Moreover, we can replace the form w’ by a normalized form
aw’,a € C, see Definition 3.1. Hence, we may assume that the form w in the integral I has
the type (3.7) and is normalized from the very beginning. When we replace a monomial form
by a normalized one, the previous upper bound of the integral should be multiplied by the
number of monomials, namely, by ﬂnTHl When the vanishing cycle is replaced by a real one,
the integral is replaced by a sum of s < n? integrals over vanishing cycles, by the Geometric
Lemma. This results in another multiplication by n?.

Corollary 3.9 In the condition of the previous Theorem let H be a real polynomial, 7(1?) be
the extension to { of a real oval, w be a normalized form (3.7). Then

n3(n+ 1)

Mp. .
D (338)

|Iw(ﬂw| <
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3.5 Determinant of periods

The determinant of the matrix of periods (3.3) is called the determinant of periods. It appears
that this determinant is single-valued on B, thus depending not on a point of the universal
cover W, but rather on the projection of this point to B. Let

A(t) = det I(1), t = i.

The main determinant is single-valued; this follows from the Picard-Lefschetz theorem. In-
deed, a circuit around one critical value adds the multiple of the correspondent column to
some other columns of the matrix of periods. Thus the determinant remains unchanged.
When we want to specify the dependence of the main determinant on H, we write Ag(t).
This function is a polynomial in ¢, and an algebraic function in the coefficients of H. The
formula for the main determinant (with w; of appropriate degrees) with a sketch of the proof
was claimed by A.Varchenko [24]; this formula is given up to a constant factor not precisely
determined. The complete answer (under the same assumption on the degrees of w;) is
obtained by the first author (A.Glutsyuk, [2]). Moreover, the following lower estimate holds:

Theorem 3.10 For any normalized ultra-Morse polynomial H, the tuple Q of standard forms
(3.2) may be so chosen that for any t € C lying outside the v = %- neighborhoods of the
critical values of H the following lower estimate holds:

AL H)| > (¢ ()™ (") = = Ay (3.9)

This result is proved in [3] with the use of the explicit formula for the Main Determinant
mentioned before, and results of the quantitative algebraic geometry.

3.6 Construction of the set K

We can now pass to the construction of the set K mentioned in the Main Lemma. We first
construct a smaller set K'.

Lemma 3.11 (Construction lemma). Let v C Sy, be a real oval of an ultra-Morse poly-
nomial. Then there exist:

a sel of regular paths oj, j = 1,...,u, see Definition 3.3, such that |oj| < 9, and the
paths o are not pairwise and self inlersected;

a path connected set K' C W, ty € K', 7K' C D3, such that for any cycle é; € H1(S4,,Z)
vanishing along a; there exist two points 1,7 € K' N w1 (ty) with the property

[y(r)] = [v(m2)] = §[85], 1; € Z\ 0. (3.10)
Moreover,
diam; K' < 1902, (3.11)
and TK' is disjoint from v-neighborhoods of the critical values a;, 7 =1,..., pu.

The next modification of this Lemma will be used in the proof of the Modified Main Lemma.
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Lemma 3.12 (Construction lemma for vanishing cycles). Construction lemma holds
true if v C Sy, is replaced by any vanishing cycle 6, = é;(ty) from an arbitrary marked set
of vanishing cycles, and W is replaced by W, (see 3.2). In the conclusion, (3.10) should be
replaced by

[6:(1)] = [6i(2)] = {;[6;(t0)], for j # 1, 1; € Z\ 0.

Both lemmas are proved in 3.9. In what follows we deduce the Main Lemma from Lemma
3.11 and Theorems 3.7, 3.10.

Corollary 3.13 (of Lemma 3.11). For any form w (not necessarily of type (3.2)) and any
marked set of vanishing cycles consider the vector function

]IW:W—>(C“,fr—></ w,...,/ w). (3.12)
81(%) Su(?)

Let || - || denote the Euclidean length in C*. Then

> o) (3.13)

mo:= max |I(i)
te K'nm—1 (o)

Proof Consider a component of the vector I,(o) with the largest magnitude. Let its number

be j. Then
/
85(to)

By Lemma 3.11, there exist 7,75 € K’ N7~ 1({g) such that

> Lt (3.14)

I(Tl)—I(TQ)Il]‘/ w, I; € Z\0.
65(to)

Hence, at least one of the integrals I(7;) in the left hand side, say I(7), | € {1,2}, admits a
lower estimate:

1
lI(m)| > = / wl. (3.15)
2| Js;(t0)
Together with (3.14) this proves the Corollary. o
Let us now take
K =KUY, % =0(t)) UL(to) U R (1), (3.16)

see (2.6), (2.7).
In the following Section we will check that this K satisfies the requirements of the Main
Lemma.
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3.7 Proof of the Main Lemma

Let us take K as in (3.16). Let v be the same as in (1.2). Let U be the smallest simply
connected set that contains the e-neighborhood of K, ¢ = v/2. Then (2.8) follows from (3.11),
(3.16). The last statement of Lemma 3.11 implies (2.9).

Let us now check (2.10), that is, estimate from above the Bernstein index By 1/(I) for the
integral (1.1).

Let the form w in the integral (1.1) be normalized, and let, as before, M = maxg |I], m =
maxg |I|. By Corollary 3.9,

n3(n + 1)

M < Mg = M},

where My is from (3.5). Let us now estimate m from below, following the ideas presented at
the beginning of the Section.

Let in (3.7) |ary,| = 1, w; = yafoylodz. Without loss of generality we may assume that
ak,1, = 1. Let us now replace the ith row of the matrix I by the vector I,. This transformation
is equivalent to adding a linear combination of rows of I to the ¢th row, so the determinant
A(tp) remains unchanged.

By Theorem 3.7 and (2.8), all the entries in other rows are estimated from above by My,
see (3.5). (The corresponding paths a; used in the construction of K are chosen as in Lemma
3.11, so, the inequality |o;| < 9 of Theorem 3.7 holds true.) Hence, all the vector-rows except
for the ith one have the length at most nMy. By (3.13), the ith row has the length at most
2nmg. We can now obtain a lower bound for m. Indeed, m > mg. On the other hand,

Ao < |A(lg)| < QmOJX/IéL_ln”,u =n?,
where Ag is the same as in (3.9). Therefore,
m > mg > %Aoﬂ/[é_#n_“. (3.17)
We can now estimate B () from above. Indeed,
Bru(I) =1log M —logm > log M, — log my.
Elementary estimates (together with (3.17)) imply that
log M{ —logmg > (1 —log ) A%, (3.18)

This proves the Main Lemma.

3.8 Modified Main Lemma and zeros of integrals over (complex) vanishing
cycles

Proof of the Modified Main Lemma. The arguments of the previous Subsection work
almost verbatim. The previous Corollary for the integral I = I; taken over é; instead of 7, is
stated and proved in the same way.

Let K’ be the same as in Lemma 3.12. Instead of (3.16), let

K=KU a U Ey(al).
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Let U be the smallest simply connected set that contains the e-neighborhood of K.
By Theorem 3.7,
max |[;] < Mg, where V. =U\ D,(«).
14

But [; is holomorphic in D,(a;). Hence, by the maximum modulus principle, the previous
inequality holds in U instead of V. After that, the rest of the arguments of the previous
Subsection work. This proves the Modified Main Lemma. a

Theorem 3.14 The number of zeros of the integral I; in the disk D,(a;) satisfies the in-
equality:

#{i € Dy(an)|1() = 0} < (1 — log ¢/(H))AT™. (3.19)

The proof is the same as for Theorem Al, section 2.4.

3.9 Proof of the Construction Lemmas

Proof of Lemma 3.11. We prove the lemma in four steps. The set K’ is constructed
in the first three steps. In the fourth step we check that the resulting set has the required
properties.

Step 1: special path set. Let o be a segment [lg, a;] oriented from #o. Note that the disks
D; = D,(a;) are pairwise disjoint, by definition of v, see (1.2). If the intersection 3; = o’ N D;
is nonempty, it is replaced by the smallest arc of the circle 9D; with the chord ;. If both
arcs are equal, and a; C R, the detour arc is chosen in the upper halfplane. In the opposite
case, the semicircles are chosen lying on one side of a;, no matter, what one.

The pathes thus modified are slightly perturbed in order to become nonintersecting outside
to. These pathes are denoted a; and form a special path set.

Recall that g € D3, aj € Dy. Therefore, the length of any segment a;- is less than 5.
Hence,

5
o] < g <9, (3.20)
Step 2: special loop set. For any a; take a loop A; associated to a; and defined as follows:
Aj = aj0D,(a;)(af)7, of = a;\ Dy(ay),

dD,(a;) is positively oriented, and the path af is oriented from fy. The set K' we are
looking for will be the union of appropriate n* liftings of the loops A; (omne lifting for each
A;) associated with a;, to the Riemann surface W.

Step 3: construction of K’. Denote by G the intersection graph of v(#y) and all the
vanishing cycles é; (along the previously constructed paths a;). (Recall the definition of
the intersection graph: its vertices are identified with the cycles; two of them are connected
by an edge, if and only if the corresponding intersection index is nonzero.)  This graph is
connected. This follows from the two lemmas below.

Lemma 3.15 The intersection graph of the marked set of vanishing cycles of an ultra-Morse
polynomial is connected. The set itself forms a basis in the group H1(S4,,Z).
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Lemma 3.15 is implied by the following statements from [1]: theorem 1 in 2.1 and theorem
3in 3.2.

Lemma 3.16 Consider a mazimal family of real ovals that contains v(ty). The union of the
ovals of the family forms an open domain. The boundary of this domain consists of one or two
connected components. Any of these components belongs to a critical level of H and contains
a unique critical point. Fix any of these critical points and denote by ¢ the corresponding
local vanishing cycle. Then the cycle 6 may be extended to a cycle 6(ty) that belongs to a
marked set of vanishing cycles constructed above. Moreover,

(6(t0),7(t0)) # 0, more precisely, it is equal to £ 1, +2.

The proof of this lemma is written between the lines of [6], pp 12,13. It is illustrated by
Fig.4.

Figure 4: Local vanishing cycles having nonzero intersection index with the ovals of the family
that contains v({p).

Let us define a metric on the set of the vertices of the graph G. Suppose that each edge
of G has length 1. Then the distance Dg between any two vertices of G is well defined as
the length of the shortest path in G' that connects the vertices. For any j let

p(6;) = Da(v(to), 65)-

Let T be a maximal tree in G with the root [y(%g)] such that the distance in 7" (defined as in
D¢ but with paths in T') of any vertex to the root [y({o)] coincides with D¢ (see Fig.5: the
tree T is marked bold).

The set K' C W we are looking for is the image of the tree T in W under a continuous
map ® : T — W so that the vertices are mapped to 7 ~!(%y). This map is defined by induction
in 7 = p(4;) as follows.

Base of induction: » = 0. The cycle 7(#p) is mapped to to.

Induction step. Let é; be an arbitrary vanishing cycle with p(é;) = r , and &' be the
ancestor of §;. Then p(¢') = r — 1, and ®(§') := 7 € 7 1(4o) is defined by the induction
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[Vt )l

Figure 5: The intersection graph and the maximal tree.

hypothesis. Let [6’,6;] be the edge of G with the vertices ¢’, §;. Let uslift the special loop A; to
a covering loop ;\j C W with the initial point 71. Let :\j = ®([¢’,6;]); the continuation of ® to
the edge [¢',6;] is an arbitrary homeomorphism with ®(¢’) := 71. Let ®(§;) := 7 € 77 1({o).
The induction step is over. By definition, K’ = ®(T).

Step 4: properties of the set K’. The set K'is a curvilinear tree and thus, path connected.

Its intrinsic diameter admits the upper estimate

diam;,; K’ < n® max|);| < 19n?, since |);| = 2|af| 4 27v < 19.
J

The set K’ is projected to the loops A;, which lie in D3 and are disjoint from the v- neigh-
borhoods of the critical values by definition. Hence, the same is true for 7( K’).

Let us prove (3.10). For any vanishing cycle é;(¢g) let L; be the branch of the tree T’
from [y(%o)] to 6;(to). Let [v(to)], 65, (t0), ..., 6;.(to) = 6;(t0) be its vertices ordered from
the beginning to the end of the branch. By definition, the intersection index of any cycle in
this sequence with its two neighbors is nonzero, and that of any two nonneighbor cycles is
zero. Let us call this the regularity property of L;.

We will prove (3.10) by induction in r. Let 71,75 € 771({g) be the same, as in the previous
induction step: 7, = ®(6;), 71 = ®(¢') = ®(4;,_,). Moreover, we will prove by induction that

¥(r2) = 7(to) + Y b, (lo), Im € Z)\ 0, (3.21)
m=1
The induction assumption is
r—1
¥(r) = 7(to) + Y b, (lo), lm € Z\ 0. (3.22)
m=1

Now, (3.21) follows from (3.22) by the regularity property of L;, and the Picard—Lefschetz
theorem. On the other hand, (3.21) and (3.22) imply (3.10). The Construction Lemma is
proved. a

Lemma 3.12 is proved in the same way with the following minor changes: G is now the
intersection graph of the marked set of vanishing cycles concidered, and in the lifting process,

W should be replaced by W,.
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3.10 Proof of the Geometric Lemma

We prove Lemma 3.8 by induction in s. For s = 1, it is a direct consequence of the definition
of the vanishing cycle.

Let N > 1 and suppose that the Lemma is proved for all s < N. Let us prove it for
s = N. Consider the family of ovals of H that contains v. The ovals of the family located
inside 7 fill a domain bounded by 7 and by a connected component of a critical level curve of
H. As N > 1, this component is not a singleton. Hence, it contains a saddle. Therefore, it is
a union of two separatrix loops, because it is compact and contains only one critical point of
H; recall that H is ultra-Morse. Denote these loops by I'; and I'y, the corresponding critical
point of H may be considered to be zero, as well as the corresponding critical value. This
may be achieved by a shift in the source and target of H. Denote by § the local vanishing
cycle at 0. Let ¢y := H|, > 0; if not, we reverse the sign of H.

The separatix loops I'y and I'; may form an eight shaped figure or be located one inside
the other, see Figures 6 and 7. We will study the first case in full detail, then the second one
briefly.

Suppose that I'y U I'y is an eight shaped figure. Let ¢; be a negative number of a small
magnitude. For such ¢y, the part of the level curve H = t; inside v is a pair of ovals v; and
72, located inside I'y and I'; respectively. The arrangements of the real curves v, I'y, 'y, 71,
72 and a loop 4 on the complex curve 5; are shown in Figure 6. On all the curves v, I'y, I'y,
71, 72 we choose the clockwise orientation.

Figure 6: Eight shaped figure.

Suppose first that tg is small. Let tg = —t; = 72. Consider a semicircle path in the set of
noncritical values of H, named Ag :

1(8) = toe®, Xo = {1(8) | 8 € [0, ]}.

et [v(8)] € 1( 46 7)) be the homology class, depending continuously on # and such that
[ (0)] = [y]. We will prove that

[y(m)l = [yl + [r2] +elé], e € {-1;1} (3:23)

Any of the loops 71, 72 contains less than N critical points of H inside. By the induction
assumption, [y1] and [y2] may be represented as sums of vanishing cycles like (3.6). After a
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Figure 7: One separatrix loop inside the other.

proper numeration, this representation has the form

[71(t1)] = X °16 (t1), [y2(ta)] = EN -1-1”1‘5 (t1)-
Then
[7(m)] = £7'e;8(1),
where ey = ¢,0n = 6. Let the cycles §;(¢;) correspond to the pathes a;(t1). Let a;(ty) =
Aoa;(t1), 6;(to) correspond to a;(tg). Then (3.6) holds with §; = §;(to).

Let us now prove (3.23). Let z, w be Morse coordinates for H in a neighborhood of 0, so
that locally S; = {zw = t} for small ¢. Let Z* and W% be the following cross-sections of the
foliation 2w = const in the previous neighborhood of 0: Z* = {z = £7}, W* = {w = £7}.
Let pt = ZTNTy, p-=Z NIy, gt =WHtNTy, ¢ = W™ NI (see Fig.6). Let I'1(0) be
the arc of I'y from p* to ¢7; I'2(0) be the arc of T'y from p~ to ¢T. Consider a continuous
family of curves I'y1(t) defined for small ¢ by the following assumptions: I'1(¢) C Sy, the
initial point of T'y(¢) belongs to Z*, the endpoint belongs to W~; I'1(0) is the same as above;
I't(t1) = 71, I'1(to) is an arc of v from (z,w) = (7,7) to (z,w) = (=7, —7).

In a similar way, the family {I';(¢)} is defined for ¢ small: I';(0) is the same as above;
v =T'1(to)T2(to), see Fig.8.

Let ot C Z%, p* C W* be the following semicircles:

= = {o*(0) |0 € [0,7]}, 0¥ (0) = £(r,7¢"),
= {3%0)] 0 € [0,7]}, 5E(0) = £(re” 7).

Note that a*(6) and 37 (8) are the endpoints of T'1(¢(8)), a~(6) and 37 (8) are the endpoints
of T5(1(0)). Consider the following curves I%(8) C Sy :

IE(0) = {£(re!0%) re¥) |0 < ¢ < 6}
Note that T#() connects 3%(#) and a®(#), being oriented from 3% to a*. Now, let

7(8) = T (4(6))I (6)L2(4(0))I" (6).
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T,(€6)

Figure 8: Extension of oval 7.

We have: [y(7)] satisfies (3.23), because I'y(¢(7)) = 71, [2(t(7)) = 72, I'H(m)I~(7) = 6.

This completes the induction step for H|, small. Let now ;3 = H|,be large. Take
small Z; > 0 such that the oval 7(t3) belongs to the same family of ovals as v = 7({o)
and formula (3.6) for v(t3) and é; = 6;(¢3) holds. Suppose that vanishing cycles §; in this
formula correspond to paths a;. Let ag C B be a path in the upper halfplane that connects
1y and tg and is close to the segment [t, 7). If this segments contains no critical points of H,
then ag = [{o,t2]. Clearly, 7 is a continuation of v(¢z) along ag. On the other hand, let the
vanishing cycles §;(1y) correspond to the paths aga;. Then (3.6) holds for v and 6; = 6;({o).
This proves the Geometric Lemma in case when I'y U I'y is an eight shaped figure.

In case when I'y lies inside I'y, there is another component of H = iy, except for v, that
lies inside I'y, see Fig.7. Denote this component by 7. For ¢y small, the part of the curve S_;,
close to I'y U T'y is one oval; denote it by 7. Let é be the local vanishing cycle corresponding
to zero. Then [y1] = [y] 4 [72] +€[6]. This is proved in the same way as above. After that the
proof follows the same lines as for the eight shaped figure.

4 Number of zeros of abelian integrals in complex domains
distant from critical values

In this section we prove the first part of Theorem B, namely, Theorem B1 mentioned in 2.2
and stated below.

4.1 Upper estimates in Euclidean and Poincaré disks

All through this Section the notations of Subsection 1.2 hold. Moreover, 6;,...,6, is a
marked set of vanishing cycles on 5;,, K C W is a compact set from the Main Lemma, see
2.4. Denote by |a| the Euclidean length of the curve a C W.
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Theorem 4.1 Fiz a normalized complex ultra-Morse polynomial H. Let i € W be a point
represented by a curve A C B. Let §; be a vanishing cycle from a marked set corresponding
to a curve a;. Let o = Ala;. Let 0 < B < 1. Suppose that o N Dg(a;) is a connected arc
of the path a, and a avoids the (3- neighborhoods of the critical values distinct from a; of the
polynomial H. Then for any 1- form w of type (3.2)

/ w
8;(1)

Theorem 4.1 is proved in [3]. It is used in the estimate of the number of zeros in Euclidean
disc. The following upper bound (Theorem 4.2 also proved in [3]) of integrals is used to prove
an upper bound of the number of zeros in Poincaré disc that is exponential in the radius of
the disc.

Denote by V., f the variation of the argument of the function f along an oriented curve 7.

10n12 Ia/|6+5

<2VMy, My =2 ((H)) " (4.1)

Theorem 4.2 [3]. Let H be a normalized complex ultra-Morse polynomial of degree n+1 > 3.
Let i C W be a point represented by a curve A C B. Let § be a vanishing cycle from the
C”(H)
4n2

marked set; § corresponds to a curve aj, a = A ta; 1 [0,1] — B. Let 0 < B <v =

' = a(0) = (i), a=a(1) = a;(1), 7' = min{r €[0,1] | a(7,1] C D(a)}, & = a\ a(r', 1],
a=al (Eg \ UZ-Dg(aZ-)), (4.2)
Vi=Vas =8 Vanpsy fi +3Vap, fo, filt) =1 = ai, fo(t) =t

Let § € Hi(Sy,Z) be the cycle vanishing along o.. Let w be a monomial 1- form of degree at
most 2n — 1 with unit coefficient. Then

q0pl2 1211V 45
B

() max(1 (). )

| / w| <27 My, Myj=2
5(1)
Remark 4.3 One can estimate the number of zeros in Poincaré disc by using Theorem 4.1
instead of Theorem 4.2 (see the proof for Euclidean disc below). But the upper bound of the
number of zeros obtained in this way is double exponential in the radius.

Let DER g be an Fuclidean disk in W with - neighborhoods of critical values deleted.
More precisely, DERg g is the set of all those { € W that may be represented by a curve A,
whose length is no greater than R, provided that A avoids S-neighborhoods of critical values.

Theorem 4.4 Lel H be a normalized complex ullra-Morse polynomial of degree n + 1 > 3,
w be arbitrary 1- form of degree at most n. Then the number of zeros of integral (1.1), which
1s an analytic extension of an integral over real ovals or over marked vanishing cycles of a
normalized polynomial H, is estimated from above as follows:

#{i€ DERs | I(t) = 0} < (1 —logc'(H))e ® (4.4)
provided that
R > 36n* 3<v/2 (4.5)
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The following statement is an analogue of Theorem 4.4 for Euclidean metric replaced by
the Poincaré one.

Theorem 4.5 (Theorem B1). In the assumptions of Theorem 4.4 the number of zeros of
integral (1.1) over real ovals or over marked vanishing cycles of a normalized polynomial H
s estimated as follows:

#{i € DPR|I({) =0} < (1 —logc'(H))e™, (4.6)
provided that
288n1
> . .
R > I(H) (4.7)

Recall that D Pg is the disk in the Poincaré metric of W of radius R centered at the base
point tg.

Theorem B1 forms the first part of Theorem B. The second part of Theorem B, Theorem
B2, is presented in Section 5. Theorems B1, B2 imply Theorem B.

4.2 1Idea of the proof

Theorems 4.4 and B1 are proved as Theorem A1, making use of Growth-and-Zeros Theorem.
The set K, both from the Main Lemma and from the Modified Main Lemma, belongs to
DER by (4.5) and to DPg by (4.7), see Remark 2.9.

Thus we have the main ingredient in the estimate of the Bernstein index, namely, the
lower bound for m, see (3.17).

The upper bound is provided by the same arguments that prove Corollary 3.9.

Corollary 4.6 Let in assumptions of Theorem 4.4, w be a normalized form, and 7(f) be an
extension of a real cycle v(tg) of a normalized polynomial H. Then

|/ w| < My, My =max M, j, (4.8)
(i) I

where M ; are the same as in (4.1).

Indeed, n®(n + 1)/2 < 22" for any positive integer n.

Corollary 4.7 Let in assumplions of Theorem 4.2, w be a normalized form, and 7(1?) be an
extension of a real cycle v(tg) of a normalized polynomial H. Then

|/ ~w| < My = max My j, (4.9)
~(f) I

where My ; are the same as in (4.3).

These results allow us to get an upper estimate of the Bernstein index of I in a pair
of domains K" and U, provided that K" is large enough, namely, contains the set K from
the Main Lemma. To complete the proof of Theorems 4.4 and B1, we need to adjust the
geometric assumptions of Theorems 4.1, 4.2 to the geometry of the Euclidiean and Poincaré

disks in W.
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4.3 Number of zeros in Euclidean disks

Theorem 4.4 is proved by a straightforward application of the Growth-and-Zeros theorem in
the form (2.1).

Proof of Theorem 4.4. Denote the closure of the domain DEgrg by K. Let ¢/ = 3/2, U
be the smallest simply connected domain in W that contains the &¢’-neighborhood of K. Then

D := diam;,; K < 2R, m-gap (K,0U) = ¢

Hence,

15

s8R
6,

e <e

This is the main factor in the estimate (4.4).

Let us now estimate from above the Bernstein index B = Bg 7/(I). Let K’ be the set from
Lemma 3.11 (case of real oval) or Lemma 3.12 (case of vanishing cycle).

As in the proof of the Main Lemma, we assume (without loss of generality) that w is
normalized. Then by Corollary 3.9 (case of real cycle) or Theorem 4.1 (case of vanishing
cycle), one has

max || < My,
U

M is from (4.8). On the other hand, K’ C K by (3.11) and (4.5). Therefore, log maxg |I| >
log mg, where myq is from (3.13). Then

Bru(I) < log My — log mo.

Relations (4.1), (3.17) together with elementary estimates imply that
log My — log mg < (1 —log c’(H))e%.

In the definition of My = max; M; ; we take A to be the path of length at most R+ ¢’ (recall
that { € DER g) and «; with length |a;| < 9. Together with Growth-and-Zeros theorem, this
completes the proof of Theorem 4.4. a

4.4 Number of zeros in Poincaré disks

The proof of Theorem B1 is carried on by application of version (2.3) of the Growth-and-Zeros
Theorem to the sets
Kp=DPgr, Up= DPpy1:

#{tA € DPp | I(lg) = O} < BKR7UR(I)€’0R, PR = diampURKR. (4.10)

The right-hand side of the latter inequality is estimated below. Let us first estimate the
Bernstein index in (4.10).

Recall that the form w in the integral I is normalized.

The set K from the Main Lemma is contained in K (this follows from (2.13)), and as
before, this yields immediately a lower bound of m. Indeed, m > mg, and mg is estimated
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from below in (3.17). The principal part of the proof of Theorem B1 is the justification of
the following upper bound for the integral on the set Ug:

< M(R), log M(R) = (1 —logc'(H))e"E, (4.11)

mazg |1(1)

The proof of (4.11) is based on Corollary 4.7. Namely, given R, take any { € Ur and
choose a path A that represents {. Our goal is to estimate from above the entries in (4.3):
|a|,V,Band |t|, ' = wi (we choose 3 = v). This is done in the technical Propositions below.
In all these Propositions, R satisfies (4.7).

Proposition 4.8 For Ug defined above and any i € Ug,

Ti| < Mp, where log Mp = 6etlog R, 4.12
g g

Proposition 4.9 Let A be a geodesic that connects i and ty. Let B = v = %. Then, for a
defined in (4.2),

|la| < 12Rlog R (4.13)
Proposition 4.10 For V, , defined in (4.2),
V., < 37ef*Rlog R. (4.14)

These Propositions will be proved at the end of the Section. Substituting (4.12), (4.13),
(4.14) in the expression (4.3), we get:

12R1 RR1 M
ftlog K + 37e ROgR+5—28n4logc'—|—Qlog 5R.
v

By elementary inequalities and (4.7), the latter right-hand side is less than

log My < 20n!?

eBR%log R — Rlog ' + 12eflog R < (1 — log ¢') R,

Once more, elementary inequalities and (4.7) show that the latter right-hand side is less than
log M(R) from (4.11). This proves (4.11).

We can now get an upper estimate of the Bernstein index in (4.10). The lower bound
m = maxyy [I] is estimated from below in (3.17). The upper bound M = maxg_ |I] is
estimated in (4.11). Elementary estimates now imply

Bipup < (1—logd'(H))e' R, (4.15)

To end up the proof of Theorem B1, modulo three propositions above, we need to get an
upper estimate of the second factor in the right hand side of (4.10), namely, e”E.

Let, as above, Kp and Ugr be two disks centered at {y of radius R and R + 1 respectively
in the Poincaré metric of W. Let pr be the diameter of K in the Poincaré metric of Ug.
Then

pr < 5R. (4.16)
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This follows from the fact that the diameter of Kgr = DPg in the Poincaré metric of W
is equal to 2R (by definition), and the inequality

PUgr e+ 1 5

i U QLIS
PW'I‘R—e—1 2

The latter inequality is a particular case of the following more general statement.

Proposition 4.11 Let W be a hyperbolic Riemann surface, U C W be a domain, K € U be
a compact set. Let distpw (K,0U) > o > 0. Then
PU e? +1
Ik < :
PW e’ —1
Proof By monotonicity of the Poincaré metric as a function of domain, it suffices to prove
the Proposition in the case, when W = Dy, K = {0}, U is the Poincaré disc of radius o
centered at 0: in this case we prove the equality. Indeed, let r be the Fuclidean radius of the
latter disc. By definition and conformal invariance of the Poincaré metric, %(O) =r L

g . )
We have: r~! = £+ since, by definition,

e?—-1"
Tood 14
02/2 i = log T
0

1— s? BT,

This proves the Proposition. a

Estimates (4.16), (4.15) and (4.10) prove Theorem B1.

4.5 Proofs of technical propositions

The proofs of the three Propositions above are based on the following lower bounds of the
Poincaré metric. Given a domain G C C, #(C\ G) > 1, denote by P(G) the ratio of the
Poincaré metric of G' to the Euclidean one; P(G) is a function in ¢ € G.

Inequality (follows from theorem 2.17 in [22]). For any distinct a,b € C one has

P(C\{a,b})(t) > [IEinb |t — c|(r£11nb|log|

—, —,

i —c
a

|+ 5" (1.17)
Corollary 4.12 Let H be a balanced polynomial, B be the complement of C to ils critical
values. Then

P(B)(t) > [|t — a|(|log|t — a|| + C)]7',C = 2logn — log ¢"(H) + 5, for any critical value a.
(4.18)

The Corollary follows from the previous Inequality and monotonicity of the Poincaré metric.
Proof of Proposition 4.8 By (4.7),

C <logR, —logv < log R. (4.19)

Let R, Ug,1 be the same as in the Proposition, ¢ = 7. Our goal is to prove that [¢| < M.
Let a be a critical value of H,t € DPpgyq. From (4.18) and (4.19) we have:

[t—al |d8|
1> ———  , wh F <1 . 4.2
R+ _/|to_a| s(|logs|—|—C)’WereC< og R (4.20)
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By definition, |a| < 2, [t] < 3, so, |[to —a| < 5. Suppose [t| > 7 (if not, then the inequality
|t| < Mp follows immediately, since Mp > 7, by (4.7)). Hence, |t — a| > 5. Put u = logs.
Then the latter integral is no less than

[t—al ds |
s oglt—al o
/5 ogs10) ~ log(u + C)|10g5 > loglog |t — a] — log(C + 2).

Together with (4.20), this implies that
log |t — a| < e®T1(C +2).

Together with inequalities |a| < 2 and (4.19), this proves (4.12). o

Proof of Proposition 4.9 By definition, the curve a consists of the arcs of paths A and
a; lying in D3\ U;D,(a;). Those contained in a; have total length less than 9, since |a;] < 9.
Those contained in A have total length no greater than

[AlpMs3, Mz = (min P(B))™!,
where | . |p is the Poincaré length. As A is a geodesic, |A|p < R+ 1. Hence,
1G] < 9+ (R + 1)Ms.

Let us estimate M3 from above. Recall that the curve a, where the minimum in M3 is taken,
lies in D3 and its gap from the critical values is no less than v. Hence, by (4.18) and the
inequality |a| < 2, we have that

Ms < ﬁax|t—a|(—logl/—|—0) <5(—logv + C).
<3

By (4.19), M5 < 10log R. Together with (4.7), this implies that
la] <94+ 10(R+ 1)log R < 11(R+ 1)log R < 12Rlog R.

This proves Proposition 4.9. a

Proof of Proposition 4.10 We have to prove first that the projection of the Poincaré disc
considered is not too close to the critical values a;. Namely,

dist(r(D Ppy1),a;) > Br, where Bp = Mz". (4.21)
It suffices to show that for any critical value a

|t — a| > PR for any t € 7(D Pry1). (4.22)

It follows from formula for g in (4.21), inequality (4.7), choice of ¢y and elementary inequal-
ities that

Br<v= < |to — al. (4.23)
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Thus, if [t —a| > v, then inequality (4.22) holds. Let us prove (4.22) assuming that [{ —a| < v.
To do this, we use once more Corollary 4.12. Like in (4.20), we have,

[t—al ds |
1> SR E—— ~logli=e
R+12> |/V S(|10g8| + C)| Og(u+c)|—loglz

=log(C —log |t — a|) — log(C' — logv).

Together with (4.19), this implies (4.22), hence, (4.21).

Let us now prove (4.14). The expression V =V, , is a linear combination of variations of
arguments along the pieces of the path « that lie either inside 3 = v- neighborhoods of the
critical values of H, or outside D3. To estimate it from above, we use the following a priori
upper bounds of variations.

Let a be a critical value. By definition, for any curve [ C B

(here by |l|p we denote the Poincaré length). The latter ratio is estimated by (4.18):

P(B))! —_—
% < |log|t — a|| + C < 7e®log R, whenever t € 7(D Pry1) (4.24)
—a
(the last inequality follows from (4.19) and (4.21)). Then by (4.24),

Vi(t — a) < 7|l|pe®log R, whenever | C 7(DPpy1). (4.25)

Analogously, for any critical value a

P(B))~! - P(B))~!
Vit < |l|pmax 7( ) < |l|pmaX| al max 7( (B)) (4.26)
! |1] ! |1] ! |t — al
Now let I C 7(DPgry1)\ D3. Then
max [t = d < é,
! [t] 3

since |t| > 3 on [ and |a| < 2. Substituting this inequality and (4.24) to the right-hand side
of (4.26), yields

Vit < §7|l|peR log R < 12l|peftlog R, whenever | C 7(DPry1) \ Ds. (4.27)

Let us estimate the expression V =V, ,. By definition, the variations in this expression
are taken along the arcs of the path a = A~la; that lie either inside D,(a;), or outside Ds
(except for its final arc a(7',1] C D,(a;), a(t') € 0D,(a;)). By definition, the latter arc
coincides with an arc of the path a;, and its complement in «; is a curve lying in D3 outside
the v- neighborhoods of the critical values (see 3.9). Therefore, the previous arcs, where the
variations are taken, are disjoint from the path «; and thus, are those of the path A. The
first sum in the expression of V, ,, which is v times the sum of the variations along pieces of
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a near the critical values, is less than 7v(R + 1)efflog R. This follows from inequality (4.25)
applied to each piece and the inequality [A|p < R 4 1. Analogously, by the latter inequality
and (4.27), the remaining term in the expression of V,,, is less than 36( R + 1)eflog R. The
two previous upper bounds of the terms in V, , together with (4.7) and inequality v < 11—6
imply that

Vi < (36 4+ 7v)(R 4 1)eflog R < 37ReM log R.

This proves (4.14). ]

5 Estimates of the number of zeros of Abelian integrals near
critical values

In this section we prove Theorem A2, see 2.5, and Theorem B2, stated below. Together
with Theorem Al (whose proof is completed in Section 2) Theorem A2 implies Theorem A.
Together with Theorem B1 ( whose proof is completed in Section 4), Theorem B2 implies
Theorem B.

We have three statements to discuss:

1. Theorem A2 in the case when the endpoints of the interval considered are all finite;

2. Theorem A2 in the case when one of these endpoints is infinite;

3. Theorem B2.

These statements will be referred to as cases 1, 2, 3 below.

It appears that cases 1 and 3 are very close to each other.

5.1 Argument principle, KRY theorem and Petrov’s method

All the three cases are treated in a similar way. We want to apply the argument principle.

The estimates near infinity are based on the argument principle only. The estimates near
finite critical points use the Petrov’s method that may be considered as a generalization of the
argument principle for multivalued functions. The increment of the argument is estimated
through the Bernstein index of the integral, bounded from above in the previous sections. The
relation between these two quantities is the subject of the Khovanskii-Roitman-Yakovenko
(KRY) theorem and Theorem 5.3 stated below. It seems surprising that these theorems were
not discovered in the classical period of the development of complex analysis. The latter
theorem is proved in [10]; the proof is based on the KRY theorem and methods of [21], [13].

At this spot we begin the proof of Theorem A2 in case 1. Recall the statement of the
Theorem in case 1.

Theorem A2 (Case 1). Let a # 0o0,b # oo,. Then

4700, 4

#{t € (a,1(t0)) U (r(to),b) | I(t) = 0} < (1 —logc')e ™™,
where [(#p) and r(tg) are the same as at the beginning of 2.4.
We will prove that

4700 .4

B{1 € (a,1(10)) | I(1) = 0} < %(1 log &) B (5.1)
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Similar estimate for (r(%g), b) is proved in the same way. These two estimates imply Theorem
A2.
Let II = II(a) be the same as in (1.5), namely

N={teW|0<|t—a| <v,|arg(t—a)| < 27}.

Lemma 5.1 Inequality (5.1) holds provided that in (5.1) the interval (a,l(ty)) is replaced by
II.

Lemma 5.1 implies (5.1) because (a,[({y)) C II. Let
My = {te | <|i—al <)

Lemma 5.2 Lemma 5.1 holds provided that in (5.1) the domain 11 is replaced by I1.

Lemma 5.2 implies Lemma 5.1, because

I = U¢>0H¢.
Proof of Lemma 5.2. The proof of this Lemma occupies this and the next four Subsections.
We have
Ol = I'1DeI'sly.
As sets, the curves I'; are defined by the formulas below; the orientation is defined sepa-

rately:

Iy={t||t—a|=v,|arg(t—a) <27} =T,

I's={t||t—a|l=1,larg(t—a)| <271}
Foga={t|¥Y<|t—a| <v,arg(t —a)=+27}.

The curve I'y is oriented counterclockwise, I'y is oriented from the right to the left, I's is
oriented clockwise, I'y is oriented from the left to the right.

Let #{t € (a+1,l(ty)) | L(t) = 0} = Ny. Denote by Rr(f) the increment of the argument
of a holomorphic function f along a curve I' (R of Rouchet). Recall that Vp(f) denotes the
variation of the argument of f along I'. Obviously, | Rr(f) |< Vi(f). O

In assumption that I # 0 on 9Il,, the argument principle implies that

4

1 1
Ny = o—Ron, (1) = o > Rr,(I). (5.2)
1

The first term in this sum is estimated by the modified KRY theorem, the second and
the forth one by the Petrov method, the third one by the Mardesic theorem. The case when
the above assumption fails is treated in 5.3.
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5.2 Bernstein index and variation of argument

The first step in establishing a relation between variation of argument and the Bernstein
index was done by the following KRY theorem.

Let U be a connected and simply connected domain in C, I' C U be a (nonoriented
compact) curve, f be a bounded holomorphic function on U.

KRY theorem, [13] For any tuple U,T C U as above and a compact set K C U there
exists a geometric constant a = (U, K, 1), such that

Vr(f) < aBru(f).

In [13] an upper estimate of the Bernstein index through the variation of the argument
along I' = QU is given; we do not use this estimate. On the contrary, we need an improved
version of the previous theorem with a explicitly written and U being a domain on a Riemann
surface. These two goals are achieved in the following Theorem.

Let |T'| be the length, and x(I') be the total curvature of a curve on a surface endowed
with a Riemann metric.

Theorem 5.3 Let I' C U” Cc U' C U C W be respectively a curve, and three open sets
in a Riemann surface W. Let f : U — C be a bounded holomorphic function, flr # 0. Let
7w : W — C be a projection which is locally biholomorphic, and the metric on W be a pullback
of the Fuclidean metric in C. Let ¢ < % and the following gap conditions hold:

m-gap (U, U") > ¢, m-gap (U",U") > e, m-gap (U',U) > «. (5.3)
Let D > 1 and the following diameter condilions hold:
diam ;,,U" < D, diam ;,;U" < D (5.4)

Then

IT| oD

Vr(f) < Bunp(F)(—

This theorem is proved in [10].

Recall that intrinsic diameter and 7-gap are defined in 2.3.

We can now estimate from above the first term in the sum (5.2). The estimate works in
both cases when « is finite or infinite.

Lemma 5.4 Lel H be a normalized polynomial of degree n+1 > 3. Let I be the same integral
as in (1.1). Let K be a compact set mentioned in the Main Lemma, and I'y = 1", be the same
as in this Lemma (a may be infinite). Then

n

Vi, (1) < (1 —log ' (H))A A = e, (5.6)
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In what follows, we write ¢, ¢” instead of ¢/(H),c"(H).

Proof The Lemma follows immediately from Theorem 5.3 and the Main Lemma. To apply
Theorem 5.3, let us take I for f, the universal cover over B for W with the natural projection
7w : W — C and the metric induced from C by this projection. This metric on W is called
Euclidean. Let K and U be the same as in the Main Lemma. Take this U for the domain U
to apply Theorem 5.3. Recall that U is the minimal simply connected domain that contains
the Z-neighborhood of K in U in the Euclidean metric on W, v is the same as in (1.2). Let
€ =g, that is

"

I/_ C
6 24n?’

(5.7)

Let U"” and U’ be the minimal simply connected domains in W that contain e-neighborhood of
K and U” respectively. Take I'y for T' from the statement of Theorem 5.3. Note that I'y C K.
Then gap condition (5.3) with ¢ from (5.7) holds. Moreover, diam;,:U’ < diam;,,U" 4 2¢ <
diam;,: K + 4¢. Hence, diameter condition (5.4) holds with D < 38n? by (2.8). Thus

5D

e < A° where ¢g = 5 x 38 x 24.
The factor A® is the largest one in the estimate for Vr, (1).
By inequality (2.10) from the Main Lemma, Bxp < (1 —logc¢’)A%. By the monotonicity

of Bernstein index (that follows directly from its definition), By» iy < Bg,u. At last,

T

+r(I)+1=2414+41+1 << A.

[

Note, that ¢g + 3 < 4600. Now, inequality (5.5) proves the Lemma. O

Remark 5.5 Lemma 5.4 remains valid if in its hypothesis the integral [ is replaced by an
integral J over the cycle vanishing at the critical value a of H. The proof of this modified
version of Lemma 5.4 repeats that of the original one with the following change: we use the
Modified Main Lemma instead of the Main Lemma.

Corollary 5.6 Suppose that the integral J with a real integrand w is taken over a local
vanishing cycle 6; corresponding to the real critical value a. Then the number of zeros of J
CII

in the disk centered at a of radius v = ;— admils the following upper estimate:

1
Ny=#{tcC||t—al <v,J(t) =0} < 2—(1 — log ¢’) A*600 (5.8)
T
This follows from the modified Lemma 5.4 and the argument principle.

5.3 Application of the Petrov’s method

The Petrov’s method applied below is based on the remark that the magnitude of the in-
crement of the argument of a nonzero function along an oriented curve is no greater than
the number of zeros of the imaginary part of this function increased by 1 and multiplied by
7. Indeed, at any half circuit around zero, a planar curve crosses an imaginary axis at least
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once. The method works when the imaginary part of a function appears to be more simple
than the function itself.

Let 6(t) € Hq(t) be the local vanishing cycle at the point a. Let w be the same real form
as in integral (1.1). Let J be the germ of integral J(¢) = fé(t w along the cycle §(¢), which
is a local vanishing cycle at ¢ = a. Note that J is single—va%ued in any simply connected
neighborhood of @ that contains no other critical values of H. Let Iy = (7(¢),6(¢)) # 0 be the
intersection index of the cycles v(¢) and §(¢). As the cycle y(¢) is real and H is ultra-Morse,
lop may take values +1,+2 only (Lemma 3.16). Let

To={t e R|te?™ €Ty},
Then by the Picard-Lefschetz theorem
I |F2: (I—I_ZOJ) |F07 I |F4: (I_ ZOJ) |F0 :

Proposition 5.7 The integral J is purely imaginary on the real interval (a,b).

Proof Recall that the form w and the polynomial H are real. Then

J() = —J(0).

Indeed, w = Q(z,y)dz. The involution i: (z,y) — (Z,7) brings the integral J(¢) = [ Qdz
8(t)
to [ Qdz = [ Qdz = _fé(f) Qdz = —J(1). On the other hand, for real ¢ we have ¢t = ¢
is(1) —5(D)
and 6(¢) = 6(t). Hence, J(t) = —J(t) for t € (a,b). This implies Proposition 5.7. o

Corollary 5.8 Let, as above, ly # 0 be the intersection index of the cycles v(t) and 6(1).
Then
Il |r,,= +loJ |, -

Proof This follows from Proposition 5.7, Picard-Lefschetz theorem and the reality of I on
Ty. O

Suppose first that I has no zeros on I'y and I'y. Then
|Rr,,(I)] < 7(14 N), where N = #{t € I'y | J(t) = 0}. (5.9)

Obviously, N < Nj, see (5.8). The right hand side of this inequality is already estimated
from above in Corollary 5.6. Hence,

‘RF2,4(I)‘ <7+ %(1 — 1og C/)A4600.

Suppose now that I has zeros on I'; (hence on I'y, by Proposition 5.7). Indeed, its real
part is the same at the corresponding points of I'y,I'g,I's, and the imaginary parts of I|r,
and I|r, are opposite at these points. In this case we replace the domain Il by Hi& defined
as follows.

The curves I'; 4 should be modified. A small segment of I'; centered at zero point of I that
contains no other zeros of J, should be replaced by a lower half-circle having this segment as
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a diameter and containing no zeros of J. A similar modification should be done for I'y making
use of upper half-circles. Denote the modified curves by F/2,4' Let Hi& be the domain bounded
by the curve

I, = T4 THT5TY. (5.10)

It contains I, and we will estimate from above the number of zeros of I in Hi& still using the
argument principle. The increment of arg I along I'; is already estimated in 5.2. Here we give
an upper bound for the increment of arg I along FIQA' The increment along I's is estimated
in the next Subsection.

Proposition 5.9 Let N be the same as in (5.9). Then

| RF§4(I) |<7T(2N 4 1). (5.11)

Proof We will prove the Proposition for I'}; the proof for I is the same. Let I have zeros

b; € I'y, 7 =1,...,k, the number of occurrences of b; in this list equals its multiplicity. Note
that

Im Iy, = loJ (5.12)

Hence, at the points b;, J has zeros of no less multiplicity than /. Hence, the total multiplicity
k' of zeros of J at the points b; € 'y, j = 1,...,k,is no less than k. Let J have s zeros on I'}.
We have: k' > k, s < N — k' < N — k. Let 0y,...,04, ¢ < k + 1, be the open intervals, the
connected components of the difference of I, and the half-circles constructed above. Let s;
be the number of zeros of J on o;, > 1s; = s. Let

R; = R,,(I).
Then
R; <m(s;+1).
Hence,

| Rry (1) |[< m(k + zq:(s]' + 1) <72k +14+s) < 72K +14s) < 7(2N + 1), (5.13)

where N < Nj < 7-(1 —log ) A*%, see (5.8). o

5.4 Application of the Mardesic theorem

Proposition 5.10 Let I be the integral (1.1), and I's be the same as in Subsection 5.1. Then
for ¥ small enough,

|Rr,(I)] < m(4n* 4 1). (5.14)
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Proof Let J and [y be the same as in the previous subsection. Let a = 0, and I(€*™*t) means
the result of the analytic extension of I from a value I(t) along a curve e*™¢t, o € [0, 1]. By
the Picard-Lefshetz theorem, for small ¢

I(e¥™t) = I(t) + loJ (1)

Consider the function
logt
Y(t)=1(t) — lo—=J(1).
(1) = 1) ~ lo w21 (1)

This function is single-valued because the increments of both terms I and Y under the analytic
extension over a circle centered at 0 cancel. The function [ is bounded along any segment
ending at zero, and J is holomorphic at zero, with J(0) = 0. Hence, Y is holomorphic and
grows no faster than log |¢| in a punctured neighborhood of zero. (In fact, it is bounded in
the latter neighborhood: |J(t)logt| < c|t||logt| — 0,as t — 0.) By the removable singularity
theorem, it is holomorphic at zero. Hence,

logt

I(t) = Y (1) + lo—22 J (1) (5.15)

2me
with Y and J holomorphic. We claim that the increment of the argument of I along I's for

¥ small is bounded from above through ordyJ, the mulliplicily of zero of J at zero. The latter
order is estimated from above by the following theorem by Mardesic:

Theorem 5.11 [1j]. The multiplicity of any zero of the integral I (or J) taken at a point
where the integral is holomorphic does not exceed n*.

The function (5.15) is multivalued. The proof of Proposition 5.10 is based on the following
simple remark. Let fi, fo be two continuous functions on a segment o C R, and |fi| > 2| f5].
Then [R,(f1 + f2)| < |Rs(f1)|+ 5. Indeed, the value R,(f1 4 ¢f2) cannot change more than
by %, as € ranges over the segment [0, 1].

To complete the proof of Proposition 5.10, we need to consider three cases. Let v =

ordgY, p = ordoJ, f(p) =Y (¥e*¥), g(¢)=lo (Jlo—g> (1e?™%). Note that u < n*.

27

Case (i): v < p. Then, for ¥ small, 2|g| < |f|. By the previous remark, applied to
fl :f7 f2:g7weget

|Rr, ()| < w(4v + 1) < w(dp + 1) < w(4n* + 1),

Case (ii): v = p. Then, for ¥ small, 2|f| < |g|, because of the logarithmic factor in g. In
the same way as before, we get

|Rr,(1)] < 7(4p+ 1) < m(4n* +1).

Case (iii): v > p. In the same way, as in Case (ii), we get (5.14). O
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5.5 Proof of Theorem A2 in case 1 (endpoints of the interval considered
are finite)

Proof It is sufficient to prove Lemma 5.2. We prove a stronger statement
’ ’ 1 I\ 44600
N(I,T) == #{t e I | I(t) =0} < 5(1 —logc)A (5.16)
By the argument principle
20 N(I,11) < V(T'1)+ | Bry (1) | + | Rro (1) | + | Bry(1) | (5.17)

The first term in the r.h.s is estimated in (5.6). The second and the fourth terms are estimated
from above in (5.11) (the N in the r.h.s. of (5.11)is estimated from above by N, see (5.8)).
The third term is estimated in (5.14). Altogether this proves (5.16), hence, Lemma 5.2 and
implies a stronger version of (5.1):

1
N(I,1I) < 5(1 — log ¢/) A*699,

This proves Theorem A2 in case 1. a

5.6 Proof of Theorem B

Theorem B follows from Theorem B1 and the following statement.

Theorem B2. For any real normalized ultra-Morse polynomial H, any family I' of real
ovals of H, and any 1, let 1I(a) and 11(b), D(l,a) and D(l,b) be the same domains, as in
Subsection 1.2. Let I be the analytic extension to W of the integral (1.1) over the ovals of
the family 1" :

/ w=1I(t), v(t)eT.
V(t)

Then the number of zeros of I in D(l,a)U D(l,b) (denoted by N(l, H)), is no greater than
77,4
*/V(l’ H) < (1 - 10g C/)e460067+4§’—,1,l )

Proof We will prove the Theorem for the case when a = a({g) is a logarithmic branch point
of the integral I at the left end of the segment o(g). The case of the right end is treated
in the same way. The case when a({g) is a critical value of H which is not a singular point
of the integral I, is even more elementary. In this case the integral is univalent in a small
neighborhood of a, the number of zeros to be estimated does not depend on [ > 1, and the
estimate follows from Theorem A2.

Let for simplicity D(l) = D(l,a). For any ¢ € (0,v) consider the set II), C W, see (5.10).
Let ,

I, ={a+ re' |a+ret € 1T, }.

Let T'yy, T ), T'sy, Ty ; be the curves defined by the relations:

(?Hiw = FLIF’QJF&;FQJ; ' ==l j=1;3; TTF;J = WF;, J=2;4.
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Let Rp(f) and Vr(f) be the same as in Subsection 5.1. Then, by the argument principle
2w N(1, H) < Ve, (T4 | Ry (1) | + | B, (D) + | Rey, | (5.18)

The four terms in the right hand side are estimated in a similar way as the corresponding
terms in (5.17).

Proposition 5.12 For I and F;l above:
| Res (1)< 72N + 1), j = 2,4, (5.19)

where N is the same as in (5.9).

Proof The proposition is proved in the very same way as Proposition 5.9 with the only
difference: (5.12) should be replaced by

Im I |ijl: +llgJ o |p, -

The factor [ in the r.h.s. does not change the number of zeros. a

Moreover,
| Rry (1) |< m(4n*l + 1). (5.20)

This is proved in the same way as (5.14) with the only difference that the increment of the
argument of ¢ along I's; is now 4xl.

Proposition 5.13 For I and I'y; above,

nt

Vi (1) < (1 log /) AT, 4 = 37, (5.21)
Proof of Proposition 5.13. The proof follows the same lines as that of Lemma 5.4. We

will estimate the variation of argument under consideration making use of Theorem 5.3. For
this we need first to choose the curve I' and domains U”, U’, U. Let

I'=Ty;={a+ve¥|pel-2nl2xl]}.

Take the same ¢ = & as in (5.7). For any set G C W take G® to be the e-neighborhood of

G in the Euclidean metric of W, and (¢ C W be the minimal simply connected domain that
contains G°. Let K be the same as in the Main Lemma. Take

—— e~

U" = (KUT), U' = (K UT)®, U = (K UT)*.

Note that for any point p € K U T, the 6e-neighborhood of p in W is bijectively projected to
a 6e-disk in C. Hence, the gap condition (5.3) holds for I', U”, U’, U, ¢ so chosen.
Note that K N T' = I'; # (). Hence, the set K U T, as well as U”,U’, U is path connected.
Then we have:
diam K < 36n°

by (2.8),
diam (K UT) < 36n2 + 4rly := Dy,
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diam ;,;U" < Dy + 2¢,
diam ;,, U’ < Dq + 4e.

Hence, diameter condition (5.4) holds with
Dy = 36n* + 16lv = 36n* + 96lc. (5.22)

Let us now estimate from above the Bernstein index By = By» y(1). Let Uy be the
domain denoted by U in the Main Lemma. Then K C U"”, Uy C U. Let By = Bk u,(I) be
the Bernstein index estimated in the Main Lemma. By (2.10),

By < (1 —logc')A%

Proposition 5.14

Proof By definition,

M M
: 9 BO = 1Og . ’
mq m

B1 = 10g

where My = maxg|I|, mi = maxgy |I], Mo = maxg= ||, m = maxg |I|. Note that K C U",
hence, m < mq.
On the other hand, let

My = max|J| on the closure of D, 3.(a).

By definition, I C Uy, 71 C D,43.(a), U is the minimal simply connected domain
containing Up U I'*¢. By the Picard-Lefschetz theorem and Lemma 3.16

My < Mg + |lolIMy, |l < 2.

Let us estimate the integral J from above. Over each point of 0D, 43.(a) (except for a+v+3¢)
there are two points of d(I'}®) C Ug, where I'y = I, is the same, as in 5.1. The difference of
the values of I at the two latter points is equal to +lyJ, 0 < |ly] < 2. Therefore,

My < 2Mjy. Hence,

My < Mo(4l + 1),

My Mo(41+ 1)
m

mi

By = log <log = By + log(4l + 1).
O
Let us now estimate from above other geometric characteristics used in Theorem 5.3. We
have:

\I'| = 4nly = 24nle, w(I') = 4xl.
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Hence,

B+;~;(F)+1:287rl+1.

Moreover, by (5.22),

5D 4
22 _ 5.36- 247 4 4801.
& [&

Then, by Proposition 5.14 and Theorem 5.3,
‘/Flyl(I) S Cn7[A4320€48017

where

nt

et = (Bo +log(4l + 1))(287nl + 1), A = e<”.
By the Main Lemma,
By < (1 —logc)A%
Elementary estimates imply:
et < ((1=loge) A3

This implies (5.21).
Together, inequalities (5.19) - (5.21) imply Theorem B2 (by the argument principle).
Theorems B1 and B2 imply Theorem B. a

5.7 Proof of Theorem A2 in Case 2 (near an infinite endpoint)

Here we prove Theorem A2 for a segment with one endpoint, say, b, infinite.

Proposition 5.15 The integral I has an algebraic branching point at infinity of order n+ 1.

Proof of Proposition 5.15. Let Si be the circle |t{| = R, R > 3, I'r be the (n + 1) sheet
cover of S with the base point —R. Consider the real ovals () extended for ¢t € W. For any
arc I'' C T'g going from —R to t, = —Re* let [Ar] be the class of all the covering homotopy
maps {H = —R} — {H = {,}. Let h be the highest homogeneous part of H. If H = h, then
for any R the class [Ar/] contains the simple rotation:

1o 1

Ry (z,y) — (entTa, ently)

In the general case, for R large enough the class [Ar/] contains a map Ars close to the
rotation. Let us prove this statement. To do this, consider the extension of the foliation
H = const by complex level curves of H to the projective plane P? obtained by pasting
the infinity line to the coordinate plane C2. The foliations H = const and h = const are
topologically equivalent near infinity. More precisely, for any r > 0 large enough there exists
a homeomorphism @ of the complement P?\ D, (D, is the ball of radius r centered at 0)
onto a domain in P? that preserves the infinity line such that h o ® = H. This follows
from the statements that the singularities of these foliations at infinity are the same and of
the same topological type (nodes), and the holonomy mappings corresponding to clockwise
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ome
circuits around these singularities in the infinity line are rotations ¢ — e»+1¢ in the transversal

coordinate t = H7#1. The last statement follows from the fact that for a generic C' € C
~ . n+l ~
H(z,y)|le=cy = (Cz) (1+0(1)), as z — o0, C' #0.

This already implies that the previous holonomies are rotations. The previous statement on
the angle of these rotations holds true, since this is the case for the homogeneous polynomial
h, and the foliation H = const can be made arbitrarily close (near infinity) to h = const (by
appropriate rescaling).

The homeomorphism @ is close to identity near infinity. For any r > 0 there exists a
T(r) > 0 such that for any ¢, [¢t| > T(r), S¢N D, = 0. The map A/ we are looking for is
obtained from the map Ry corresponding to h by conjugation by the homeomorphism ®. By
construction, its n + 1- iterate is identity. a

Proof of Theorem A2 near infinity. As before, consider the case b = +o0; the case
a = —oo is treated in the same way. Let W7 be the Riemann surface of the integral I. Let
I' € Wy be the degree n 4+ 1 cover of the circle |{| = 3 with the base point ¢; = +3. This is
a closed curve on Wj. This curve is a boundary of a domain on W; that covers n + 1 times
a neighborhood of infinity on the Riemann sphere. Let us denote this domain by Wr°. We
will estimate from above
Noo ={t e W° | I(t) = 0}.

This will give an upper estimate to the number of zeros of I on o7 = (3,+0c) because

ot C W;°. We will use the argument principle in the form

Neo < —Vr(I)+n+1. (5.23)

¥ =

This follows from the argument principle and the fact that the infinity is the only pole of
I|W}>o, and its order is at most n + 1. The latter bound on the order follows from the
condition that the 1- form under the integral (1.1) has degree at most n, and the fact that

the integration oval v(¢) has size (and length) of the order O(|t|nJT), ast — oo, t €R.

The variation in the right hand side will be estimated by Theorem 5.3. To apply this
Theorem we need to define all the entries like in the previous Subsection.

We have: I' = 9W7°. Without loss of generality we consider that I|r # 0 (one can achieve
this by slight contraction of the circle [{] = 3). Let K be the same as in the Main Lemma.
Denote by Ug the set U from that Lemma: both K and Uy are taken projected to the Riemann
surface of the integral I. Let ¢ be the same as in (5.7). By (2.7), K D I.

Let

U" = K¢, U' = K2, U = K.

Then U coincides with the projection of Uy to W) (up to filling holes, if there are any).
Therefore, maxg /| = maxg 1] (the maximum principle). Hence,

BUH7U(I) < BK,UO(I) < (1 — 10g C,)AQ.

The latter inequality is (2.10). This provides the estimate of the Bernstein index required in
Theorem 5.3. Other ingredients are the following.
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By (2.8), the diameter condition (5.4) holds with
D = 36n* + 1.
The gap condition (5.3) for I, U”, U’, U holds as well with ¢ from (5.7). Hence,

5D
et S A4600

Moreover,

| [=67(n+1), | k() |=21(n+1).
Altogether, by Theorem 5.3, this implies:

Vi(I) < (1 —log ¢')C(n, c") A%,

with C(n,c") = &T(Ziﬂ) 4+ 27(n+ 1) + 1 < A%. Together with (5.23) this proves Theorem
A2, Case 2. a
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