Simultaneous metric uniformization of foliations by Riemann surfaces

Abstract : We consider a two-dimensional linear foliation on torus of arbitrary dimension. For any smooth family of complex structures on the leaves we prove existence of smooth family of uniformizing (conformal complete flat) metrics on the leaves. We extend this result to linear foliations on $\mathbb T^2\times\mathbb R$ and families of complex structures with bounded derivatives $C^3$- close to the standard complex structure. We prove that the analogous statement for arbitrary $C^ infty$ two-dimensional foliation on compact manifold is wrong in general, even for suspensions over $\mathbb T^2:$ in dimension 3 the uniformizing metric can be nondifferentiable at some points; in dimension 4 the uniformizing metric of each noncompact leaf can be unbounded.
Type de document :
Article dans une revue
Commentarii Mathematici Helvetici, European Mathematical Society, 2004, 79 (4), pp.704-752
Liste complète des métadonnées

https://hal-ens-lyon.archives-ouvertes.fr/ensl-00078827
Contributeur : Alexey Glutsyuk <>
Soumis le : mercredi 7 juin 2006 - 16:19:25
Dernière modification le : jeudi 11 janvier 2018 - 06:12:31
Document(s) archivé(s) le : lundi 5 avril 2010 - 22:27:24

Fichier

Identifiants

  • HAL Id : ensl-00078827, version 1

Collections

Citation

Alexey Glutsyuk. Simultaneous metric uniformization of foliations by Riemann surfaces. Commentarii Mathematici Helvetici, European Mathematical Society, 2004, 79 (4), pp.704-752. 〈ensl-00078827〉

Partager

Métriques

Consultations de la notice

207

Téléchargements de fichiers

69